1
|
Rahman E, Carruthers JDA, Rao P, Abu-Farsakh HN, Garcia PE, Ioannidis S, Sayed K, Philipp-Dormston WG, Mosahebi A, Webb WR. Regenerative Aesthetics: A Genuine Frontier or Just a Facet of Regenerative Medicine: A Systematic Review. Aesthetic Plast Surg 2025; 49:341-355. [PMID: 39198280 DOI: 10.1007/s00266-024-04287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Regenerative aesthetics claims to enhance cosmetic outcomes through advanced biological interventions like Stem cell and Exosome therapy, Polydeoxyribonucleotide (PDRN), Photobiomodulation, bioactive peptides and treatment for cellular senescence yet lacks substantial scientific and regulatory validation. OBJECTIVE To evaluate the scientific and clinical foundations of regenerative medicine techniques in non-surgical aesthetics and assess the legitimacy of regenerative aesthetics as a medical specialty. METHODS A systematic review was conducted according to PRISMA guidelines, searching databases including PubMed, Scopus, and Web of Science for studies published in the last ten years. We included 19 studies, comprising 14 randomized controlled trials (RCTs) and 5 prospective studies, focusing on interventions that purportedly use regenerative medicine principles in aesthetic applications. RESULTS The review highlights a prevalent gap in molecular and clinical evidence supporting the efficacy and safety of regenerative aesthetics. Despite the robust design of the included RCTs and prospective studies, there remains a significant lack of consistent, high-quality evidence proving the effectiveness of these interventions. Issues such as inadequate reporting, unclear molecular mechanisms, and absence of long-term safety data were common. CONCLUSION The field of regenerative aesthetics lacks the necessary scientific rigour and regulatory compliance to be recognized as a legitimate medical specialty. This review underscores the need for stringent scientific validation and regulatory oversight to ensure patient safety and treatment efficacy before these techniques can be recommended for clinical use. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Eqram Rahman
- Research and Innovation Hub, Innovation Aesthetics, London, WC2H 9JQ, UK
| | - Jean D A Carruthers
- Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| | - Parinitha Rao
- The Skin Address, Aesthetic Dermatology Practice, Bangalore, India
| | | | | | | | - Karim Sayed
- Nomi Oslo, Oslo, Norway
- University of South-Eastern Norway, Drammen, Norway
| | | | | | | |
Collapse
|
2
|
Wakitani S, Mera H, Nakamura N, Gobbi A. Review of Caplan (1991) on cell-based therapeutic technology using Mesenchymal Stem Cells. J ISAKOS 2024; 9:426-430. [PMID: 37678637 DOI: 10.1016/j.jisako.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
This classic discusses the original 1991 publication 'Mesenchymal Stem Cells (MSCs)' by Dr. Caplan on the emergence of a new therapeutic technology of self-cell repair using MSCs. After the original classic publication, a large number of methods to regenerate injured tissue have been reported. Currently, MSCs are used clinically to repair articular cartilage defects, liver cirrhosis, cerebral infarction, spinal cord injury, graft-versus-host disease and others. As a result, MSCs are considered one of the most important cell sources for regenerative medicine. An MSC has been demonstrated to be a multipotent stem cell in cell culture and was thought to contribute to the regeneration of injured tissue at transplant sites, but recently, the concept of MSCs has changed such that they are now referred to as "medicinal signaling cells," owing to their often indirect effects on tissue repair and regeneration. Regardless of the name, either mesenchymal stem cells or medicinal signaling cells, MSCs will be used to regenerate injured tissue more widely in the near future.
Collapse
Affiliation(s)
| | - Hisashi Mera
- Department of Orthopedic Surgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Uonuma Kikan Hospital, Niigata 949-7302, Japan.
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka 567-0085, Japan
| | - Alberto Gobbi
- Orthopaedic Arthroscopic Surgery International Bioresearch Foundation, 24-20133 Milan, Italy
| |
Collapse
|
3
|
Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, Cribbs CG, Van Ry PM. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci 2021; 22:12690. [PMID: 34884495 PMCID: PMC8657545 DOI: 10.3390/ijms222312690] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (J.C.V.); (B.C.J.); (D.J.J.); (N.A.F.); (E.L.D.); (C.S.); (C.G.C.)
| |
Collapse
|
4
|
Ghanbari E, Khazaei M, Ghahremani-Nasab M, Mehdizadeh A, Yousefi M. Novel therapeutic approaches of tissue engineering in male infertility. Cell Tissue Res 2020; 380:31-42. [PMID: 32043209 DOI: 10.1007/s00441-020-03178-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Male reproductive organ plays an important role in sperm production, maintenance and entry to the female reproductive tract, as well as generation and secretion of male sex hormones responsible for the health of male reproductive system. The purpose of this paper is to discuss the experimental and clinical evidence on the utilization of tissue engineering techniques in treating male infertility. Tissue engineering (TE) and regenerative medicine have developed new approaches to treat patients with reproductive disorders such as iatrogenic injuries, congenital abnormalities, and trauma. In some cases, including congenital defects and undescended testis or hypogonadism, the sperm samples are not retrieved. This makes TE a possible future strategy for restoration of male fertility. Here, we have summarized the recent advances in experimental and clinical application of cell-, tissue-, and organ-based regenerative medicine in male reproductive disorders.
Collapse
Affiliation(s)
- Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Comprehensive Health Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Argentati C, Tortorella I, Bazzucchi M, Morena F, Martino S. Harnessing the Potential of Stem Cells for Disease Modeling: Progress and Promises. J Pers Med 2020; 10:E8. [PMID: 32041088 PMCID: PMC7151621 DOI: 10.3390/jpm10010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ex vivo cell/tissue-based models are an essential step in the workflow of pathophysiology studies, assay development, disease modeling, drug discovery, and development of personalized therapeutic strategies. For these purposes, both scientific and pharmaceutical research have adopted ex vivo stem cell models because of their better predictive power. As matter of a fact, the advancing in isolation and in vitro expansion protocols for culturing autologous human stem cells, and the standardization of methods for generating patient-derived induced pluripotent stem cells has made feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Furthermore, the potential of stem cells on generating more complex systems, such as scaffold-cell models, organoids, or organ-on-a-chip, allowed to overcome the limitations of the two-dimensional culture systems as well as to better mimic tissues structures and functions. Finally, the advent of genome-editing/gene therapy technologies had a great impact on the generation of more proficient stem cell-disease models and on establishing an effective therapeutic treatment. In this review, we discuss important breakthroughs of stem cell-based models highlighting current directions, advantages, and limitations and point out the need to combine experimental biology with computational tools able to describe complex biological systems and deliver results or predictions in the context of personalized medicine.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (I.T.); (M.B.); (F.M.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (I.T.); (M.B.); (F.M.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (I.T.); (M.B.); (F.M.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (I.T.); (M.B.); (F.M.)
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (I.T.); (M.B.); (F.M.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
6
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|