1
|
Maimaiti D, Ge X, Wang C, Liu J, Yang G, Zhang D, Xu Y, He F, Chen X. Extracellular matrix-mimicking cryogels composed of methacrylated fucoidan enhance vascularized skeletal muscle regeneration following volumetric muscle loss. Int J Biol Macromol 2024; 283:137122. [PMID: 39491692 DOI: 10.1016/j.ijbiomac.2024.137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Volumetric muscle loss (VML) significantly impairs the inherent regenerative ability of skeletal muscle and results in chronic functional impairment. Polysaccharides in the muscle extracellular matrix are crucial for regulating cell proliferation and differentiation. Recent studies indicate that fucoidan has beneficial effects on musculoskeletal conditions. However, the impact of fucoidan on skeletal muscle regeneration remains poorly understood. In this study, methacrylated fucoidan (FuMA) was synthesized through chemical grafting of the methacryloyl group onto fucoidan. In vitro experiments demonstrated that treatment with FuMA significantly up-regulated the expression of myogenic markers and promoted the formation of myotubes in C2C12 myoblast cells. Importantly, FuMA treatment led to a significant enhancement in mitochondrial energy metabolism of myoblasts via activation of the NRF2 antioxidant signaling pathway. To further investigate the regenerative properties in repairing skeletal muscle defects, we fabricated a dual crosslinked cryogel consisting of FuMA and methacrylated gelatin (GelMA) with a porous and interconnected structure. In a rat tibialis anterior muscle VML model, implantation of the FuMA/GelMA cryogel effectively promoted the regeneration of muscle fibers, reduced collagen deposition, and facilitated the formation of new blood vessels. Hence, polysaccharide-based cryogels represent a promising implantable biomimetic scaffold for facilitating skeletal muscle regeneration following severe injuries.
Collapse
Affiliation(s)
- Dimulati Maimaiti
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China; Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xiaoyang Ge
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Chengyue Wang
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jinuo Liu
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China; Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Guanyu Yang
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yong Xu
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Fan He
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Pfab F, Sieland J, Haser C, Banzer W, Kocher T. [Genetics in sports-muscle injuries]. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:889-896. [PMID: 37773215 DOI: 10.1007/s00132-023-04439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The human genome is the complete set of genetic instructions encoded in an individual's DNA. Genetics plays an important role in the development and progression of muscle injuries. Many genes are involved in muscle development, growth, and repair, and variations in these genes can affect an athlete's susceptibility to muscle injury. SPECIFIC GENES Several genes have been linked to muscle injury, such as myostatin (MSTN), insulin-like growth factor 1 (IGF-1), and several collagen genes (COL). In addition to genes involved in muscle development, growth, and repair, genes involved in inflammation and pain signaling, such as tumor necrosis factor alpha (TNF-α), mu opioid receptor (OPRM1), and interleukin (IL) genes, may also play a role in the development and progression of muscle injury. GENETIC TESTS Genetic testing can be a helpful tool in the prevention of muscle injuries in athletes. Testing for variations in genes associated with muscle development, repair, and growth, as well as collagen formation, can provide valuable information about an athlete's susceptibility to muscle injury. It is important to note that while genetic testing can provide valuable information for injury prevention, it is only one piece of the puzzle. Other factors such as an individual's training history, general health, and lifestyle habits also play a role in injury risk. Therefore, all injury prevention strategies should be individualized and based on a comprehensive assessment of all relevant factors.
Collapse
Affiliation(s)
- Florian Pfab
- Technische Universität München, München, Deutschland.
- MedZentrum Residenz, Residenzstr. 9, 80333, München, Deutschland.
- Eintracht Frankfurt Fußball AG, Frankfurt am Main, Deutschland.
- DNathlete AG, Schaan, Liechtenstein.
| | - Johanna Sieland
- Eintracht Frankfurt Fußball AG, Frankfurt am Main, Deutschland
| | - Christian Haser
- Eintracht Frankfurt Fußball AG, Frankfurt am Main, Deutschland
| | - Winfried Banzer
- Abteilung Präventiv- und Sportmedizin, Institut für Arbeits‑, Sozial- und Umweltmedizin, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Deutschland
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Österreich
| |
Collapse
|
3
|
Grassi A, Dal Fabbro G, Zaffagnini S. Orthobiologics for the Treatment of Muscle Lesions. ORTHOBIOLOGICS 2022:287-299. [DOI: 10.1007/978-3-030-84744-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
5
|
Luis Araujo Minari A, Avila F, Missae Oyama L, Vagner Thomatieli Dos Santos R. Inflammatory response of the peripheral neuroendocrine system following downhill running. Cytokine 2021; 149:155746. [PMID: 34678553 DOI: 10.1016/j.cyto.2021.155746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Exploring the relationship between exercise inflammation and the peripheral neuroendocrine system is essential for understanding how acute or repetitive bouts of exercise can contribute to skeletal muscle adaption. In severe damage, some evidence demonstrates that peripheral neuroendocrine receptors might contribute to inflammatory resolution, supporting the muscle healing process through myogenesis. In this sense, the current study aimed to evaluate two classic peripheral neuronal receptors along with skeletal muscle inflammation and adaptation parameters in triceps brachii after exercise. We euthanized C57BL (10 to 12 weeks old) male mice before, and one, two, and three days after a downhill running protocol. The positive Ly6C cells, along with interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), glucocorticoid receptor (GR), α7 subunits of the nicotinic acetylcholine receptor (nAChRs), and myonuclei accretion were analyzed. Our main results demonstrated that nAChRs increased with the inflammatory and myonuclei accretion responses regardless of NF-κB and GR protein expression. These results indicate that increased nAChR may contribute to skeletal muscle adaption after downhill running in mice.
Collapse
Affiliation(s)
| | - Felipe Avila
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ronaldo Vagner Thomatieli Dos Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; Departamento de Biociências - Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
6
|
Needling on trigger point promotes muscle regeneration after bupivacaine injection induced injury. Neurosci Lett 2020; 739:135436. [PMID: 33132179 DOI: 10.1016/j.neulet.2020.135436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022]
Abstract
Dry needling treatment has a promising relieving effect on Myofascial Pain Syndrome (MPS). In China, acupuncture practitioners use acupuncture needle instead to insert the "A-Shi" acupoint to treat MPS which is defined as the same as the trigger point of dry needling. This method has been applied for thousands of years in China. In this study, bupivacaine injection induced gastrocnemius muscle injury in mice. We applied the clinical improved needling method on animal model by making the angle between the skin and needle less than 30 degree. Animals got needling treatment 24 h later at the point where the bupivacaine was injected. Results of muscle H.E. staining showed that, compared to bupivacaine injection group without needling, acupuncture treatment group showed more intact muscle fibers, less inflammatory cell infiltration and fractured muscle fibers. By RNA sequencing analysis, our work firstly demonstrated that the physical stimulation of needling changed the gene expression of muscle tissue to accelerate the muscular regeneration process. Therefore, our study proved that simple needling at "A-Shi" acupoint promoted muscle regeneration and revealed underlying mechanisms of the beneficial effects of acupuncture and dry needle treatments.
Collapse
|
7
|
Yokoyama M, Matsuzawa T, Yoshikawa T, Nunomiya A, Yamaguchi Y, Yanai K. Heparan sulfate controls skeletal muscle differentiation and motor functions. Biochim Biophys Acta Gen Subj 2020; 1864:129707. [PMID: 32810562 DOI: 10.1016/j.bbagen.2020.129707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Heparan sulfate (HS) is a sulfated linear polysaccharide on cell surfaces that plays an important role in physiological processes. HS is present in skeletal muscles but its detailed role in this tissue remains unclear. METHODS We examined the role of HS in the differentiation of C2C12 cells, a mouse myoblast cell line. We also phenotyped the impact of HS deletion in mouse skeletal muscles on their functions by using Cre-loxP system. RESULTS CRISPR-Cas9-dependent HS deletion or pharmacological removal of HS dramatically impaired myoblast differentiation of C2C12 cells. To confirm the importance of HS in vivo, we deleted Ext1, which encodes an enzyme essential for HS biosynthesis, specifically in the mouse skeletal muscles (referred to as mExt1CKO mice). Treadmill and wire hang tests demonstrated that mExt1CKO mice exhibited muscle weakness. The contraction of isolated soleus muscles from mExt1CKO mice was also impaired. Morphological examination of mExt1CKO muscle tissue under light and electron microscopes revealed smaller cross sectional areas and thinner myofibrils. Finally, a model of muscle regeneration following BaCl2 injection into the tibialis anterior muscle of mice demonstrated that mExt1CKO mice had reduced expression of myosin heavy chain and an increased number of centronucleated cells. This indicates that muscle regeneration after injury was attenuated in the absence of HS expression in muscle cells. SIGNIFICANCE These results demonstrate that HS plays an important role in skeletal muscle function by promoting differentiation.
Collapse
Affiliation(s)
- Mariko Yokoyama
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takuro Matsuzawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Aki Nunomiya
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
8
|
Sicherer ST, Venkatarama RS, Grasman JM. Recent Trends in Injury Models to Study Skeletal Muscle Regeneration and Repair. Bioengineering (Basel) 2020; 7:bioengineering7030076. [PMID: 32698352 PMCID: PMC7552705 DOI: 10.3390/bioengineering7030076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injuries that occur from traumatic incidents, such as those caused by car accidents or surgical resections, or from injuries sustained on the battlefield, result in the loss of functionality of the injured muscle. To understand skeletal muscle regeneration and to better treat these large scale injuries, termed volumetric muscle loss (VML), in vivo injury models exploring the innate mechanisms of muscle injury and repair are essential for the creation of clinically applicable treatments. While the end result of a muscle injury is often the destruction of muscle tissue, the manner in which these injuries are induced as well as the response from the innate repair mechanisms found in muscle in each animal models can vary. This targeted review describes injury models that assess both skeletal muscle regeneration (i.e., the response of muscle to myotoxin or ischemic injury) and skeletal muscle repair (i.e., VML injury). We aimed to summarize the injury models used in the field of skeletal muscle tissue engineering, paying particular attention to strategies to induce muscle damage and how to standardize injury conditions for future experiments.
Collapse
|