1
|
Aydin M, Marek N, Luciani T, Mohamed-Ahmed S, Lund B, Gjerde C, Mustafa K, Suliman S, Rashad A. Impact of Porosity and Stiffness of 3D Printed Polycaprolactone Scaffolds on Osteogenic Differentiation of Human Mesenchymal Stromal Cells and Activation of Dendritic Cells. ACS Biomater Sci Eng 2024; 10:7539-7554. [PMID: 39487035 PMCID: PMC11632652 DOI: 10.1021/acsbiomaterials.4c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Despite the potential of extrusion-based printing of thermoplastic polymers in bone tissue engineering, the inherent nonporous stiff nature of the printed filaments may elicit immune responses that influence bone regeneration. In this study, bone scaffolds made of polycaprolactone (PCL) filaments with different internal microporosity and stiffness was 3D-printed. It was achieved by combining three fabrication techniques, salt leaching and 3D printing at either low or high temperatures (LT/HT) with or without nonsolvent induced phase separation (NIPS). Printing PCL at HT resulted in stiff scaffolds (modulus of elasticity (E): 403 ± 19 MPa and strain: 6.6 ± 0.1%), while NIPS-based printing at LT produced less stiff and highly flexible scaffolds (E: 53 ± 10 MPa and strain: 435 ± 105%). Moreover, the introduction of porosity by salt leaching in the printed filaments significantly changed the mechanical properties and degradation rate of the scaffolds. Furthermore, this study aimed to show how these variations influence proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSC) and the maturation and activation of human monocyte-derived dendritic cells (Mo-DC). The cytocompatibility of the printed scaffolds was confirmed by live-dead imaging, metabolic activity measurement, and the continuous proliferation of hBMSC over 14 days. While all scaffolds facilitated the expression of osteogenic markers (RUNX2 and Collagen I) from hBMSC as detected through immunofluorescence staining, the variation in porosity and stiffness notably influenced the early and late mineralization. Furthermore, the flexible LT scaffolds, with porosity induced by NIPS and salt leaching, stimulated Mo-DC to adopt a pro-inflammatory phenotype marked by a significant increase in the expression of IL1B and TNF genes, alongside decreased expression of anti-inflammatory markers, IL10 and TGF1B. Altogether, the results of the current study demonstrate the importance of tailoring porosity and stiffness of PCL scaffolds to direct their biological performance toward a more immune-mediated bone healing process.
Collapse
Affiliation(s)
- Mehmet
Serhat Aydin
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Nora Marek
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Theo Luciani
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Samih Mohamed-Ahmed
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Bodil Lund
- Department
of Dental Medicine, Karolinska Institute, Stockholm 17177, Sweden
- Medical
Unit of Plastic Surgery and Oral and Maxillofacial Surgery, Karolinska University Hospital, Stockholm 17177, Sweden
| | - Cecilie Gjerde
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Kamal Mustafa
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Salwa Suliman
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Ahmad Rashad
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Skubis-Sikora A, Hudecki A, Sikora B, Wieczorek P, Hermyt M, Hreczka M, Likus W, Markowski J, Siemianowicz K, Kolano-Burian A, Czekaj P. Toxicological Assessment of Biodegradable Poli-ε-Caprolactone Polymer Composite Materials Containing Hydroxyapatite, Bioglass, and Chitosan as Potential Biomaterials for Bone Regeneration Scaffolds. Biomedicines 2024; 12:1949. [PMID: 39335462 PMCID: PMC11428512 DOI: 10.3390/biomedicines12091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Polycaprolactone (PCL) is a biodegradable polyester that might be used in tissue engineering to obtain scaffolds for bone reconstruction using 3D-printing technologies. New material compositions based on PCL, with improved physicochemical properties and excellent biocompatibility, would improve its applicability in bone regeneration. The aim of this study was to assess the potential toxic effects of PCL-based composite materials containing 5% hydroxyapatite (PCL/SHAP), 5% bioglass (PCL/BIO), or 5% chitosan (PCL/CH) on MG-63 human fibroblast-like cells in vitro. Material tests were carried out using X-ray diffraction, differential thermal analysis/thermal gravimetry, BET specific surface analysis, and scanning electron microscopy. The effect of the biomaterials on the MG-63 cells was then assessed based on toxicity tests using indirect and direct contact methods. The analysis showed that the tested biomaterials did not significantly affect cell morphology, viability, proliferation, or migration. We concluded that biodegradable PCL-based scaffolds may be suitable for tissue scaffold production, and the addition of bioglass improves the growth of cultured cells.
Collapse
Affiliation(s)
- Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Andrzej Hudecki
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Patrycja Wieczorek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Marek Hreczka
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| |
Collapse
|
3
|
Ferrari M, Taboni S, Chan HHL, Townson J, Gualtieri T, Franz L, Ruaro A, Mathews S, Daly MJ, Douglas CM, Eu D, Sahovaler A, Muhanna N, Ventura M, Dey K, Pandini S, Pasini C, Re F, Bernardi S, Bosio K, Mattavelli D, Doglietto F, Joshi S, Gilbert RW, Nicolai P, Viswanathan S, Sartore L, Russo D, Irish JC. Hydrogel-chitosan and polylactic acid-polycaprolactone bioengineered scaffolds for reconstruction of mandibular defects: a preclinical in vivo study with assessment of translationally relevant aspects. Front Bioeng Biotechnol 2024; 12:1353523. [PMID: 39076208 PMCID: PMC11284118 DOI: 10.3389/fbioe.2024.1353523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Background: Reconstruction of mandibular bone defects is a surgical challenge, and microvascular reconstruction is the current gold standard. The field of tissue bioengineering has been providing an increasing number of alternative strategies for bone reconstruction. Methods: In this preclinical study, the performance of two bioengineered scaffolds, a hydrogel made of polyethylene glycol-chitosan (HyCh) and a hybrid core-shell combination of poly (L-lactic acid)/poly ( ε -caprolactone) and HyCh (PLA-PCL-HyCh), seeded with different concentrations of human mesenchymal stromal cells (hMSCs), has been explored in non-critical size mandibular defects in a rabbit model. The bone regenerative properties of the bioengineered scaffolds were analyzed by in vivo radiological examinations and ex vivo radiological, histomorphological, and immunohistochemical analyses. Results: The relative density increase (RDI) was significantly more pronounced in defects where a scaffold was placed, particularly if seeded with hMSCs. The immunohistochemical profile showed significantly higher expression of both VEGF-A and osteopontin in defects reconstructed with scaffolds. Native microarchitectural characteristics were not demonstrated in any experimental group. Conclusion: Herein, we demonstrate that bone regeneration can be boosted by scaffold- and seeded scaffold-reconstruction, achieving, respectively, 50% and 70% restoration of presurgical bone density in 120 days, compared to 40% restoration seen in spontaneous regeneration. Although optimization of the regenerative performance is needed, these results will help to establish a baseline reference for future experiments.
Collapse
Affiliation(s)
- Marco Ferrari
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Stefano Taboni
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Harley H. L. Chan
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Jason Townson
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Tommaso Gualtieri
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Department of Otorhinolaryngology, Head & Neck Surgery, Nuovo Santo Stefano Civil Hospital, Prato, Italy
| | - Leonardo Franz
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Alessandra Ruaro
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Smitha Mathews
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michael J. Daly
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Catriona M. Douglas
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology, Head and Neck Surgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Donovan Eu
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore
| | - Axel Sahovaler
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Head & Neck Surgery Unit, University College London Hospitals, London, United Kingdom
| | - Nidal Muhanna
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Manuela Ventura
- STTARR Innovation Centre, University Health Network, Toronto, ON, Canada
- Human Technopole Foundation, Milan, Italy
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Stefano Pandini
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Chiara Pasini
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Federica Re
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Katia Bosio
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Francesco Doglietto
- Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Catholic University School of Medicine, Rome, Italy
| | - Shrinidh Joshi
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ralph W. Gilbert
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Sowmya Viswanathan
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Jonathan C. Irish
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Jiang W, Zhan Y, Zhang Y, Sun D, Zhang G, Wang Z, Chen L, Sun J. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment. Biomaterials 2024; 308:122566. [PMID: 38603824 DOI: 10.1016/j.biomaterials.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Achieving sufficient bone regeneration in large segmental defects is challenging, with the structure of bone repair scaffolds and their loaded bioactive substances crucial for modulating the local osteogenic microenvironment. This study utilized digital laser processing (DLP)-based 3D printing technology to successfully fabricate high-precision methacryloylated polycaprolactone (PCLMA) bionic bone scaffold structures. Adipose-derived stem cell-engineered nanovesicles (ADSC-ENs) were uniformly and stably modified onto the bionic scaffold surface using a perfusion device, constructing a conducive microenvironment for tissue regeneration and long bone defect repair through the scaffold's structural design and the vesicles' biological functions. Scanning electron microscopy (SEM) examination of the scaffold surface confirmed the efficient loading of ADSC-ENs. The material group loaded with vesicles (PCLMA-BAS-ENs) demonstrated good cell compatibility and osteogenic potential when analyzed for the adhesion and osteogenesis of primary rabbit bone marrow mesenchymal stem cells (BMSCs) on the material surface. Tested in a 15 mm critical rabbit radial defect model, the PCLMA-BAS-ENs scaffold facilitated near-complete bone defect repair after 12 weeks. Immunofluorescence and proteomic results indicated that the PCLMA-BAS-ENs scaffold significantly improved the osteogenic microenvironment at the defect site in vivo, promoted angiogenesis, and enhanced the polarization of macrophages towards M2 phenotype, and facilitated the recruitment of BMSCs. Thus, the PCLMA-BAS-ENs scaffold was proven to significantly promote the repair of large segmental bone defects. Overall, this strategy of combining engineered vesicles with highly biomimetic scaffolds to promote large-segment bone tissue regeneration holds great potential in orthopedic and other regenerative medicine applications.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
5
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
6
|
Liu J, Tang C, Huang J, Gu J, Yin J, Xu G, Yan S. Nanofiber Composite Microchannel-Containing Injectable Hydrogels for Cartilage Tissue Regeneration. Adv Healthc Mater 2023; 12:e2302293. [PMID: 37689993 DOI: 10.1002/adhm.202302293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Articular cartilage tissue is incapable of self-repair and therapies for cartilage defects are still lacking. Injectable hydrogels have drawn much attention in the field of cartilage regeneration. Herein, the novel design of nanofiber composite microchannel-containing hydrogels inspired by the tunnel-piled structure of subway tunnels is proposed. Based on the aldehydized polyethylene glycol/carboxymethyl chitosan (APA/CMCS) hydrogels, thermosensitive gelatin microrods (GMs) are used as a pore-forming agent, and coaxial electrospinning polylactic acid/gelatin fibers (PGFs) loaded with kartogenin (KGN) are used as a reinforcing agent and a drug delivery system to construct the nanofiber composite microchannel-containing injectable hydrogels (APA/CMCS/KGN@PGF/GM hydrogels). The in situ formation, micromorphology and porosity, swelling and degradation, mechanical properties, self-healing behavior, as well as drug release of the nanofiber composite microchannel-containing hydrogels are investigated. The hydrogel exhibits good self-healing ability, and the introduction of PGF nanofibers can significantly improve the mechanical properties. The drug delivery system can realize sustained release of KGN to match the process of cartilage repair. The microchannel structure effectively promotes bone marrow mesenchymal stem cell (BMSC) proliferation and ingrowth within the hydrogels. In vitro and animal experiments indicate that the APA/CMCS/KGN@PGF/GM hydrogels can enhance the chondrogenesis of BMSCs and promote neocartilage formation in the rabbit cartilage defect model.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Chen Tang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Huang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Jinhong Gu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, P. R. China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Dokuchaeva AA, Mochalova AB, Timchenko TP, Kuznetsova EV, Podolskaya KS, Pashkovskaya OA, Filatova NA, Vaver AA, Zhuravleva IY. Remote Outcomes with Poly-ε-Caprolactone Aortic Grafts in Rats. Polymers (Basel) 2023; 15:4304. [PMID: 37959984 PMCID: PMC10649699 DOI: 10.3390/polym15214304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Poly-ε-caprolactone ((1,7)-polyoxepan-2-one; PCL) is a biodegradable polymer widely used in various fields of bioengineering, but its behavior in long-term studies appears to depend on many conditions, such as application specificity, chemical structure, in vivo test systems, and even environmental conditions in which the construction is exploited in. In this study, we offer an observation of the remote outcomes of PCL tubular grafts for abdominal aorta replacement in an in vivo experiment on a rat model. Adult Wistar rats were implanted with PCL vascular matrices and observed for 180 days. The results of ultrasound diagnostics and X-ray tomography (CBCT) show that the grafts maintained patency for the entire follow-up period without thrombosis, leakage, or interruptions, but different types of tissue reactions were found at this time point. By the day of examination, all the implants revealed a confluent endothelial monolayer covering layers of hyperplastic neointima formed on the luminal surface of the grafts. Foreign body reactions were found in several explants including those without signs of stenosis. Most of the scaffolds showed a pronounced infiltration with fibroblastic cells. All the samples revealed subintimal calcium phosphate deposits. A correlation between chondroid metaplasia in profound cells of neointima and the process of mineralization was supported by immunohistochemical (IHC) staining for S100 proteins and EDS mapping. Microscopy showed that the scaffolds with an intensive inflammatory response or formed fibrotic capsules retain their fibrillar structure even on day 180 after implantation, but matrices infiltrated with viable cells partially save the original fibrillary network. This research highlights the advantages of PCL vascular scaffolds, such as graft permeability, revitalization, and good surgical outcomes. The disadvantages are low biodegradation rates and exceptionally high risks of mineralization and intimal hyperplasia.
Collapse
Affiliation(s)
- Anna A. Dokuchaeva
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.B.M.); (T.P.T.); (E.V.K.); (K.S.P.); (O.A.P.); (N.A.F.); (A.A.V.); (I.Y.Z.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Balavigneswaran CK, Selvaraj S, Vasudha TK, Iniyan S, Muthuvijayan V. Tissue engineered skin substitutes: A comprehensive review of basic design, fabrication using 3D printing, recent advances and challenges. BIOMATERIALS ADVANCES 2023; 153:213570. [PMID: 37540939 DOI: 10.1016/j.bioadv.2023.213570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
The multi-layered skin structure includes the epidermis, dermis and hypodermis, which forms a sophisticated tissue composed of extracellular matrix (ECM). The wound repair is a well-orchestrated process when the skin is injured. However, this natural wound repair will be ineffective for large surface area wounds. Autografts-based treatment is efficient but, additional pain and secondary healing of the patient limits its successful application. Therefore, there is a substantial need for fabricating tissue-engineered skin constructs. The development of a successful skin graft requires a fundamental understanding of the natural skin and its healing process, as well as design criteria for selecting a biopolymer and an appropriate fabrication technique. Further, the fabrication of an appropriate skin graft needs to meet physicochemical, mechanical, and biological properties equivalent to the natural skin. Advanced 3D bioprinting provides spatial control of the placement of functional components, such as biopolymers with living cells, which can satisfy the prerequisites for the preparation of an ideal skin graft. In this view, here we elaborate on the basic design requirements, constraints involved in the fabrication of skin graft and choice of ink, the probable solution by 3D bioprinting technique, as well as their latest advancements, challenges, and prospects.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Sowmya Selvaraj
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - T K Vasudha
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Saravanakumar Iniyan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
9
|
Zhang Q, Zhou X, Du H, Ha Y, Xu Y, Ao R, He C. Bifunctional Hydrogel-Integrated 3D Printed Scaffold for Repairing Infected Bone Defects. ACS Biomater Sci Eng 2023; 9:4583-4596. [PMID: 37318182 DOI: 10.1021/acsbiomaterials.3c00564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The clinical treatment of infectious bone defects is difficult and time-consuming due to the coexistence of infection and bone defects, and the simultaneous control of infection and repair of bone defects is considered a promising therapy. In this study, a dual-drug delivery scaffold system was fabricated by the combination of a three-dimensional (3D) printed scaffold with hydrogel for infected bone defects repair. The 3D printed polycaprolactone scaffold was incorporated with biodegradable mesoporous silica nanoparticles containing the small molecular drug fingolimod (FTY720) to provide structural support and promote angiogenesis and osteogenesis. The vancomycin (Van)-loaded hydrogel was prepared from aldehyde hyaluronic acid (AHA) and carboxymethyl chitosan (NOCC) by the Schiff base reaction, which can fill the pores of the 3D-printed scaffold to produce a bifunctional composite scaffold. The in vitro results demonstrated that the composite scaffold had Van concentration-dependent antimicrobial properties. Furthermore, the FTY720-loaded composite scaffold demonstrated excellent biocompatibility, vascularization, and osteogenic ability in vitro. In the rat femoral defect model with bacterial infection, the dual-drug composite scaffold showed a better outcome in both infection control and bone regeneration compared to other groups. Therefore, the prepared bifunctional composite scaffold has potential application in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Qianqian Zhang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Haibo Du
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yujie Ha
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yao Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Rongguang Ao
- Department of Trauma Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
10
|
Plath AMS, Huber S, Alfarano SR, Abbott DF, Hu M, Mougel V, Isa L, Ferguson SJ. Co-Electrospun Poly(ε-Caprolactone)/Zein Articular Cartilage Scaffolds. Bioengineering (Basel) 2023; 10:771. [PMID: 37508797 PMCID: PMC10376865 DOI: 10.3390/bioengineering10070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis scaffold-based grafts fail because of poor integration with the surrounding soft tissue and inadequate tribological properties. To circumvent this, we propose electrospun poly(ε-caprolactone)/zein-based scaffolds owing to their biomimetic capabilities. The scaffold surfaces were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, static water contact angles, and profilometry. Scaffold biocompatibility properties were assessed by measuring protein adsorption (Bicinchoninic Acid Assay), cell spreading (stained F-actin), and metabolic activity (PrestoBlue™ Cell Viability Reagent) of primary bovine chondrocytes. The data show that zein surface segregation in the membranes not only completely changed the hydrophobic behavior of the materials, but also increased the cell yield and metabolic activity on the scaffolds. The surface segregation is verified by the infrared peak at 1658 cm-1, along with the presence and increase in N1 content in the survey XPS. This observation could explain the decrease in the water contact angles from 125° to approximately 60° in zein-comprised materials and the decrease in the protein adsorption of both bovine serum albumin and synovial fluid by half. Surface nano roughness in the PCL/zein samples additionally benefited the radial spreading of bovine chondrocytes. This study showed that co-electrospun PCL/zein scaffolds have promising surface and biocompatibility properties for use in articular-tissue-engineering applications.
Collapse
Affiliation(s)
| | - Stephanie Huber
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Serena R Alfarano
- Laboratory of Food and Soft Materials, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel F Abbott
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Minghan Hu
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Victor Mougel
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Stephen J Ferguson
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Gharibshahian M, Salehi M, Beheshtizadeh N, Kamalabadi-Farahani M, Atashi A, Nourbakhsh MS, Alizadeh M. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1168504. [PMID: 37469447 PMCID: PMC10353441 DOI: 10.3389/fbioe.2023.1168504] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Atashi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
12
|
Nanomaterials: Breaking through the bottleneck of tumor immunotherapy. Int J Biol Macromol 2023; 230:123159. [PMID: 36610572 DOI: 10.1016/j.ijbiomac.2023.123159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Immunotherapy exerts its excellent anti-tumor effects by stimulating and enhancing the immune response of the body, and has become another important class of anti-tumor therapy besides chemotherapy, targeted therapy and radiotherapy. Various types of immunotherapeutic drugs have gained their clinical values, but the in vivo delivery of drugs still faces many challenges, such as poor tumor permeability and low tumor cell uptake rate. In recent years, owing to highly targeting properties, better biocompatibility, and easy functionalization, nanomaterials have been widely applicated in tumor treatment, especially in tumor immunotherapy. Furthermore, nanomaterials have large drug loading capacity, strong tumor targeting and easy modification, which can effectively overcome the drawbacks of traditional immunotherapy. This paper reviews the progress of nanomaterial-based tumor immunotherapy in recent years and provides a theoretical basis for exploring new nanomaterial-based tumor immunotherapy strategies.
Collapse
|
13
|
Huang P, Yang P, Liu K, Tao W, Tao J, Ai F. Evaluation of 'surgery-friendly' bone scaffold characteristics: 3D printed ductile BG/PCL scaffold with high inorganic content to repair critical bone defects. Biomed Mater 2022; 18. [PMID: 36317271 DOI: 10.1088/1748-605x/ac9e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
The repair of irregular and complex critical bone defects remains a challenge in clinical practice. The application of 3D-printed bioceramics particle/polymer composite scaffolds in bone tissue engineering has been widely studied. At present, the inorganic particle content of the composite scaffolds is generally low, resulting in poor osteogenic activity. However, scaffold with high inorganic content are highly brittle, difficult to operate during surgery, and cannot be in close contact with surrounding bones. Therefore, it is of great significance to design a 'surgery-friendly' scaffold with high bioceramic content and good ductility. In this study, we used the solvent method to add high concentration (wt% 70%) bioglass (BG) into polycaprolactone (PCL), and polyethylene glycol was used as plasticizer to prepare 70% BG/PCL composite scaffolds with high ductility using 3D printing technology.In vitroexperiments showed that the scaffold had good mechanical properties: easy extension, easy folding and strong compressive resistance. It also showed good performance in biocompatibility and osteogenic activity. It was further observed that compared with pure BG or PCL implantation, the scaffold with higher BG content could have more new bone tissue appeared after 12 weeks. All these results indicate that 3D-printed 70% BG/PCL scaffolds have great potential for personalized repair of bone defects.
Collapse
Affiliation(s)
- Pengren Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Peng Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Keming Liu
- Department of Orthopaedics, Guixi Dongxin Hospital, Yingtan 335400, People's Republic of China
| | - Wei Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jun Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
14
|
Bai B, Hao J, Hou M, Wang T, Wu X, Liu Y, Wang Y, Dai C, Hua Y, Ji G, Zhou G. Repair of Large-Scale Rib Defects Based on Steel-Reinforced Concrete-Designed Biomimetic 3D-Printed Scaffolds with Bone-Mineralized Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42388-42401. [PMID: 36094886 DOI: 10.1021/acsami.2c08422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tissue engineering technology provides a promising approach for large-scale bone reconstruction in cases of extensive chest wall defects. However, previous studies did not consider meticulous scaffold design specific to large-scale rib regeneration in terms of three-dimensional (3D) shape, proper porous structures, enough mechanical strength, and osteogenic microenvironments. Thus, there is an urgent need to develop an appropriate bone biomimetic scaffold (BBS) to address this problem. In this study, a BBS with controllable 3D morphology, appropriate mechanical properties, good biocompatibility and biodegradability, porous structure suitable for cell loading, and a biomimetic osteogenic inorganic salt (OIS) microenvironment was successfully prepared by integrating computer-aided design, 3D-printing, cast-molding, and freeze-drying technologies. The addition of the OIS in the scaffold substantially promoted ectopic bone regeneration in vivo, which might be attributed to the activation of osteogenic and angiogenic signaling pathways as well as upregulated expression of osteogenic genes. More importantly, dual long rib defects could be successfully repaired and medullary cavity recanalized by the rib-shaped mature cortical bone, which might be mediated by the activation of osteoclast signaling pathways. Thus, this paper presents a reliable BBS and proposes a new strategy for the repair of large-scale bone defects.
Collapse
Affiliation(s)
- Baoshuai Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Tao Wang
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Yiyang Wang
- National Tissue Engineering Center of China, Shanghai 200001, China
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Incorporated, No. 85 Faladi Road, Building 3, Pudong New Area, Shanghai 201210, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Guangyu Ji
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
15
|
Jwa SJ, Won JM, Kim DH, Kim KB, Lee JB, Heo M, Shim KS, Jo HS, Lee WJ, Roh TS, Baek WY. Breast Tissue Restoration after the Partial Mastectomy Using Polycaprolactone Scaffold. Polymers (Basel) 2022; 14:polym14183817. [PMID: 36145962 PMCID: PMC9501604 DOI: 10.3390/polym14183817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/20/2022] Open
Abstract
As breast conserving surgery increases in the surgical treatment of breast cancer, partial mastectomy is also increasing. Polycaprolactone (PCL) is a polymer that is used as an artifact in various parts of the human body based on the biocompatibility and mechanical properties of PCL. Here, we hypothesized that a PCL scaffold can be utilized for the restoration of breast tissue after a partial mastectomy. To demonstrate the hypothesis, a PCL scaffold was fabricated by 3D printing and three types of spherical PCL scaffold including PCL scaffold, PCL scaffold with collagen, and the PCL scaffold with breast tissue fragment were implanted in the rat breast defect model. After 6 months of implantation, the restoration of breast tissue was observed in the PCL scaffold and the expression of collagen in the PCL scaffold with collagen was seen. The expression of TNF-α was significantly increased in the PCL scaffold, but the expression of IL-6 showed no significant difference in all groups. Through this, it showed the possibility of using it as a method to conveniently repair tissue defects after partial mastectomy of the human body.
Collapse
Affiliation(s)
- Seung-Jun Jwa
- Department of Plastic and Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong-Min Won
- Department of Plastic and Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | | | - Ki-Bum Kim
- PLCOskin Co., Ltd., Seoul 120-752, Korea
| | - Jung-Bok Lee
- Department of Biological Science, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea
| | - Min Heo
- PLCOskin Co., Ltd., Seoul 120-752, Korea
| | - Kyu-Sik Shim
- Department of Plastic and Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Han-Saem Jo
- Department of Plastic and Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won-Jai Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai-Suk Roh
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (T.-S.R.); (W.-Y.B.); Tel.: +82-2-2228-2220 (W.-Y.B.)
| | - Woo-Yeol Baek
- PLCOskin Co., Ltd., Seoul 120-752, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (T.-S.R.); (W.-Y.B.); Tel.: +82-2-2228-2220 (W.-Y.B.)
| |
Collapse
|
16
|
Use of biodegradable polycaprolactone matrix for filling bone defects (experimental study). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. There are unresolved issues in bone defect management associated with complications, invasiveness and long duration of treatment. The use of elastic implants made of bioactive biodegradable materials that take any form of defect could close many of them.The aim. To investigate features of reparative regeneration in filling bone defects with an elastic degradable implant made of polycaprolactone (PCL) with and without hydroxyapatite (HA).Materials and methods. The study was carried out on 10 adult mongrel dogs. A non-through cylindrical hole, 4 mm in diameter and 10 mm deep, was modeled in the upper third of the diaphysis of the tibia. The defects thus formed were filled with an elastic degradable implant made of polycaprolactone. In Group 1, HA was not added to polycaprolactone, while HA was added in dogs of Group 2. Radiographic and histological methods were used to study the results.Results. It was found that the tested materials did not cause toxic and allergic reactions, both local and general, during intravital observations and in post-mortem anatomical preparations. After 28 days in both series, the implant biodegraded and was replaced by bone tissue. The proportion of the bone component and the numerical density of microvessels in the defect zone in Group 2 were significantly higher than in Group 1.Conclusion. Elastic implants produced of polycaprolactone by electrospinning are biologically compatible, biodegradable and can be used to heal bone defects. Hydroxyapatite that was added stimulates the activity of osteogenesis.
Collapse
|
17
|
Fallah A, Altunbek M, Bartolo P, Cooper G, Weightman A, Blunn G, Koc B. 3D printed scaffold design for bone defects with improved mechanical and biological properties. J Mech Behav Biomed Mater 2022; 134:105418. [PMID: 36007489 DOI: 10.1016/j.jmbbm.2022.105418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Bone defect treatment is still a challenge in clinics, and synthetic bone scaffolds with adequate mechanical and biological properties are highly needed. Adequate waste and nutrient exchange of the implanted scaffold with the surrounded tissue is a major concern. Moreover, the risk of mechanical instability in the defect area during regular activity increases as the defect size increases. Thus, scaffolds with better mass transportation and mechanical properties are desired. This study introduces 3D printed polymeric scaffolds with a continuous pattern, ZigZag-Spiral pattern, for bone defects treatments. This pattern has a uniform distribution of pore size, which leads to uniform distribution of wall shear stress which is crucial for uniform differentiation of cells attached to the scaffolds. The mechanical, mass transportation, and biological properties of the 3D printed scaffolds are evaluated. The results show that the presented scaffolds have permeability similar to natural bone and, with the same porosity level, have higher mechanical properties than scaffolds with conventional lay-down patterns 0-90° and 0-45°. Finally, human mesenchymal stem cells are seeded on the scaffolds to determine the effects of geometrical microstructure on cell attachment and morphology. The results show that cells in scaffold with ZigZag-Spiral pattern infilled pores gradually, while the other patterns need more time to fill the pores. Considering mechanical, transportation, and biological properties of the considered patterns, scaffolds with ZigZag-Spiral patterns can mimic the properties of cancellous bones and be a better choice for treatments of bone defects.
Collapse
Affiliation(s)
- Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Mine Altunbek
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Paulo Bartolo
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University Portsmouth, Portsmouth, PO1 2UP, UK
| | - Bahattin Koc
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| |
Collapse
|
18
|
Qi Lim P, Huey Lim S, Sherilyn M, Fernandez-Medina T, Ivanovski S, Hosseinpour S. A Clinical Risk Assessment of a 3D-Printed Patient-Specific Scaffold by Failure Modes and Effects Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5442. [PMID: 35955377 PMCID: PMC9369557 DOI: 10.3390/ma15155442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
This study aims to carry out a risk assessment to identify and rectify potential clinical risks of a 3D-printed patient-specific scaffold for large-volume alveolar bone regeneration. A survey was used to assess clinicians' perceptions regarding the use of scaffolds in the treatment of alveolar defects and conduct a clinical risk assessment of the developed scaffold using the Failure Modes and Effects Analysis (FMEA) framework. The response rate was 69.4% with a total of 41 responses received. Two particular failure modes were identified as a high priority through the clinical risk assessment conducted. The highest mean Risk Priority Number was obtained by "failure of healing due to patient risk factors" (45.7 ± 27.7), followed by "insufficient soft tissue area" (37.8 ± 24.1). Despite the rapid developments, finding a scaffold that is both biodegradable and tailored to the patient's specific defect in cases of large-volume bone regeneration is still challenging for clinicians. Our results indicate a positive perception of clinicians towards this novel scaffold. The FMEA clinical risk assessment has revealed two failure modes that should be prioritized for risk mitigation (safe clinical translation). These findings are important for the safe transition to in-human trials and subsequent clinical use.
Collapse
Affiliation(s)
- Ping Qi Lim
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Sue Huey Lim
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Maria Sherilyn
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Tulio Fernandez-Medina
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- College of Medicine and Dentistry, James Cook University, Cairns Campus, Cairns 4870, Australia
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | | |
Collapse
|
19
|
Lau CS, Chua J, Pena EM, Lim J, Saigo L, Goh BT. A Porcine Model Using Adipose Stem Cell-Loaded Scaffolds for Alveolar Ridge Augmentation. Tissue Eng Part C Methods 2022; 28:228-237. [PMID: 35442100 DOI: 10.1089/ten.tec.2022.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tooth loss greatly affects a person's quality of life and many turn to dental implants to replace lost teeth. The success of a dental implant depends on the amount of alveolar bone supporting the implant, and thus, bone augmentation is often necessary to preserve or build up bone volume in the alveolar ridge. Bone can be augmented with autogenous bone, allografts, or xenografts, but the limitations of such natural bone grafts prompt researchers to develop synthetic scaffolds supplemented with cells and/or bioactive agents as alternative bone grafts. The translation of these combination scaffolds from the laboratory to the clinic requires reliable experimental models that can simulate the clinical conditions in human patients. In this article, we describe the use of a porcine alveolar defect model as a platform to evaluate the efficacy of a novel combination of a three-dimensional-printed polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold and adipose-derived mesenchymal stem cells (AD-MSCs) in lateral alveolar augmentation. The surgical protocol for the defect creation and regenerative surgery, as well as analytical methods to determine the extent of tissue regeneration, are described and discussed.
Collapse
Affiliation(s)
- Chau Sang Lau
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Edgar Macabe Pena
- SingHealth Experimental Medicine Centre and National Large Animal Research Facility, Singapore Health Services Pte Ltd., Singapore, Singapore
| | - Jing Lim
- Osteopore International Pte Ltd., Singapore, Singapore
| | - Leonardo Saigo
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore, Singapore
| | - Bee Tin Goh
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore.,Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
21
|
Hwang K, Villavicencio JB, Agdamag AMP. Tissue Engineering and Regenerative Medicine Cranioplasty Using Polycaprolactone-Tricalcium Phosphate: Management and Treatment Outcomes. NEUROSURGERY OPEN 2021. [DOI: 10.1093/neuopn/okab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Kim DH, Lee IH, Yun WS, Shim JH, Choi D, Hwang SH, Kim SW. Long-term efficacy and safety of 3D printed implant in patients with nasal septal deformities. Eur Arch Otorhinolaryngol 2021; 279:1943-1950. [PMID: 34291346 DOI: 10.1007/s00405-021-06996-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the long-term safety and efficacy of a 3D-printed bioresorbable polycaprolactone (PCL) nasal implant for nasal septal deformity reconstruction. METHODS Fourteen patients who had undergone nasal septum reconstruction surgery using 3D-printed PCL nasal septal implants were enrolled. The primary outcome was the change in total Nasal Obstruction Symptom Evaluation (NOSE) scale scores between postoperative 3 months and current status (3.59 ± 0.51 years). The secondary outcomes were changes in the minimum cross-sectional area (MCA) and volume of both nasal cavities based on acoustic rhinometry, the cross-sectional area of the ostiomeatal unit, and the nasal septum angle of the paranasal sinus (PNS) in computed tomography (CT) images, and a visual analog scale (VAS) of the patients' subjective satisfaction. RESULTS The results showed no significant changes in the MCAs (Cohen's d:0.09; p = 0.711) or nasal volume (Cohen's d:0.26; p = 0.356), the area of the ostiomeatal unit (Cohen's d:0.49; p = 0.064), septum angles (Cohen's d:0.18; p = 0.831), the NOSE scale (Cohen's d:0.14; p = 0.621), or patients' subjective satisfaction (Cohen's d:0.52; p = 0.076) during the follow-up period. CONCLUSIONS This homogeneous composite microporous PCL nasal septal implant demonstrated long-term clinical efficacy and safety in human tissues that required maintenance of mechanical strength. Therefore, the indications for this implant could extend to various other craniofacial reconstructions in the future.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Il Hwan Lee
- Department of Otolaryngology-Head and Neck Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-Si, Gyeonggi-Do, Korea.,Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-Si, Gyeonggi-Do, Korea.,Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Dami Choi
- Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-Do, 14647, Korea.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
23
|
Dong Y, Suryani L, Zhou X, Muthukumaran P, Rakshit M, Yang F, Wen F, Hassanbhai AM, Parida K, Simon DT, Iandolo D, Lee PS, Ng KW, Teoh SH. Synergistic Effect of PVDF-Coated PCL-TCP Scaffolds and Pulsed Electromagnetic Field on Osteogenesis. Int J Mol Sci 2021; 22:6438. [PMID: 34208563 PMCID: PMC8234164 DOI: 10.3390/ijms22126438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 01/15/2023] Open
Abstract
Bone exhibits piezoelectric properties. Thus, electrical stimulations such as pulsed electromagnetic fields (PEMFs) and stimuli-responsive piezoelectric properties of scaffolds have been investigated separately to evaluate their efficacy in supporting osteogenesis. However, current understanding of cells responding under the combined influence of PEMF and piezoelectric properties in scaffolds is still lacking. Therefore, in this study, we fabricated piezoelectric scaffolds by functionalization of polycaprolactone-tricalcium phosphate (PCL-TCP) films with a polyvinylidene fluoride (PVDF) coating that is self-polarized by a modified breath-figure technique. The osteoinductive properties of these PVDF-coated PCL-TCP films on MC3T3-E1 cells were studied under the stimulation of PEMF. Piezoelectric and ferroelectric characterization demonstrated that scaffolds with piezoelectric coefficient d33 = -1.2 pC/N were obtained at a powder dissolution temperature of 100 °C and coating relative humidity (RH) of 56%. DNA quantification showed that cell proliferation was significantly enhanced by PEMF as low as 0.6 mT and 50 Hz. Hydroxyapatite staining showed that cell mineralization was significantly enhanced by incorporation of PVDF coating. Gene expression study showed that the combination of PEMF and PVDF coating promoted late osteogenic gene expression marker most significantly. Collectively, our results suggest that the synergistic effects of PEMF and piezoelectric scaffolds on osteogenesis provide a promising alternative strategy for electrically augmented osteoinduction. The piezoelectric response of PVDF by PEMF, which could provide mechanical strain, is particularly interesting as it could deliver local mechanical stimulation to osteogenic cells using PEMF.
Collapse
Affiliation(s)
- Yibing Dong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.D.); (X.Z.); (M.R.); (K.P.); (P.S.L.)
| | - Luvita Suryani
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; (L.S.); (P.M.); (F.Y.); (F.W.); (A.M.H.)
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.D.); (X.Z.); (M.R.); (K.P.); (P.S.L.)
| | - Padmalosini Muthukumaran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; (L.S.); (P.M.); (F.Y.); (F.W.); (A.M.H.)
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.D.); (X.Z.); (M.R.); (K.P.); (P.S.L.)
| | - Fengrui Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; (L.S.); (P.M.); (F.Y.); (F.W.); (A.M.H.)
| | - Feng Wen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; (L.S.); (P.M.); (F.Y.); (F.W.); (A.M.H.)
| | - Ammar Mansoor Hassanbhai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; (L.S.); (P.M.); (F.Y.); (F.W.); (A.M.H.)
| | - Kaushik Parida
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.D.); (X.Z.); (M.R.); (K.P.); (P.S.L.)
| | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden; (D.T.S.); (D.I.)
| | - Donata Iandolo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden; (D.T.S.); (D.I.)
- Mines-Saint-Étienne, Campus Santé Innovations, 10 rue de la Marandière, 42270 Saint-Priest-en-Jarez, France
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.D.); (X.Z.); (M.R.); (K.P.); (P.S.L.)
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.D.); (X.Z.); (M.R.); (K.P.); (P.S.L.)
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Avenue, Boston, MA 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Swee Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore; (L.S.); (P.M.); (F.Y.); (F.W.); (A.M.H.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
24
|
Siracusa V, Maimone G, Antonelli V. State-of-Art of Standard and Innovative Materials Used in Cranioplasty. Polymers (Basel) 2021; 13:1452. [PMID: 33946170 PMCID: PMC8124570 DOI: 10.3390/polym13091452] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cranioplasty is the surgical technology employed to repair a traumatic head injury, cerebrovascular disease, oncology resection and congenital anomalies. Actually, different bone substitutes are used, either derived from biological products such as hydroxyapatite and demineralized bone matrix or synthetic ones such as sulfate or phosphate ceramics and polymer-based substitutes. Considering that the choice of the best material for cranioplasty is controversial, linked to the best operation procedure, the intent of this review was to report the outcome of research conducted on materials used for such applications, comparing the most used materials. The most interesting challenge is to preserve the mechanical properties while improving the bioactivity, porosity, biocompatibility, antibacterial properties, lowering thickness and costs. Among polymer materials, polymethylmethacrylate and polyetheretherketone are the most motivating, due to their biocompatibility, rigidity and toughness. Other biomaterials, with ecofriendly attributes, such as polycaprolactone and polylactic acid have been investigated, due to their microstructure that mimic the trabecular bone, encouraging vascularization and cell-cell communications. Taking into consideration that each material must be selected for specific clinical use, the main limitation remains the defects and the lack of vascularization, consequently porous synthetic substitutes could be an interesting way to support a faster and wider vascularization, with the aim to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Maimone
- Department of Neurosurgery, Hospital M. Bufalini—AUSL della Romagna, Viale Ghirotti 286, 47521 Cesena, Italy; (G.M.); (V.A.)
| | - Vincenzo Antonelli
- Department of Neurosurgery, Hospital M. Bufalini—AUSL della Romagna, Viale Ghirotti 286, 47521 Cesena, Italy; (G.M.); (V.A.)
| |
Collapse
|
25
|
Assessment of a PCL-3D Printing-Dental Pulp Stem Cells Triplet for Bone Engineering: An In Vitro Study. Polymers (Basel) 2021; 13:polym13071154. [PMID: 33916576 PMCID: PMC8038447 DOI: 10.3390/polym13071154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
The search of suitable combinations of stem cells, biomaterials and scaffolds manufacturing methods have become a major focus of research for bone engineering. The aim of this study was to test the potential of dental pulp stem cells to attach, proliferate, mineralize and differentiate on 3D printed polycaprolactone (PCL) scaffolds. A 100% pure Mw: 84,500 ± 1000 PCL was selected. 5 × 10 × 5 mm3 parallelepiped scaffolds were designed as a wood-pilled structure composed of 20 layers of 250 μm in height, in a non-alternate order ([0,0,0,90,90,90°]). 3D printing was made at 170 °C. Swine dental pulp stem cells (DPSCs) were extracted from lower lateral incisors of swine and cultivated until the cells reached 80% confluence. The third passage was used for seeding on the scaffolds. Phenotype of cells was determined by flow Cytometry. Live and dead, Alamar blue™, von Kossa and alizarin red staining assays were performed. Scaffolds with 290 + 30 μm strand diameter, 938 ± 80 μm pores in the axial direction and 689 ± 13 μm pores in the lateral direction were manufactured. Together, cell viability tests, von Kossa and Alizarin red staining indicate the ability of the printed scaffolds to support DPSCs attachment, proliferation and enable differentiation followed by mineralization. The selected material-processing technique-cell line (PCL-3D printing-DPSCs) triplet can be though to be used for further modelling and preclinical experiments in bone engineering studies.
Collapse
|
26
|
Nanofibers as drug-delivery systems for antimicrobial peptides. Drug Discov Today 2021; 26:2064-2074. [PMID: 33741497 DOI: 10.1016/j.drudis.2021.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
Microbial infections are a major worldwide public health problem because a number of microorganisms can show drug resistance. Antimicrobial peptides (AMPs) are small biomolecules that present antimicrobial and immunomodulatory activities. Despite their great potential, there are still many barriers to the formulation of these molecules. In this context, nanotechnological approaches such as nanofibers are candidate drug-delivery systems for AMP formulations. These nanomaterials have a large contact surface and may carry several AMPs (single or multilayer), directing them to specific targets. Thus, this review describes the main advances related to the use of nanofibers as drug-delivery systems for AMPs. These strategies can contribute directly to the design of new multifunctional wound dressings, coatings for prostheses, and tissue engineering applications.
Collapse
|
27
|
Li B, Wang S, Zhao Y, Wang X. [The latest study on biomimetic mineralized collagen-based bone materials for pediatric skull regeneration and repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:278-285. [PMID: 33719234 DOI: 10.7507/1002-1892.202009078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a worldwide challenge in the field of neurosurgery, there is no effective treatment method for pediatric skull defects repair in clinic. Currently clinical used cranioplasty materials couldn't undergo adjustment in response to skull growth and deformation. An ideal material for pediatric cranioplasty should fulfill the requirements of achieving complete closure, good osseointegration, biodegradability and conformability, sufficient cerebral protection and optimal aesthetic, and functional restoration of calvaria. Biomimetic mineralized collagen-based bone material is a kind of material that simulates the microstructural unit of natural bone on the nanometer scale. Because of its high osteogenic activity, it is widely used in repair of all kinds of bone defects. Recently, the biomimetic mineralized collagen-based bone materials have successfully been applied for cranial regeneration and repair with satisfactory results. This review mainly introduces the characteristics of the biomimetic mineralized collagen-based bone materials, the advantages for the repair of pediatric skull defects, and the related progresses.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| | | | - Yonggang Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| |
Collapse
|
28
|
Seyedsalehi A, Daneshmandi L, Barajaa M, Riordan J, Laurencin CT. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds. Sci Rep 2020; 10:22210. [PMID: 33335152 PMCID: PMC7747749 DOI: 10.1038/s41598-020-78977-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to produce constructs with a high control over the bulk geometry and internal architecture has situated 3D printing as an attractive fabrication technique for scaffolds. Various designs and inks are actively investigated to prepare scaffolds for different tissues. In this work, we prepared 3D printed composite scaffolds comprising polycaprolactone (PCL) and various amounts of reduced graphene oxide (rGO) at 0.5, 1, and 3 wt.%. We employed a two-step fabrication process to ensure an even mixture and distribution of the rGO sheets within the PCL matrix. The inks were prepared by creating composite PCL-rGO films through solvent evaporation casting that were subsequently fed into the 3D printer for extrusion. The resultant scaffolds were seamlessly integrated, and 3D printed with high fidelity and consistency across all groups. This, together with the homogeneous dispersion of the rGO sheets within the polymer matrix, significantly improved the compressive strength and stiffness by 185% and 150%, respectively, at 0.5 wt.% rGO inclusion. The in vitro response of the scaffolds was assessed using human adipose-derived stem cells. All scaffolds were cytocompatible and supported cell growth and viability. These mechanically reinforced and biologically compatible 3D printed PCL-rGO scaffolds are a promising platform for regenerative engineering applications.
Collapse
Affiliation(s)
- Amir Seyedsalehi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, 293 Farmington Avenue, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, 293 Farmington Avenue, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, 293 Farmington Avenue, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - John Riordan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, 293 Farmington Avenue, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, 293 Farmington Avenue, Farmington, CT, 06030, USA.
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
29
|
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1345-1367. [PMID: 32435165 PMCID: PMC7224028 DOI: 10.1007/s10924-020-01722-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I, 11A, Iasi, 700506 Romania
| |
Collapse
|
30
|
Zhao YQ, Yang JH, Ding X, Ding X, Duan S, Xu FJ. Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling. Bioact Mater 2020; 5:185-191. [PMID: 32110740 PMCID: PMC7033525 DOI: 10.1016/j.bioactmat.2020.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/02/2020] [Accepted: 02/05/2020] [Indexed: 01/06/2023] Open
Abstract
Fused deposition modelling (FDM) is a commonly used 3D printing technology. The development of FDM materials was essential for the product quality of FDM. In this work, a series of polycaprolactone (PCL)-based composites for low-temperature FDM were developed. By melt blending technique, different ratios of starch were added into PCL to improve the performances of FDM, and the printability, tensile strength, rheological properties, crystallization behaviors and biological performances of the composites were studied. The PCL/starch composite had the best performance in FDM process with the starch ratio of 9 ph at 80–90 °C. The melting strength and solidification rate of PCL/starch composites were improved. The starch also increased the crystallization temperature, degree of crystallinity and crystallization rate of PCL/starch composites, while had no negative effects on the tensile strength of PCL. Due to the low printing temperature, various kinds of bioactive components were added into PCL/starch composites for preparation of antibacterial and biocompatible materials for FDM. The present work provides a new method to develop novel low-temperature FDM materials with various functions. PCL/starch composites for low-temperature fused deposition modelling were developed. The tensile strength, rheological properties and crystallization behaviors of PCL/starch composites were studied. Bioactive components were added to functionalize the composites with antibacterial and biocompatible properties.
Collapse
Affiliation(s)
- Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ji-Hao Yang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|