1
|
Basurto IM, Bandara GC, Boudreau RD, Shriver SB, Muhammad SA, Christ GJ, Caliari SR. Freeze-Dried Porous Collagen Scaffolds for the Repair of Volumetric Muscle Loss Injuries. ACS Biomater Sci Eng 2025; 11:1598-1611. [PMID: 39907689 PMCID: PMC11897937 DOI: 10.1021/acsbiomaterials.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Volumetric muscle loss (VML) injuries are characterized by the traumatic loss of skeletal muscle, resulting in permanent damage to both tissue architecture and electrical excitability. To address this challenge, we previously developed a three-dimensional (3D) aligned collagen-glycosaminoglycan (CG) scaffold platform that supported in vitro myotube alignment and maturation. In this work, we assessed the ability of CG scaffolds to facilitate functional muscle recovery in a rat tibialis anterior (TA) model of VML. Functional muscle recovery was assessed following implantation of either nonconductive CG or electrically conductive CG-polypyrrole (PPy) scaffolds at 4, 8, and 12 weeks postinjury by in vivo electrical stimulation of the peroneal nerve. After 12 weeks, scaffold-treated muscles produced maximum isometric torque that was significantly greater than nontreated tissues. Histological analysis further supported these reparative outcomes with evidence of regenerating muscle fibers at the material-tissue interface in scaffold-treated tissues that were not observed in nonrepaired muscles. Scaffold-treated muscles possessed higher numbers of M1 and M2 macrophages at the injury, while conductive CG-PPy scaffold-treated muscles showed significantly higher levels of neovascularization as indicated by the presence of pericytes and endothelial cells, suggesting a persistent wound repair response not observed in nontreated tissues. Finally, only tissues treated with nonconductive CG scaffolds displayed neurofilament staining similar to native muscle, further corroborating isometric contraction data. Together, these findings show that both conductive and nonconductive CG scaffolds can facilitate improved skeletal muscle function and endogenous cellular repair, highlighting their potential use as therapeutics for VML injuries.
Collapse
Affiliation(s)
- Ivan M. Basurto
- Department
of Biomedical Engineering, Department of Chemical Engineering, Department of Orthopedic
Surgery, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Geshani C. Bandara
- Department
of Biomedical Engineering, Department of Chemical Engineering, Department of Orthopedic
Surgery, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Ryann D. Boudreau
- Department
of Biomedical Engineering, Department of Chemical Engineering, Department of Orthopedic
Surgery, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Sydney B. Shriver
- Department
of Biomedical Engineering, Department of Chemical Engineering, Department of Orthopedic
Surgery, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Samir A. Muhammad
- Department
of Biomedical Engineering, Department of Chemical Engineering, Department of Orthopedic
Surgery, University of Virginia, Charlottesville, Virginia 22903, United States
| | - George J. Christ
- Department
of Biomedical Engineering, Department of Chemical Engineering, Department of Orthopedic
Surgery, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Steven R. Caliari
- Department
of Biomedical Engineering, Department of Chemical Engineering, Department of Orthopedic
Surgery, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
2
|
Galindo AN, Chi AK, Liashenko I, O’Neill KL, Sharma R, Khachatourian JD, Hajarizadeh A, Dalton PD, Hettiaratchi MH. Hyaluronic Acid-Coated Melt Electrowritten Scaffolds Promote Myoblast Attachment, Alignment, and Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641880. [PMID: 40161586 PMCID: PMC11952302 DOI: 10.1101/2025.03.06.641880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose In muscle tissues, anisotropic cell alignment is essential for optimal muscle fiber development and function. Biomaterials for muscle tissue engineering must guide cellular alignment while supporting cell proliferation and myogenic differentiation. Methods Here, we describe the fabrication of a tissue-engineered construct consisting of a scaffold of aligned poly(ε-caprolactone) (PCL) microfibers coated in a dynamic covalent hydrazone crosslinked hyaluronic acid (HA) hydrogel to support myoblast attachment, alignment, and differentiation. Norbornene modification of HA further enabled functionalization with fibronectin-derived arginine-glycine-aspartic acid (RGD) peptide. Scaffolds were fabricated using melt electrowriting (MEW), a three-dimensional (3D)-printing technique that uses stabilization of fluid columns to produce precisely aligned polymeric microfibers. We evaluated scaffolds with fiber diameters of 10 μm, 20 μm, and 30 μm of non-coated, HA-coated, and HA-RGD-coated MEW scaffolds through immunocytochemistry and creatine kinase activity assays. Results HA-coated and HA-RGD-coated scaffolds showed increased cellular attachment of C2C12 mouse skeletal myoblasts on all fiber diameters compared to non-coated scaffolds, with HA-RGD-coated scaffolds demonstrating the highest cell attachment. All scaffolds supported cellular alignment along the fibers. Cells differentiated on scaffolds showed anisotropic alignment with increased myotube formation on HA-RGD-coated scaffolds as seen by myosin heavy chain (MHC) staining. Highest creatine kinase (CK) activity on day 5 signified the successful differentiation of C2C12 cells into mature myotubes. Conclusion This unique combination of tunable biophysical and biochemical cues enables the creation of a biomimetic tissue engineered scaffold, providing a platform for new therapeutic approaches for muscle regeneration.
Collapse
Affiliation(s)
- Alycia N. Galindo
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Alyssa K. Chi
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Chemistry and Biochemistry, University of Oregon
| | - Ievgenii Liashenko
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Kelly L. O’Neill
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Ruchi Sharma
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Jenna D. Khachatourian
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Human Physiology, University of Oregon
| | - Armaan Hajarizadeh
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Computer and Data Sciences, University of Oregon
| | - Paul D. Dalton
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Marian H. Hettiaratchi
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Chemistry and Biochemistry, University of Oregon
| |
Collapse
|
3
|
Wang Y, Ye F, Wei X, Wang M, Xing Z, Liu H. Electrospun Silk Fibroin-Silk Sericin Scaffolds Induced Macrophage Polarization and Vascularization for Volumetric Muscle Loss Injury. J Funct Biomater 2025; 16:56. [PMID: 39997590 PMCID: PMC11856479 DOI: 10.3390/jfb16020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Volumetric muscle loss (VML) results in the impediment of skeletal muscle function. Tissue engineering scaffolds have been widely developed and used in skeletal muscle regeneration. However, scaffold implantation causes an immune response that endogenously regulates implant integration and tissue regeneration. Moreover, vascularization is thought to be a principal obstacle in the reconstruction of skeletal muscle defects. Thus, creating a pro-regenerative microenvironment that facilitates muscle regeneration and supports angiogenesis represents a promising strategy for tissue repair following volumetric muscle loss (VML) injury. Previously, the electrospun silk fibroin-silk sericin (SF-SS) film could regulate macrophage polarization and promote neovessel formation. This study aimed to investigate if the electrospun SF-SS scaffold was capable of supporting functional muscle regeneration. The results indicate that the conditioned medium collected from macrophages co-cultured with the 7:3 SF-SS scaffold significantly enhanced the proliferation and migration of myoblast C2C12 cells and improved the tube formation of HUVECs. Data from animal studies showed that the 7:3 SF-SS scaffold significantly enhanced M2 macrophage polarization, vascularization, and muscle fiber regeneration, reduced fibrosis, and improved muscle function after VML injury, thereby promoting the repair of muscle tissue. Therefore, the 7:3 SF-SS scaffold might represent a potential candidate for skeletal muscle regeneration following VML injury.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.W.); (F.Y.)
| | - Fangyu Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.W.); (F.Y.)
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China;
| | - Manman Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China;
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou 213164, China;
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China;
| |
Collapse
|
4
|
Prylutskyy Y, Nozdrenko D, Motuziuk O, Prylutska S, Nurishchenko N, Franskevych D, Soroca V, Cherepanov V, Kalinin I, Korzhyk O, Ritter U. C 60fullerene improves the contractile activity of the injured rat muscle gastrocnemius. NANOTECHNOLOGY 2025; 36:125101. [PMID: 39715584 DOI: 10.1088/1361-6528/ada29a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
The powerful antioxidant properties of C60fullerenes have been widely used in biomedical nanotechnology. Owing to the negative effects of free radicals in oxidative stress processes, antioxidants are required to protect injured muscles. Here, the effect of water-soluble C60fullerenes (daily oral dose 1 mg kg-1) on the process of restoration of contractile activity of skeletal muscle of rats (muscle gastrocnemius) 15 d after the initiation of open trauma of different severity was studied for the first time. The structural organization of C60fullerene nanoparticles in aqueous solution was analyzed by dynamic light scattering and atomic force microscopy techniques. Such biomechanical parameters ofmuscle gastrocnemiuscontraction as integrated muscle power, levels of generation of its maximum and minimum force, and time interval until reaching 50% of the level of force response of the muscle were analyzed. Such biochemical indices as concentrations of c-reactive protein, creatinine, and lactate in the rat blood, as well as indices of pro- and antioxidant balance (activities of superoxide dismutase and catalase, the concentration of reduced glutathione) in the blood and muscle tissue of experimental animals, were investigated. It was found that application of water-soluble C60fullerenes statistically significantly improves biomechanical parameters of contraction of injuredmuscle gastrocnemiusat the level of 30-45 ± 3%, which is confirmed by normalization of biochemical indices in the blood and muscle tissue of rats at the level of 35-50 ± 3% and 20-37 ± 3%, correspondingly, relative to the open injury group. These findings open the possibility of using C60fullerenes as potential therapeutic nanoagents capable of correcting pathological states of the muscular system during the physiological repair of open injuries.
Collapse
Affiliation(s)
- Yuriy Prylutskyy
- ESC 'Institute of Biology and Medicine', Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Dmytro Nozdrenko
- ESC 'Institute of Biology and Medicine', Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Olexandr Motuziuk
- ESC 'Institute of Biology and Medicine', Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Svitlana Prylutska
- Faculty of Plant Protection, Biotechnology and Ecology and Faculty of Veterinary Medicine, National University of Life and Environmental Science of Ukraine, 03041 Kyiv, Ukraine
| | - Natalia Nurishchenko
- ESC 'Institute of Biology and Medicine', Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Daria Franskevych
- ESC 'Institute of Biology and Medicine', Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Vasil Soroca
- ESC 'Institute of Biology and Medicine', Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | | | - Ihor Kalinin
- Faculty of Plant Protection, Biotechnology and Ecology and Faculty of Veterinary Medicine, National University of Life and Environmental Science of Ukraine, 03041 Kyiv, Ukraine
| | - Olha Korzhyk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
5
|
Lee HS, Samolyk BL, Pins GD. Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis. J Funct Biomater 2025; 16:21. [PMID: 39852577 PMCID: PMC11765554 DOI: 10.3390/jfb16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation. We characterized myoblast alignment, myotube formation, and tensile properties of myothreads as a function of cell-loading density and culture time. We showed that increasing myoblast loading densities enhances myotube formation. Additionally, alignment analyses indicate that the bioprinting process confers myoblast alignment in the constructs. Finally, tensile characterizations suggest that myothreads possess the structural stability to serve as a potential platform for developing scalable muscle scaffolds. We anticipate that our myothread biofabrication approach will enable us to strategically investigate biophysical and biochemical signaling cues and cellular mechanisms that enhance functional skeletal muscle regeneration for the treatment of VML.
Collapse
Affiliation(s)
| | | | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.S.L.); (B.L.S.)
| |
Collapse
|
6
|
Sueters J, van Heiningen R, de Vries R, Guler Z, Huirne J, Smit T. Advances in tissue engineering of peripheral nerve and tissue innervation - a systematic review. J Tissue Eng 2025; 16:20417314251316918. [PMID: 39911939 PMCID: PMC11795627 DOI: 10.1177/20417314251316918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Although various options are available to treat injured organs and peripheral nerves, none is without limitations. Auto- and allografts are the first choice of treatment, but tissue survival or functionality is not guaranteed due to often limited vascular and neural networks. In response, tissue-engineered solutions have been developed, yet clinical translations is rare. In this study, a systematic review was performed on tissue-engineered advancements for peripheral nerves and tissues, to aid future developments in bridging the gap toward the clinic by identifying high-potential solutions and unexplored areas. A systematic search was performed in PubMed, Embase, Web of Science, and Scopus until November 9, 2023. Search terms involved "tissue engineering," "guided," "tissue scaffold," and "tissue graft," together with "innervation" and "reinnervation." Original in vivo or in vitro studies meeting the inclusion criteria (tissue-engineered peripheral nerve/innervation of tissue) and no exclusion criteria (no full text available; written in foreign language; nonoriginal article; tissue-engineering of central nervous system; publication before 2012; insufficient study quality or reproducibility) were assessed. A total of 68 out of 3626 original studies were included. Data extraction was based on disease model, cell origin and host species, biomaterial nature and composition, and external stimuli of biological, chemical or physical origin. Although tissue engineering is still in its infancy, explored innervation strategies of today were highlighted with respect to biomaterials, cell types, and external stimuli. The findings emphasize that natural biomaterials, pre-seeding with autologous cell sources, and solutions for reproductive organs are beneficial for future research. Natural biomaterials possess important cues required for cell-material interaction and closely resemble native tissue in terms of biomechanical, geometrical and chemical composition. Autologous cells induce biomaterial functionalization. As these solutions pose no risk of immunorejection and have demonstrated good outcomes, they are most likely to fulfill the clinical demands.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rowan van Heiningen
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Zeliha Guler
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC – location AMC, Amsterdam, The Netherlands
| | - Judith Huirne
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Theo Smit
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Medical Biology, Amsterdam UMC – location AMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Zhu Q, Sun E, Sun Y, Cao X, Wang N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1885. [PMID: 39683273 DOI: 10.3390/nano14231885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
With the growing demand for personalized healthcare services, biomaterial-based triboelectric nanogenerators (BM-TENGs) have gained widespread attention due to their non-toxicity, biocompatibility, and biodegradability. This review systematically examines the working principles, material choices, biomimetic designs, and clinical application scenarios of BM-TENGs, with a focus on the use of natural biomaterials, biocomposites, hydrogels, and other materials in health diagnostics. Biomaterials show significant potential in enhancing TENG performance, improving device flexibility, and expanding application ranges, especially in early disease detection, health monitoring, and self-powered sensing devices. This paper also addresses the current challenges faced by BM-TENG technology, including performance optimization, biocompatibility, and device durability. By integrating existing research and technological advancements, this review aims to deeply analyze the development of BM-TENG technology, propose corresponding solutions, and explore its practical application prospects in the medical field.
Collapse
Affiliation(s)
- Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Enqi Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Basurto IM, Boudreau RD, Bandara GC, Muhammad SA, Christ GJ, Caliari SR. Freeze-dried porous collagen scaffolds for the repair of volumetric muscle loss injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610194. [PMID: 39282357 PMCID: PMC11398406 DOI: 10.1101/2024.08.30.610194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Volumetric muscle loss (VML) injuries are characterized by the traumatic loss of skeletal muscle resulting in permanent damage to both tissue architecture and electrical excitability. To address this challenge, we previously developed a 3D aligned collagen-glycosaminoglycan (CG) scaffold platform that supported in vitro myotube alignment and maturation. In this work, we assessed the ability of CG scaffolds to facilitate functional muscle recovery in a rat tibialis anterior (TA) model of VML. Functional muscle recovery was assessed following implantation of either non-conductive CG or electrically conductive CG-polypyrrole (PPy) scaffolds at 4, 8, and 12 weeks post-injury by in vivo electrical stimulation of the peroneal nerve. After 12 weeks, scaffold-treated muscles produced maximum isometric torque that was significantly greater than non-treated tissues. Histological analysis further supported these reparative outcomes with evidence of regenerating muscle fibers at the material-tissue interface in scaffold-treated tissues that was not observed in non-repaired muscles. Scaffold-treated muscles possessed higher numbers of M1 and M2 macrophages at the injury while conductive CG-PPy scaffold-treated muscles showed significantly higher levels of neovascularization as indicated by the presence of pericytes and endothelial cells, suggesting a persistent wound repair response not observed in non-treated tissues. Finally, only tissues treated with non-conductive CG scaffolds displayed neurofilament staining similar to native muscle, further corroborating isometric contraction data. Together, these findings show that CG scaffolds can facilitate improved skeletal muscle function and endogenous cellular repair, highlighting their potential use as therapeutics for VML injuries.
Collapse
Affiliation(s)
- Ivan M. Basurto
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Ryann D. Boudreau
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Geshani C. Bandara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Samir A. Muhammad
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - George J. Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Orthopedic Surgery, University of Virginia, Charlottesville, Virginia 22903
| | - Steven R. Caliari
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
9
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
10
|
Zhang Z, Yao P, Fan S. Advances in regenerative rehabilitation in the rehabilitation of musculoskeletal injuries. Regen Med 2024; 19:345-354. [PMID: 38860852 PMCID: PMC11346529 DOI: 10.1080/17460751.2024.2357956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
In the rapidly advancing field of regenerative medicine, relying solely on cell transplantation alone may be insufficient for achieving functional recovery, and rehabilitation before and after transplantation is crucial. Regenerative rehabilitation functions by synergizing the therapeutic effects of regeneration and rehabilitation to maximize tissue regeneration and patient function. We used the keywords "regenerative rehabilitation" to search across the database for published works; this review discusses the development of regenerative rehabilitation for the treatment of musculoskeletal injuries. Rehabilitation has become a crucial component of regenerative medicine because it can enhance patients' functional activity and facilitate their early return to society. Experimental data increasingly demonstrates that rehabilitation interventions support the regeneration of transplanted tissues.
Collapse
Affiliation(s)
- Zirui Zhang
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Rehabilitation Medicine, Chinese People's Liberation Army Joint Logistics Force 940 Hospital, 818, Anning East Road, Lanzhou, Gansu, 730000, PR China
| | - Pengfei Yao
- Department of Rehabilitation Medicine, Chinese People's Liberation Army Joint Logistics Force 940 Hospital, 818, Anning East Road, Lanzhou, Gansu, 730000, PR China
| | - Shuai Fan
- Department of Rehabilitation Medicine, The Ninth People's Hospital of Shanghai, Jiao Tong University, 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200000, PR China
| |
Collapse
|
11
|
Schiltz L, Grivetti E, Tanner GI, Qazi TH. Recent Advances in Implantable Biomaterials for the Treatment of Volumetric Muscle Loss. Cells Tissues Organs 2024; 213:486-502. [PMID: 38219727 DOI: 10.1159/000536262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging, and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life. SUMMARY New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from the intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial's structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue. KEY MESSAGES Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties, and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.
Collapse
Affiliation(s)
- Leia Schiltz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth Grivetti
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gabrielle I Tanner
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Heo J, Schifino AG, McFaline‐Figueroa J, Miller DL, Hoffman JR, Noble EE, Greising SM, Call JA. Differential effects of Western diet and traumatic muscle injury on skeletal muscle metabolic regulation in male and female mice. J Cachexia Sarcopenia Muscle 2023; 14:2835-2850. [PMID: 37879629 PMCID: PMC10751418 DOI: 10.1002/jcsm.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND This study was designed to develop an understanding of the pathophysiology of traumatic muscle injury in the context of Western diet (WD; high fat and high sugar) and obesity. The objective was to interrogate the combination of WD and injury on skeletal muscle mass and contractile and metabolic function. METHODS Male and female C57BL/6J mice were randomized into four groups based on a two-factor study design: (1) injury (uninjured vs. volumetric muscle loss [VML]) and (2) diet (WD vs. normal chow [NC]). Electrophysiology was used to test muscle strength and metabolic function in cohorts of uninjured + NC, uninjured + WD, VML + NC and VML + WD at 8 weeks of intervention. RESULTS VML-injured male and female mice both exhibited decrements in muscle mass (-17%, P < 0.001) and muscle strength (-28%, P < 0.001); however, VML + WD females had a 28% greater muscle mass compared to VML + NC females (P = 0.034), a compensatory response not detected in males. VML-injured male and female mice both had lower carbohydrate- and fat-supported muscle mitochondrial respiration (JO2 ) and less electron conductance through the electron transport system (ETS); however, male VML-WD had 48% lower carbohydrate-supported JO2 (P = 0.014) and 47% less carbohydrate-supported electron conductance (P = 0.026) compared to male VML + NC, and this diet-injury phenotype was not present in females. ETS electron conductance starts with complex I and complex II dehydrogenase enzymes at the inner mitochondrial membrane, and male VML + WD had 31% less complex I activity (P = 0.004) and 43% less complex II activity (P = 0.005) compared to male VML + NC. This was a diet-injury phenotype not present in females. Pyruvate dehydrogenase (PDH), β-hydroxyacyl-CoA dehydrogenase, citrate synthase, α-ketoglutarate dehydrogenase and malate dehydrogenase metabolic enzyme activities were evaluated as potential drivers of impaired JO2 in the context of diet and injury. There were notable male and female differential effects in the enzyme activity and post-translational regulation of PDH. PDH enzyme activity was 24% less in VML-injured males, independent of diet (P < 0.001), but PDH enzyme activity was not influenced by injury in females. PDH enzyme activity is inhibited by phosphorylation at serine-293 by PDH kinase 4 (PDK4). In males, there was greater total PDH, phospho-PDHser293 and phospho-PDH-to-total PDH ratio in WD mice compared to NC, independent of injury (P ≤ 0.041). In females, PDK4 was 51% greater in WD compared to NC, independent of injury (P = 0.025), and was complemented by greater phospho-PDHser293 (P = 0.001). CONCLUSIONS Males are more susceptible to muscle metabolic dysfunction in the context of combined WD and traumatic injury compared to females, and this may be due to impaired metabolic enzyme functions.
Collapse
Affiliation(s)
- Junwon Heo
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Albino G. Schifino
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
- Department of KinesiologyUniversity of GeorgiaAthensGAUSA
| | - Jennifer McFaline‐Figueroa
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - David L. Miller
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Jessica R. Hoffman
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Emily E. Noble
- Department of Nutritional ScienceUniversity of GeorgiaAthensGAUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
13
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
14
|
Local IL-10 delivery modulates the immune response and enhances repair of volumetric muscle loss muscle injury. Sci Rep 2023; 13:1983. [PMID: 36737628 PMCID: PMC9898301 DOI: 10.1038/s41598-023-27981-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
This study was designed to test the hypothesis that in addition to repairing the architectural and cellular cues via regenerative medicine, the delivery of immune cues (immunotherapy) may be needed to enhance regeneration following volumetric muscle loss (VML) injury. We identified IL-10 signaling as a promising immunotherapeutic target. To explore the impact of targeting IL-10 signaling, tibialis anterior (TA) VML injuries were created and then treated in rats using autologous minced muscle (MM). Animals received either recombinant rat IL-10 or phosphate buffered saline (PBS) controls injections at the site of VML repair beginning 7 days post injury (DPI) and continuing every other day (4 injections total) until 14 DPI. At 56 DPI (study endpoint), significant improvements to TA contractile torque (82% of uninjured values & 170% of PBS values), TA mass, and myofiber size in response to IL-10 treatment were detected. Whole transcriptome analysis at 14 DPI revealed activation of IL-10 signaling, muscle hypertrophy, and lymphocytes signaling pathways. Expression of ST2, a regulatory T (Treg) cell receptor, was dramatically increased at the VML repair site in response to IL-10 treatment when compared to PBS controls. The findings suggest that the positive effect of delayed IL-10 delivery might be due to immuno-suppressive Treg cell recruitment.
Collapse
|
15
|
Raymond-Pope CJ, Basten AM, Bruzina AS, McFaline-Figueroa J, Lillquist TJ, Call JA, Greising SM. Restricted physical activity after volumetric muscle loss alters whole-body and local muscle metabolism. J Physiol 2023; 601:743-761. [PMID: 36536512 PMCID: PMC9931639 DOI: 10.1113/jp283959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is the traumatic loss of skeletal muscle, resulting in chronic functional deficits and pathological comorbidities, including altered whole-body metabolic rate and respiratory exchange ratio (RER), despite no change in physical activity in animal models. In other injury models, treatment with β2 receptor agonists (e.g. formoterol) improves metabolic and skeletal muscle function. We aimed first to examine if restricting physical activity following injury affects metabolic and skeletal muscle function, and second, to enhance the metabolic and contractile function of the muscle remaining following VML injury through treatment with formoterol. Adult male C57Bl/6J mice (n = 32) underwent VML injury to the posterior hindlimb compartment and were randomly assigned to unrestricted or restricted activity and formoterol treatment or no treatment; age-matched injury naïve mice (n = 4) were controls for biochemical analyses. Longitudinal 24 h evaluations of physical activity and whole-body metabolism were conducted following VML. In vivo muscle function was assessed terminally, and muscles were biochemically evaluated for protein expression, mitochondrial enzyme activity and untargeted metabolomics. Restricting activity chronically after VML had the greatest effect on physical activity and RER, reflected in reduced lipid oxidation, although changes were attenuated by formoterol treatment. Formoterol enhanced injured muscle mass, while mitigating functional deficits. These novel findings indicate physical activity restriction may recapitulate following VML clinically, and adjunctive oxidative treatment may create a metabolically beneficial intramuscular environment while enhancing the injured muscle's mass and force-producing capacity. Further investigation is needed to evaluate adjunctive oxidative treatment with rehabilitation, which may augment the muscle's regenerative and functional capacity following VML. KEY POINTS: The natural ability of skeletal muscle to regenerate and recover function is lost following complex traumatic musculoskeletal injury, such as volumetric muscle loss (VML), and physical inactivity following VML may incur additional deleterious consequences for muscle and metabolic health. Modelling VML injury-induced physical activity restriction altered whole-body metabolism, primarily by decreasing lipid oxidation, while preserving local skeletal muscle metabolic activity. The β2 adrenergic receptor agonist formoterol has shown promise in other severe injury models to improve regeneration, recover function and enhance metabolism. Treatment with formoterol enhanced mass of the injured muscle and whole-body metabolism while mitigating functional deficits resulting from injury. Understanding of chronic effects of the clinically available and FDA-approved pharmaceutical formoterol could be a translational option to support muscle function after VML injury.
Collapse
Affiliation(s)
| | - Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | - Angela S. Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| |
Collapse
|
16
|
Ege D, Nawaz Q, Beltrán AM, Boccaccini AR. Effect of Boron-Doped Mesoporous Bioactive Glass Nanoparticles on C2C12 Cell Viability and Differentiation: Potential for Muscle Tissue Application. ACS Biomater Sci Eng 2022; 8:5273-5283. [PMID: 36379050 PMCID: PMC9748944 DOI: 10.1021/acsbiomaterials.2c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Mesoporous bioactive glasses (MBGs) exhibit a high surface area and a highly ordered mesoporous structure. MBGs have potential for both hard and soft tissue engineering applications. MBGs may be doped with biologically active ions to tailor their biological activity. Boron is being widely studied as a dopant of bioactive glasses. Recently, research has demonstrated the potential of boron-containing bioactive glasses for muscle regeneration. In this study, boron-containing MBGs, 10B-MBG and 18B-MBG nanoparticles, were produced by a microemulsion-assisted sol-gel approach for potential muscle regeneration applications. First, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and energy-dispersive X-ray spectroscopy (EDX) analyses were conducted to study the chemical structure and composition of the nanoparticles. To examine the nanoparticle morphology, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were analyzed. Both SEM images and particle size distribution determined by dynamic light scattering (DLS) indicated a decrease of the average particle size after boron doping. TEM images indicated a slit-shaped mesoporous structure of nanoparticles for all compositions. The ζ potential was measured, and a negative surface charge was found for all study groups due to the presence of silanol groups. Cytocompatibility and fluorescence microscopy studies were also carried out. The results indicated that low concentrations (0.1 and 1 mg mL-1) of all MBG nanoparticles led to high viability of C2C12 cells. Fluorescence microscopy images indicated that at lower nanoparticle concentrations (0.1 and 1 mg mL-1), C2C12 cells appeared to differentiate into myotubes, which was indicated by a spindle-shaped morphology. For 10 mg mL-1 concentration of nanoparticles, C2C12 cells had a lower aspect ratio (estimated qualitatively by inspection of the images), which implied a lower degree of differentiation. Boron-doped MBG nanoparticles in reduced concentrations are suitable to induce differentiation of C2C12 cells into myotubes, indicating their potential for applications in muscle tissue repair.
Collapse
Affiliation(s)
- Duygu Ege
- Institute
of Biomedical Engineering, Boğaziçi
University, Rasathane Street, Kandilli, İstanbul34684, Turkey
- Department
of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058Erlangen, Germany
| | - Qaisar Nawaz
- Department
of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058Erlangen, Germany
| | - Ana M. Beltrán
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de
Sevilla, 41011Seville, Spain
| | - Aldo R. Boccaccini
- Department
of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058Erlangen, Germany
| |
Collapse
|
17
|
Behre A, Tashman JW, Dikyol C, Shiwarski DJ, Crum RJ, Johnson SA, Kommeri R, Hussey GS, Badylak SF, Feinberg AW. 3D Bioprinted Patient-Specific Extracellular Matrix Scaffolds for Soft Tissue Defects. Adv Healthc Mater 2022; 11:e2200866. [PMID: 36063047 PMCID: PMC9780169 DOI: 10.1002/adhm.202200866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/02/2022] [Indexed: 01/28/2023]
Abstract
Soft tissue injuries such as volumetric muscle loss (VML) are often too large to heal normally on their own, resulting in scar formation and functional deficits. Decellularized extracellular matrix (dECM) scaffolds placed into these wounds have shown the ability to modulate the immune response and drive constructive healing. This provides a potential solution for functional tissue regeneration, however, these acellular dECM scaffolds are challenging to fabricate into complex geometries. 3D bioprinting is uniquely positioned to address this, being able to create patient-specific scaffolds based on clinical 3D imaging data. Here, a process to use freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting and computed tomography (CT) imaging to build large volume, patient-specific dECM patches (≈12 × 8 × 2 cm) for implantation into canine VML wound models is developed. Quantitative analysis shows that these dECM patches are dimensionally accurate and conformally adapt to the surface of complex wounds. Finally, this approach is extended to a human VML injury to demonstrate the fabrication of clinically relevant dECM scaffolds with precise control over fiber alignment and micro-architecture. Together these advancements represent a step towards an improved, clinically translatable, patient-specific treatment for soft tissue defects from trauma, tumor resection, and other surgical procedures.
Collapse
Affiliation(s)
- Anne Behre
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Joshua W. Tashman
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Caner Dikyol
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Daniel J. Shiwarski
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Raphael J. Crum
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Scott A. Johnson
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Remya Kommeri
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - George S. Hussey
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Adam W. Feinberg
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of Materials Science & EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
18
|
Kiratitanaporn W, Berry DB, Mudla A, Fried T, Lao A, Yu C, Hao N, Ward SR, Chen S. 3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss. BIOMATERIALS ADVANCES 2022; 142:213171. [PMID: 36341746 PMCID: PMC12045644 DOI: 10.1016/j.bioadv.2022.213171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Volumetric muscle loss (VML) injuries due to trauma, tumor ablation, or other degenerative muscle diseases are debilitating and currently have limited options for self-repair. Advancements in 3D printing allow for the rapid fabrication of biocompatible scaffolds with designer patterns. However, the materials chosen are often stiff or brittle, which is not optimal for muscle tissue engineering. This study utilized a photopolymerizable biocompatible elastomer - poly (glycerol sebacate) acrylate (PGSA) - to develop an in vitro model of muscle regeneration and proliferation into an acellular scaffold after VML injury. Mechanical properties of the scaffold were tuned by controlling light intensity during the 3D printing process to match the specific tension of skeletal muscle. The effect of both geometric (channel sizes between 300 and 600 μm) and biologic (decellularized muscle extracellular matrix (dECM)) cues on muscle progenitor cell infiltration, proliferation, organization, and maturation was evaluated in vitro using a near-infrared fluorescent protein (iRFP) transfected cell line to assess cells in the 3D scaffold. Larger channel sizes and dECM coating were found to enhance cell proliferation and maturation, while no discernable effect on cell alignment was observed. In addition, a pilot experiment was carried out to evaluate the regenerative capacity of this scaffold in vivo after a VML injury. Overall, this platform demonstrates a simple model to study muscle progenitor recruitment and differentiation into acellular scaffolds after VML repair.
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - David B Berry
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of Orthopaedic Surgery, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Anusorn Mudla
- Department of Section of Molecular Biology, Division of Biological Sciences, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA, 92093, USA.
| | - Trevor Fried
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Alison Lao
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Claire Yu
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Nan Hao
- Department of Section of Molecular Biology, Division of Biological Sciences, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA, 92093, USA.
| | - Samuel R Ward
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of Orthopaedic Surgery, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Shaochen Chen
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Deng P, Qiu S, Liao F, Jiang Y, Zheng C, Zhu Q. Contusion concomitant with ischemia injury aggravates skeletal muscle necrosis and hinders muscle functional recovery. Exp Biol Med (Maywood) 2022; 247:1577-1590. [PMID: 35775612 PMCID: PMC9554171 DOI: 10.1177/15353702221102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contusion concomitant with ischemia injury to skeletal muscles is common in civilian and battlefield trauma. Despite their clinical importance, few experimental studies on these injuries are reported. The present study established a rat skeletal muscle contusion concomitant with ischemia injury model to identify skeletal muscle alterations compared with contusion injury or ischemia injury. Macroscopic and microscopic morphological evaluation showed that contusion concomitant with ischemia injury aggravated muscle edema and hematoxylin-eosin (HE) injury score at 24 h postinjury. Serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels, together with gastrocnemius muscle (GM) tumor necrosis factor-alpha (TNF-α) content elevated at 24 h postinjury too. During the 28-day follow-up, electrophysiological and contractile impairment was more severe in the contusion concomitant with ischemia injury group. In addition, contusion concomitant with ischemia injury decreased the percentage of larger (600-3000 μm2) fibers and increased the fibrotic area and collagen I proportion in the GM. Smaller proportions of Pax7+ and MyoD+ satellite cells (SCs) were observed in the contusion concomitant with ischemia injury group at 7 days postinjury. In conclusion, contusion concomitant with ischemia injury to skeletal muscle not only aggravates early muscle fiber necrosis but also hinders muscle functional recovery by impairing SC differentiation and exacerbating fibrosis during skeletal muscle repair.
Collapse
Affiliation(s)
- Peijun Deng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Fawei Liao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Yifei Jiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Qingtang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China,Qingtang Zhu.
| |
Collapse
|
20
|
Sheng F, Zhang B, Zhang Y, Li Y, Cheng R, Wei C, Ning C, Dong K, Wang ZL. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS NANO 2022; 16:10958-10967. [PMID: 35775629 DOI: 10.1021/acsnano.2c03365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implantable sensors with the abilities of real-time healthcare monitoring and auxiliary training are important for exercise-induced or disease-induced muscle and ligament injuries. However, some of these implantable sensors have some shortcomings, such as requiring an external power supply or poor flexibility and stability. Herein, an organogel/silicone fiber-helical sensor based on a triboelectric nanogenerator (OFS-TENG) is developed for power-free and sutureable implantation ligament strain monitoring. The OFS-TENG with high stability and ultrastretchability is composed of an organogel fiber and a silicone fiber intertwined with a double helix structure. The organogel fiber possesses the merits of rapid preparation (15 s), good transparency (>95%), high stretchability (600%), and favorable stability (over 6 months). The OFS-TENG is successfully implanted on the patellar ligament of the rabbit knee for the real-time monitoring of knee ligament stretch and muscle stress, which is expected to provide a solution for real-time diagnosis of muscle and ligament injuries. The prepared self-powered OFS-TENG can monitor data on human muscles and ligaments in real-time.
Collapse
Affiliation(s)
- Feifan Sheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yihan Zhang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Renwei Cheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuanhui Wei
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuan Ning
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Dyer SE, Remer JD, Hannifin KE, Hombal A, Wenke JC, Walters TJ, Christ GJ. Administration of particulate oxygen generators improves skeletal muscle contractile function after ischemia-reperfusion injury in the rat hindlimb. J Appl Physiol (1985) 2022; 132:541-552. [PMID: 34989649 PMCID: PMC8836730 DOI: 10.1152/japplphysiol.00259.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Extended tourniquet application, often associated with battlefield extremity trauma, can lead to severe ischemia-reperfusion (I/R) injury in skeletal muscle. Particulate oxygen generators (POGs) can be directly injected into tissue to supply oxygen to attenuate the effects of I/R injury in muscle. The goal of this study was to investigate the efficacy of a sodium percarbonate (SPO)-based POG formulation in reducing ischemic damage in a rat hindlimb during tourniquet application. Male Lewis rats were anesthetized and underwent tourniquet application for 3 h at a pressure of 300 mmHg. Shortly after tourniquet inflation, animals received intramuscular injections of either 0.2 mg/mL SPO with catalase (n = 6) or 2.0 mg/mL SPO with catalase (n = 6) directly into the tibialis anterior (TA) muscle. An additional Tourniquet-Only group (n = 12) received no intervention. Functional recovery was monitored by in vivo contractile testing of the hindlimb at 1, 2, and 4 wk after injury. By the 4 wk time point, the Low-Dose POG group continued to show improved functional recovery (85% of baseline) compared with the Tourniquet-Only (48%) and High-Dose POG (56%) groups. In short, the low-dose POG formulation appeared, at least in part, to mitigate the impact of ischemic tissue injury, thus improving contractile function after tourniquet application. Functional improvement correlated with maintenance of larger muscle fiber cross-sectional area and the presence of fewer fibers containing centrally located nuclei. As such, POGs represent a potentially attractive therapeutic solution for addressing I/R injuries associated with extremity trauma.NEW & NOTEWORTHY Skeletal muscle contraction was evaluated in the same animals at multiple time points up to 4 wk after injury, following administration of particulate oxygen generators (POGs) in a clinically relevant rat hindlimb model of tourniquet-induced ischemia. The observed POG-mediated improvement of muscle function over time confirms and extends previous studies to further document the potential clinical applications of POGs. Of particular significance in austere environments, this technology can be applied in the absence of an intact circulation.
Collapse
Affiliation(s)
- Sarah E. Dyer
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - J. David Remer
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kelsey E. Hannifin
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Aishwarya Hombal
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Joseph C. Wenke
- 2US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | | | - George J. Christ
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia,3Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
22
|
Christensen KW, Turner J, Coughenour K, Maghdouri-White Y, Bulysheva AA, Sergeant O, Rariden M, Randazzo A, Sheean AJ, Christ GJ, Francis MP. Assembled Cell-Decorated Collagen (AC-DC) Fiber Bioprinted Implants with Musculoskeletal Tissue Properties Promote Functional Recovery in Volumetric Muscle Loss. Adv Healthc Mater 2022; 11:e2101357. [PMID: 34879177 PMCID: PMC8890793 DOI: 10.1002/adhm.202101357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/26/2021] [Indexed: 02/03/2023]
Abstract
Musculoskeletal tissue injuries, including volumetric muscle loss (VML), are commonplace and often lead to permanent disability and deformation. Addressing this healthcare need, an advanced biomanufacturing platform, assembled cell-decorated collagen (AC-DC) bioprinting, is invented to rapidly and reproducibly create living biomaterial implants, using clinically relevant cells and strong, microfluidic wet-extruded collagen microfibers. Quantitative analysis shows that the directionality and distribution of cells throughout AC-DC implants mimic native musculoskeletal tissue. AC-DC bioprinted implants further approximate or exceed the strength and stiffness of human musculoskeletal tissue and exceed collagen hydrogel tensile properties by orders of magnitude. In vivo, AC-DC implants are assessed in a critically sized muscle injury in the hindlimb, with limb torque generation potential measured over 12 weeks. Both acellular and cellular implants promote functional recovery compared to the unrepaired group, with AC-DC implants containing therapeutic muscle progenitor cells promoting the highest degree of recovery. Histological analysis and automated image processing of explanted muscle cross-sections reveal increased total muscle fiber count, median muscle fiber size, and increased cellularization for injuries repaired with cellularized implants. These studies introduce an advanced bioprinting method for generating musculoskeletal tissue analogs with near-native biological and biomechanical properties with the potential to repair myriad challenging musculoskeletal injuries.
Collapse
Affiliation(s)
| | - Jonathan Turner
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | | | | | - Anna A. Bulysheva
- Depeartment of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Olivia Sergeant
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | - Michael Rariden
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | - Alessia Randazzo
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | - Andrew J. Sheean
- Department of Orthopaedic Surgery, San Antonio Military Medical Center, USAF 59 MDW, San Antonio, TX, USA
| | - George J. Christ
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia; Charlottesville, Virginia, USA
| | | |
Collapse
|
23
|
Wroblewski OM, Nguyen MH, Cederna P, Larkin LM. Impact of Cell-Seeding Density and Cell Confluence on Human Tissue Engineered Skeletal Muscle. Tissue Eng Part A 2021; 28:420-432. [PMID: 34652973 PMCID: PMC9131361 DOI: 10.1089/ten.tea.2021.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering methodologies have the potential to treat volumetric muscle loss (VML) via the growth of exogenous skeletal muscle grafts from small autogenous muscle biopsies. A significant obstacle preventing the widespread use of engineered skeletal muscle grafts in a clinical setting is the high number of skeletal muscle stem cells, known as satellite cells, required for fabrication of human-sized skeletal muscle tissue. Additionally, there is a lack of work adapting engineered constructs created for animal models into skeletal muscle engineered from a primary human skeletal muscle cell source. For this study, we used scaffold-free tissue-engineered skeletal muscle units (SMUs) to determine the impact of cell seeding density on the ability to fabricate functional human engineered skeletal muscle. Following established protocols, human skeletal muscle isolates were cultured into SMUs at five different cell-seeding densities: 1,000 cells/cm2, 2,500 cells/cm2, 5,000 cells/cm2, 10,000 cells/cm2, and 25,000 cells/cm2. Following previous human SMU work, SMUs prepared at a cell seeding density of 10,000 cells/cm2 served as controls. Additionally, the impact of cell monolayer confluency on the outcome of human cell-sourced SMU fabrication was investigated at both the 1,000 cells/cm2 and 10,000 cells/cm2 seeding densities. Light microscopy was used to examine myotube formation and hypertrophy in cell monolayers. After the formation of three-dimensional constructs, SMUs underwent maximum tetanic isometric force production measurements and immunohistochemical staining to examine SMU contractile function and muscle-like structure, respectively. Results indicate that the 25,000 cells/cm2 cell-seeding density was detrimental to the contractile function of human cell-sourced SMUs, which had significantly lower maximum tetanic forces compared to SMUs seeded at lower densities. Compared to control, low cell-seeding densities (1,000 cells/cm2 - 5,000 cells/cm2) have no detrimental impact on SMU skeletal muscle growth, maturation, or contractility. Cell cultures seeded at 1,000 cells/cm2 and allowed to proliferate to 90-100% confluency prior to treatment in muscle differentiation media (MDM) resulted in SMUs with greater contractile forces and total muscle-structure compared to cell cultures switched to MDM when underconfluent or overconfluent. In conclusion, initial cell-seeding density for SMU fabrication can be decreased to as low as 1,000 cells/cm2 without negatively impacting SMU muscle-like structure and function.
Collapse
Affiliation(s)
- Olga Maria Wroblewski
- University of Michigan Department of Biomedical Engineering, 505527, Ann Arbor, Michigan, United States;
| | - Matthew Hung Nguyen
- University of Michigan Department of Molecular and Integrative Physiology, 200746, Ann Arbor, Michigan, United States;
| | - Paul Cederna
- University of Michigan Medical School, 12266, Surgery, Ann Arbor, Michigan, United States;
| | - Lisa Marie Larkin
- University of Michigan Department of Molecular and Integrative Physiology, 200746, Ann Arbor, Michigan, United States;
| |
Collapse
|
24
|
Basurto IM, Passipieri JA, Gardner GM, Smith KK, Amacher AR, Hansrisuk AI, Christ GJ, Caliari SR. Photoreactive hydrogel stiffness influences volumetric muscle loss repair. Tissue Eng Part A 2021; 28:312-329. [PMID: 34409861 DOI: 10.1089/ten.tea.2021.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volumetric muscle loss (VML) injuries are characterized by permanent loss of muscle mass, structure, and function. Hydrogel biomaterials provide an attractive platform for skeletal muscle tissue engineering due to the ability to easily modulate their biophysical and biochemical properties to match a range of tissue characteristics. In this work we successfully developed a mechanically tunable hyaluronic acid (HA) hydrogel system to investigate the influence of hydrogel stiffness on VML repair. HA was functionalized with photoreactive norbornene groups to create hydrogel networks that rapidly crosslink via thiol-ene click chemistry with tailored mechanics. Mechanical properties were controlled by modulating the amount of matrix metalloproteinase (MMP)-degradable peptide crosslinker to produce hydrogels with increasing elastic moduli of 1.1 ± 0.002, 3.0 ± 0.002, and 10.6 ± 0.006 kPa mimicking a relevant range of developing and mature muscle stiffnesses. Functional muscle recovery was assessed following implantation of the HA hydrogels by in situ photopolymerization into rat latissimus dorsi (LD) VML defects at 12 and 24 weeks post-injury. After 12 weeks, muscles treated with medium stiffness (3.0 kPa) hydrogels produced maximum isometric forces most similar to contralateral healthy LD muscles. This trend persisted at 24 weeks post-injury, suggestive of sustained functional recovery. Histological analysis revealed a significantly larger zone of regeneration with more de novo muscle fibers following implantation of medium stiffness hydrogels in VML-injured muscles compared to other experimental groups. Lower (low and medium) stiffness hydrogels also appeared to attenuate the chronic inflammatory response characteristic of VML injuries, displaying similar levels of macrophage infiltration and polarization to healthy muscle. Together these findings illustrate the importance of hydrogel mechanical properties in supporting functional repair of VML injuries.
Collapse
Affiliation(s)
- Ivan M Basurto
- University of Virginia, 2358, Biomedical Engineering, Charlottesville, Virginia, United States;
| | - Juliana A Passipieri
- University of Virginia, 2358, Biomedical Engineering, Orthopaedic Surgery, Charlottesville, Virginia, United States;
| | - Gregg M Gardner
- University of Virginia, 2358, Chemical Engineering, Charlottesville, Virginia, United States;
| | - Kathryn K Smith
- University of Virginia, 2358, Chemical Engineering, Charlottesville, Virginia, United States;
| | - Austin R Amacher
- University of Virginia, 2358, Biomedical Engineering, Charlottesville, Virginia, United States;
| | - Audrey I Hansrisuk
- University of Virginia, 2358, Chemistry, Charlottesville, Virginia, United States;
| | - George J Christ
- University of Virginia, 2358, Biomedical Engineering, Orthopaedic Surgery, Charlottesville, Virginia, United States;
| | - Steven R Caliari
- University of Virginia, 2358, Chemical Engineering, Biomedical Engineering, Charlottesville, Virginia, United States;
| |
Collapse
|
25
|
Basurto IM, Mora MT, Gardner GM, Christ GJ, Caliari SR. Aligned and electrically conductive 3D collagen scaffolds for skeletal muscle tissue engineering. Biomater Sci 2021; 9:4040-4053. [PMID: 33899845 DOI: 10.1039/d1bm00147g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle is characterized by its three-dimensional (3D) anisotropic architecture composed of highly aligned and electrically-excitable muscle fibers that enable normal movement. Biomaterial-based tissue engineering approaches to repair skeletal muscle are limited due to difficulties combining 3D structural alignment (to guide cell/matrix organization) and electrical conductivity (to enable electrically-excitable myotube assembly and maturation). In this work we successfully produced aligned and electrically conductive 3D collagen scaffolds using a freeze-drying approach. Conductive polypyrrole (PPy) nanoparticles were synthesized and directly mixed into a suspension of type I collagen and chondroitin sulfate followed by directional lyophilization. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and confocal microscopy showed that directional solidification resulted in scaffolds with longitudinally aligned pores with homogeneously-distributed PPy content. Chronopotentiometry verified that PPy incorporation resulted in a five-fold increase in conductivity compared to non-PPy-containing collagen scaffolds without detrimentally affecting myoblast metabolic activity. Furthermore, the aligned scaffold microstructure provided contact guidance cues that directed myoblast growth and organization. Incorporation of PPy also promoted enhanced myotube formation and maturation as measured by myosin heavy chain (MHC) expression and number of nuclei per myotube. Together these data suggest that aligned and electrically conductive 3D collagen scaffolds could be useful for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - George J Christ
- Department of Biomedical Engineering, USA. and Department of Orthopedic Surgery, University of Virginia, USA
| | - Steven R Caliari
- Department of Biomedical Engineering, USA. and Department of Chemical Engineering, USA
| |
Collapse
|
26
|
Westman AM, Peirce SM, Christ GJ, Blemker SS. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Comput Biol 2021; 17:e1008937. [PMID: 33970905 PMCID: PMC8110270 DOI: 10.1371/journal.pcbi.1008937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle possesses a remarkable capacity for repair and regeneration following a variety of injuries. When successful, this highly orchestrated regenerative process requires the contribution of several muscle resident cell populations including satellite stem cells (SSCs), fibroblasts, macrophages and vascular cells. However, volumetric muscle loss injuries (VML) involve simultaneous destruction of multiple tissue components (e.g., as a result of battlefield injuries or vehicular accidents) and are so extensive that they exceed the intrinsic capability for scarless wound healing and result in permanent cosmetic and functional deficits. In this scenario, the regenerative process fails and is dominated by an unproductive inflammatory response and accompanying fibrosis. The failure of current regenerative therapeutics to completely restore functional muscle tissue is not surprising considering the incomplete understanding of the cellular mechanisms that drive the regeneration response in the setting of VML injury. To begin to address this profound knowledge gap, we developed an agent-based model to predict the tissue remodeling response following surgical creation of a VML injury. Once the model was able to recapitulate key aspects of the tissue remodeling response in the absence of repair, we validated the model by simulating the tissue remodeling response to VML injury following implantation of either a decellularized extracellular matrix scaffold or a minced muscle graft. The model suggested that the SSC microenvironment and absence of pro-differentiation SSC signals were the most important aspects of failed muscle regeneration in VML injuries. The major implication of this work is that agent-based models may provide a much-needed predictive tool to optimize the design of new therapies, and thereby, accelerate the clinical translation of regenerative therapeutics for VML injuries.
Collapse
Affiliation(s)
- Amanda M. Westman
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
| | - George J. Christ
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| | - Silvia S. Blemker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| |
Collapse
|
27
|
Dienes J, Browne S, Farjun B, Amaral Passipieri J, Mintz EL, Killian G, Healy KE, Christ GJ. Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function. ACS Biomater Sci Eng 2021; 7:1587-1599. [PMID: 33660968 DOI: 10.1021/acsbiomaterials.0c01751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Volumetric muscle loss (VML) injuries are characterized by a degree of tissue loss that exceeds the endogenous regenerative capacity of muscle, resulting in permanent structural and functional deficits. Such injuries are a consequence of trauma, as well as a host of congenital and acquired diseases and disorders. Despite significant preclinical research with diverse biomaterials, as well as early clinical studies with implantation of decellularized extracellular matrices, there are still significant barriers to more complete restoration of muscle form and function following repair of VML injuries. In fact, identification of novel biomaterials with more advantageous regenerative profiles is a critical limitation to the development of improved therapeutics. As a first step in this direction, we evaluated a novel semisynthetic hyaluronic acid-based (HyA) hydrogel that embodies material features more favorable for robust muscle regeneration. This HyA-based hydrogel is composed of an acrylate-modified HyA (AcHyA) macromer, an AcHyA macromer conjugated with the bsp-RGD(15) peptide sequence to enhance cell adhesion, a high-molecular-weight heparin to sequester growth factors, and a matrix metalloproteinase-cleavable cross-linker to allow for cell-dependent remodeling. In a well-established, clinically relevant rat tibialis anterior VML injury model, we report observations of robust functional recovery, accompanied by volume reconstitution, muscle regeneration, and native-like vascularization following implantation of the HyA-based hydrogel at the site of injury. These findings have important implications for the development and clinical application of the improved biomaterials that will be required for stable and complete functional recovery from diverse VML injuries.
Collapse
Affiliation(s)
- Jack Dienes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Shane Browne
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - Bruna Farjun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Juliana Amaral Passipieri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ellen L Mintz
- Pathology Department, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Grant Killian
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
28
|
Saunders D, Rose L. Regenerative rehabilitation of catastrophic extremity injury in military conflicts and a review of recent developmental efforts. Connect Tissue Res 2021; 62:83-98. [PMID: 32552156 DOI: 10.1080/03008207.2020.1776707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE REVIEW This review aims to describe the current state of regenerative rehabilitation of severe military extremity injuries, and promising new therapies on the horizon. DISCUSSION The nature of warfare is rapidly shifting with information operations, autonomous weapons, and the threat of full-scale peer adversary conflicts threatening to create contested environments with delayed medical evacuation to definitive care. More destructive weapons will lead to more devastating injuries, creating new challenges for limb repair and restoration. Current paradigms of delayed rehabilitation following initial stabilization, damage control surgery, and prolonged antibiotic therapy will need to shift. Advances in regenerative medicine technologies offer the possibility of treatment along the continuum of care. Regenerative rehabilitation will begin at the point of injury and require a holistic, organ-systems approach. CONCLUSIONS Both technological improvements and a rapidly advancing understanding of injury pathophysiology will contribute to improved limb-salvage outcomes, and shift the calculus away from early limb amputation.
Collapse
Affiliation(s)
- David Saunders
- US Army Medical Material Development Activity, Fort Detrick, MD , USA
| | - Lloyd Rose
- US Army Medical Material Development Activity, Fort Detrick, MD , USA
| |
Collapse
|
29
|
Cheuy V, Picciolini S, Bedoni M. Progressing the field of Regenerative Rehabilitation through novel interdisciplinary interaction. NPJ Regen Med 2020; 5:16. [PMID: 33042583 PMCID: PMC7511907 DOI: 10.1038/s41536-020-00102-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The synergy between biological and bioengineering advances is critical to developing novel and impactful translational therapies. However, there currently are few opportunities for regenerative scientists to be exposed to the methodologies commonly employed in the clinic by rehabilitation professionals, and most rehabilitation scientists and clinicians are not exposed to the many advances of regenerative medicine. This disconnect has impeded the pace of progress in the field. The Eighth Annual International Symposium on Regenerative Rehabilitation brought together basic scientists, engineers, and rehabilitation clinicians to present scientifically rigorous and cutting-edge research and clinical management, focusing on new and innovative approaches that combine discoveries in tissue engineering, medical devices, and cellular therapies with rehabilitative protocols.
Collapse
Affiliation(s)
- Victor Cheuy
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | | | | |
Collapse
|
30
|
Rodriguez BL, Vega-Soto EE, Kennedy CS, Nguyen MH, Cederna PS, Larkin LM. A tissue engineering approach for repairing craniofacial volumetric muscle loss in a sheep following a 2, 4, and 6-month recovery. PLoS One 2020; 15:e0239152. [PMID: 32956427 PMCID: PMC7505427 DOI: 10.1371/journal.pone.0239152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023] Open
Abstract
Volumetric muscle loss (VML) is the loss of skeletal muscle that results in significant and persistent impairment of function. The unique characteristics of craniofacial muscle compared trunk and limb skeletal muscle, including differences in gene expression, satellite cell phenotype, and regenerative capacity, suggest that VML injuries may affect craniofacial muscle more severely. However, despite these notable differences, there are currently no animal models of craniofacial VML. In a previous sheep hindlimb VML study, we showed that our lab’s tissue engineered skeletal muscle units (SMUs) were able to restore muscle force production to a level that was statistically indistinguishable from the uninjured contralateral muscle. Thus, the goals of this study were to: 1) develop a model of craniofacial VML in a large animal model and 2) to evaluate the efficacy of our SMUs in repairing a 30% VML in the ovine zygomaticus major muscle. Overall, there was no significant difference in functional recovery between the SMU-treated group and the unrepaired control. Despite the use of the same injury and repair model used in our previous study, results showed differences in pathophysiology between craniofacial and hindlimb VML. Specifically, the craniofacial model was affected by concomitant denervation and ischemia injuries that were not exhibited in the hindlimb model. While clinically realistic, the additional ischemia and denervation likely created an injury that was too severe for our SMUs to repair. This study highlights the importance of balancing the use of a clinically realistic model while also maintaining control over variables related to the severity of the injury. These variables include the volume of muscle removed, the location of the VML injury, and the geometry of the injury, as these affect both the muscle’s ability to self-regenerate as well as the probability of success of the treatment.
Collapse
Affiliation(s)
- Brittany L. Rodriguez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emmanuel E. Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher S. Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew H. Nguyen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa M. Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
32
|
Sicherer ST, Venkatarama RS, Grasman JM. Recent Trends in Injury Models to Study Skeletal Muscle Regeneration and Repair. Bioengineering (Basel) 2020; 7:bioengineering7030076. [PMID: 32698352 PMCID: PMC7552705 DOI: 10.3390/bioengineering7030076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injuries that occur from traumatic incidents, such as those caused by car accidents or surgical resections, or from injuries sustained on the battlefield, result in the loss of functionality of the injured muscle. To understand skeletal muscle regeneration and to better treat these large scale injuries, termed volumetric muscle loss (VML), in vivo injury models exploring the innate mechanisms of muscle injury and repair are essential for the creation of clinically applicable treatments. While the end result of a muscle injury is often the destruction of muscle tissue, the manner in which these injuries are induced as well as the response from the innate repair mechanisms found in muscle in each animal models can vary. This targeted review describes injury models that assess both skeletal muscle regeneration (i.e., the response of muscle to myotoxin or ischemic injury) and skeletal muscle repair (i.e., VML injury). We aimed to summarize the injury models used in the field of skeletal muscle tissue engineering, paying particular attention to strategies to induce muscle damage and how to standardize injury conditions for future experiments.
Collapse
|