1
|
Zhao K, Ono M, Mu X, Wang Z, Xie S, Yonezawa T, Okada M, Matsumoto T, Kuboki T, Oohashi T. Optimizing β-TCP with E-rhBMP-2-infused fibrin for vertical bone regeneration in a mouse calvarium model. Regen Biomater 2025; 12:rbae144. [PMID: 39990519 PMCID: PMC11846664 DOI: 10.1093/rb/rbae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
Effective reconstruction of large bone defects, particularly in thickness, remains one of the major challenges in orthopedic and dental fields. We previously produced an Escherichia coli-based industrial-scale GMP-grade recombinant human bone morphogenetic protein-2 (E-rhBMP-2) and showed that the combination of E-rhBMP-2 with beta-tricalcium phosphate (β-TCP/E-rhBMP-2) can effectively promote bone reconstruction. However, the limited mechanical strength and poor morphology retention of β-TCP granules are key points that need optimization to obtain more effective grafts and further expand its clinical applications. Therefore, we combined β-TCP/E-rhBMP-2 with fibrin gel to enhance its mechanical properties and usability for vertical bone regeneration. We investigated the mechanical properties and vertical bone regeneration effects of the materials applied, with or without fibrin containing E-rhBMP-2, in a calvarial defect model in mice. Compression tests were conducted to assess the initial stability of the materials. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to characterize the presence of fibrin on the scaffold. After 4 and 12 weeks of implantation, micro-computed tomography and histological and immunofluorescent analyses were performed to assess the morphology and volume of the newly formed bone. The fibrin-containing groups had significantly higher initial mechanical strength and higher ability to maintain their morphology in vivo compared to the counterparts without fibrin. However, fibrin gel alone suppressed the bone formation ability of β-TCP/E-rhBMP-2 whereas the presence of high doses of E-rhBMP-2 in fibrin gel resulted in material resorption and enhanced new bone formation. In conclusion, fibrin gel significantly improved the mechanical strength and surgical manageability of the β-TCP/E-rhBMP-2 scaffold, and the addition of E-rhBMP-2 to the fibrin gel further enhanced the vertical bone regeneration and initial structural integrity of the scaffold.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Xindi Mu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shichao Xie
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Masahiro Okada
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry, Miyagi, 980-8575, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
2
|
Wei L, Sun Y, Yu D, Pieterse H, Wismeijer D, Liu Y, Wu Y. The Clinical Efficacy and Safety of ErhBMP-2/BioCaP/β-TCP as a Novel Bone Substitute Using the Tooth-Extraction-Socket-Healing Model: A Proof-of-Concept Randomized Controlled Trial. J Clin Periodontol 2025; 52:299-309. [PMID: 39478364 PMCID: PMC11743062 DOI: 10.1111/jcpe.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 01/30/2025]
Abstract
AIM This first randomized controlled trial in humans aimed to assess the efficacy and safety of low-dosage Escherichia coli-derived recombinant human bone morphogenetic protein 2 (ErhBMP-2)-incorporated biomimetic calcium phosphate coating-functionalized β-TCP (ErhBMP-2/BioCaP/β-TCP) as a novel bone substitute using the tooth-extraction-socket-healing model. MATERIALS AND METHODS Forty patients requiring dental implants after single-root tooth extraction were enrolled in this study and randomly assigned into three groups: ErhBMP-2/BioCaP/β-TCP (N = 15), β-TCP (N = 15) and natural healing (N = 10). New bone volume density from histomorphometric analyses was evaluated 6 weeks post-operatively as the primary outcome, and other histomorphometric analyses, alveolar bone and soft-tissue changes were the secondary outcomes. Safety parameters included adverse events, soft-tissue healing, oral health impact profile, serum BMP-2 concentrations and other laboratory tests. RESULTS The findings revealed a significant increase in new bone volume density in patients treated with ErhBMP-2/BioCaP/β-TCP compared to those receiving β-TCP alone. The required bone augmentation procedures during implant placement surgery in the ErhBMP-2/BioCaP/β-TCP group were significantly less than in the natural healing group. There were no significant differences in safety parameters among the three groups. CONCLUSION This clinical trial primarily proved the safety and efficacy of ErhBMP-2/BioCaP/β-TCP as a promising bone substitute.
Collapse
Affiliation(s)
- Lingfei Wei
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
- Department of Oral Implantology, Yantai Stomatological HospitalBinzhou Medical UniversityYantaiChina
| | - Yuanyuan Sun
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Dedong Yu
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
| | | | | | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Yiqun Wu
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
3
|
Wang M, Xu C, Zheng Y, Pieterse H, Sun Z, Liu Y. In vivo validation of osteoinductivity and biocompatibility of BMP-2 enriched calcium phosphate cement alongside retrospective description of its clinical adverse events. Int J Implant Dent 2024; 10:47. [PMID: 39472366 PMCID: PMC11522231 DOI: 10.1186/s40729-024-00567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Although bone morphogenetic protein-2 (BMP-2) possesses potent osteoinductivity, there have been some concerns on the safety of BMP-2 and BMP-2-incorporated bone substitutes used for bone formation. On the other hand, BMP-2-loaded calcium phosphate cement (BMP-2@CPC) has been developed and used for bone regeneration in oral implantology. Therefore, this study aims to investigate this product's biocompatibility and clinical safety after being used in maxillofacial surgery. MATERIALS AND METHODS A rat model was employed to assess the osteoinduction and biocompatibility of BMP-2@CPC. Further, a retrospective investigation was carried out: 110 patients who received BMP-2@CPC treatment after their maxillofacial surgery were recruited to describe relative adverse events. RESULTS In vivo, BMP-2@CPC showed a significantly higher mean bone volume density and osteoblasts volume density (15 ± 2% and 3 ± 1%)than those of the CPC group (p < 0.05) after being implanted in the dorsal area of rats. Regarding biocompatibility, the mean fibrous tissue volume density was significantly lower in the BMP-2@CPC group (20 ± 5% compared to 31 ± 6%, p = 0.026). The retrospective clinical study showed that only five mild/moderate adverse events were identified in four patients based on the medical records of 110 patients, including swelling, bony mass, and wound dehiscence. This adverse event occurrence was not affected by gender, age, the dose of filled materials, and operations in the study (p > 0.05). CONCLUSIONS BMP-2-loaded CPC has osteoinductivity and more promising biocompatibility than pure CPC. However, its degradation is slower than CPC. The safety of BMP-2-loaded CPC with 0.5 or 1 mg BMP-2 is promising in oral maxillofacial surgery. CLINICAL IMPLICATIONS This study confirmed the promising safety of this BMP-2 incorporated CPC used in dental clinical practice, which can promote its reassuring application for dental implant placement in bone insufficient areas.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Chunfeng Xu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
- Department of Second Dental Center, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Centre for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yuanna Zheng
- Ningbo Dental Hospital, Ningbo Oral Health Research Institute, Ningbo, Zhejiang, China
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Herman Pieterse
- Heymans Institute of Pharmacology at Ghent University, Ghent, Belgium
- Profess Medical Consultancy B.V., Heerhugowaard, The Netherlands
| | - Zhe Sun
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Chen J, Wang Y, Tang T, Li B, Kundu B, Kundu SC, Reis RL, Lin X, Li H. Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects. J Nanobiotechnology 2024; 22:453. [PMID: 39080653 PMCID: PMC11290091 DOI: 10.1186/s12951-024-02712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Bioactive agents have demonstrated regenerative potential for cell-free bone tissue engineering. Nevertheless, certain challenges persist, including ineffective delivery methods and confined therapeutic potency. Here, we demonstrated that the biomimetic calcium phosphate coating system (BioCaP) could effectively uptake and slowly release the incorporated bioactive agents compared to the surface absorption system via osteoclast-mediated degradation of BioCaP coatings. The release kinetics were determined as a function of time. The release rate was stable without remarkable burst release during the first 1 day, followed by a sustained release from day 7 to day 19. Then, we developed the bi-functional BioCaP-coated silk fibroin scaffolds enabling the effective co-delivery of TGF-β3 and BMP-2 (SFI-T/SFI-B) and the corresponding slow release of TGF-β3 and BMP-2 exhibited superior potential in promoting chondrogenesis and osteogenesis without impairing cell vitality in vitro. The SFI-T/SFI-B scaffolds could improve cartilage and bone regeneration in 5 × 4 mm rabbit osteochondral (OC) defect. These findings indicate that the biomimetic calcium-phosphate coated silk fibroin scaffolds with slowly co-released TGF-β3 and BMP-2 effectively promote the repair of OC defects, hence facilitating the future clinical translation of controlled drug delivery in tissue engineering.
Collapse
Affiliation(s)
- Jiping Chen
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
- Department of Stomatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu, China
| | - Yanyi Wang
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Tianyi Tang
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Baochao Li
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Banani Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Department of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, 310053, China.
| | - Huang Li
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Li M, Wang M, Wei L, Werner A, Liu Y. Biomimetic calcium phosphate coating on medical grade stainless steel improves surface properties and serves as a drug carrier for orthodontic applications. Dent Mater 2023; 39:152-161. [PMID: 36610898 DOI: 10.1016/j.dental.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Recently, stainless steel (SSL) miniscrew implants have been used in orthodontic clinics as temporary anchorage devices. Although they have excellent physical properties, their biocompatibility is relatively poor. Previously, our group developed a two-phase biomimetic calcium phosphate (BioCaP) coating that can significantly improve the biocompatibility of medical devices. This study aimed to improve the biocompatibility of SSL by coating SSL surface with the BioCaP coating. METHODS Titanium (Ti) discs and SSL discs (diameter: 5 mm, thickness: 1 mm) were used in this study. To form an amorphous layer, the Ti discs were immersed in a biomimetic modified Tyrode solution (BMT) for 24 h. The SSL discs were immersed in the same solution for 0 h, 12 h, 24 h, 36 h and 48 h. To form a crystalline layer, the discs were then immersed in a supersaturated calcium phosphate solution (CPS) for 48 h. The surface properties of the BioCaP coatings were analysed. In addition, bovine serum albumin (BSA) was incorporated into the crystalline layer during biomimetic mineralisation as a model protein. RESULTS The morphology, chemical composition and drug loading capacity of the BioCaP coating on smooth SSL were confirmed. This coating improved roughness and wettability of SSL surface. In vitro, with the extension of BMT coating period, the cell seeding efficiency, cell spreading area and cell proliferation on the BioCaP coating were increased. SIGNIFICANCE These in vitro results show that the BioCaP coating can improve surface properties of smooth medical grade SSL and serve as a carrier system for bioactive agents.
Collapse
Affiliation(s)
- Menghong Li
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands; Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China; Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, China
| | - Arie Werner
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Chen J, Zhou Y, Lin X, Li H. Macrophage Polarization Related to Biomimetic Calcium Phosphate Coatings: A Preliminary Study. MATERIALS (BASEL, SWITZERLAND) 2022; 16:332. [PMID: 36614671 PMCID: PMC9822186 DOI: 10.3390/ma16010332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Biomimetic calcium phosphate (BioCaP) coatings were used to deliver bone morphogenetic protein 2 (BMP2), and enhance osteogenesis. However, the mechanism for BioCaP coatings interacting with the immune response during bone regeneration remains unclear. In this preliminary study, the effect of BioCaP coatings on macrophage polarization without (BioCaP group) or with BMP2 (BioCaP+Inc.BMP2 group) was investigated. RAW 264.7 cells were cultured on the rough and platelike surfaces of coatings in BioCaP and BioCaP+Inc.BMP2 groups, while cultured on smooth surfaces in the group without material for 5 days. The BioCaP coatings per se modulated the switch of M1 to M2 phenotype from day 3, which promoted the expressions of Arg1 and CD 206 but reduced the expression of TNF-α compared with No material group. To detect the microenvironmental changes, the concentrations of calcium ion (Ca2+) and inorganic phosphate (Pi), pH values, as well as calcium phosphate crystal pattern were examined. The trends of ionic environmental changes were closely related with macrophage phenotype switch. These results suggest that BioCaP coating itself may affect the macrophage polarization through surface topography, surrounding ionic environment and calcium phosphate crystal pattern.
Collapse
Affiliation(s)
- Jiping Chen
- Department of Stomatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210003, China
- Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing 210008, China
| | - Yiwen Zhou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing 210008, China
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Huang Li
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing 210008, China
| |
Collapse
|
7
|
Arias-Betancur A, Badilla-Wenzel N, Astete-Sanhueza Á, Farfán-Beltrán N, Dias FJ. Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:316-327. [PMID: 36281233 PMCID: PMC9587372 DOI: 10.1016/j.jdsr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Different types of biomaterials have been used to fabricate carriers to deliver bone morphogenetic proteins (BMPs) in both dentoalveolar and maxillofacial bone regeneration procedures. Despite that absorbable collagen sponge (ACS) is considered the gold standard for BMP delivery, there is still some concerns regarding its use mainly due to its poor mechanical properties. To overcome this, novel systems are being developed, however, due to the wide variety of biomaterial combination, the heterogeneous assessment of newly formed tissue, and the intended clinical applications, there is still no consensus regarding which is more efficient in a particular clinical scenario. The combination of two or more biomaterials in different topological configurations has allowed specific controlled-release patterns for BMPs, improving their biological and mechanical properties compared with classical single-material carriers. However, more basic research is needed. Since the BMPs can be used in multiple clinical scenarios having different biological and mechanical needs, novel carriers should be developed in a context-specific manner. Thus, the purpose of this review is to gather current knowledge about biomaterials used to fabricate delivery systems for BMPs in both dentoalveolar and maxillofacial contexts. Aspects related with the biological, physical and mechanical characteristics of each biomaterial are also presented and discussed. Strategies for bone formation and regeneration are a major concern in dentistry. Topical delivery of bone morphogenetic proteins (BMPs) allows rapid bone formation. BMPs requires proper carrier system to allow controlled and sustained release. Carrier should also fulfill mechanical requirements of bone defect sites. By using complex composites, it would be possible to develop new carriers for BMPs.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Badilla-Wenzel
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Álvaro Astete-Sanhueza
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicole Farfán-Beltrán
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile.,Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Fernando José Dias
- Department of Integral Adult Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
8
|
Gao X, Hwang MP, Wright N, Lu A, Ruzbarsky JJ, Huard M, Cheng H, Mullen M, Ravuri S, Wang B, Wang Y, Huard J. The use of heparin/polycation coacervate sustain release system to compare the bone regenerative potentials of 5 BMPs using a critical sized calvarial bone defect model. Biomaterials 2022; 288:121708. [PMID: 36031459 PMCID: PMC10129760 DOI: 10.1016/j.biomaterials.2022.121708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform to compare 5 bone morphogenetic proteins (BMPs) for promoting bone defect healing in a critical sized calvarial defect model. The in vitro 3D osteogenic pellet cultures assays demonstrated that BMPs 2, 4, 6, 7 and 9 all enhanced mineralization in vitro compared to the control group. BMP2 resulted in higher mineralized volume than BMP4 and BMP6. All BMPs and the control group activated the pSMAD5 signaling pathway and expressed osterix (OSX). The binding of BMP2 with coacervate significantly increased the coacervate average particle size. BMP2, 4, 6, & 7 bound to coacervate significantly increased the Zeta potential of the coacervate while BMP9 binding showed insignificant increase. Furthermore, using a monolayer culture osteogenic assay, it was found that hMDSCs cultured in the coacervate BMP2 osteogenic medium expressed higher levels of RUNX2, OSX, ALP and COX-2 compared to the control and BMPs 4, 6, 7 & 9. Additionally, the coacervate complex can be loaded with up to 2 μg of BMP proteins for sustained release. In vivo, when BMPs were delivered using the coacervate sustained release system, BMP2 was identified to be the most potent BMP promoting bone regeneration and regenerated 10 times of new bone than BMPs 4, 6 & 9. BMP7 also stimulated robust bone regeneration when compared to BMPs 4, 6 & 9. The quality of the newly regenerated bone by all BMPs delivered by coacervate is equivalent to the host bone consisting of bone matrix and bone marrow with normal bone architecture. Although the defect was not completely healed at 6 weeks, coacervate sustain release BMPs, particularly BMP2 and BMP7, could represent a new strategy for treatment of bone defects and non-unions.
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aiping Lu
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Joseph J Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Sudheer Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA.
| |
Collapse
|
9
|
Xu G, Shen C, Lin H, Zhou J, Wang T, Wan B, Binshabaib M, Forouzanfar T, Xu G, Alharbi N, Wu G. Development, In-Vitro Characterization and In-Vivo Osteoinductive Efficacy of a Novel Biomimetically-Precipitated Nanocrystalline Calcium Phosphate With Internally-Incorporated Bone Morphogenetic Protein-2. Front Bioeng Biotechnol 2022; 10:920696. [PMID: 35935495 PMCID: PMC9354744 DOI: 10.3389/fbioe.2022.920696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of large-volume bone defects (LVBDs) remains a great challenge in the fields of orthopedics and maxillofacial surgery. Most clinically available bone-defect-filling materials lack proper degradability and efficient osteoinductivity. In this study, we synthesized a novel biomimetically-precipitated nanocrystalline calcium phosphate (BpNcCaP) with internally incorporated bone morphogenetic protein-2 (BpNcCaP + BMP-2) with an aim to develop properly degradable and highly osteoinductive granules to repair LVBDs. We first characterized the physicochemical properties of the granules with different incorporation amounts of BMP-2 using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. We evaluated the cytotoxicity and cytocompatibility of BpNcCaP by assessing the viability and adhesion of MC3T3-E1 pre-osteoblasts using PrestoBlue assay, Rhodamine-Phalloidin and DAPI staining, respectively. We further assessed the in-vivo osteoinductive efficacy in a subcutaneous bone induction model in rats. In-vitro characterization data showed that the BpNcCaP + BMP-2 granules were comprised of hexagonal hydroxyapatite with an average crystallite size ranging from 19.7 to 25.1 nm and a grain size at 84.13 ± 28.46 nm. The vickers hardness of BpNcCaP was 32.50 ± 3.58 HV 0.025. BpNcCaP showed no obvious cytotoxicity and was favorable for the adhesion of pre-osteoblasts. BMP-2 incorporation rate could be as high as 65.04 ± 6.01%. In-vivo histomorphometric analysis showed that the volume of new bone induced by BpNcCaP exhibited a BMP-2 amount-dependent increasing manner. The BpNcCaP+50 μg BMP-2 exhibited significantly more degradation and fewer foreign body giant cells in comparison with BpNcCaP. These data suggested a promising application potential of BpNcCaP + BMP-2 in repairing LVBDs.
Collapse
Affiliation(s)
- Gaoli Xu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Chenxi Shen
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Haiyan Lin
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
- Savid School of Stomatology, Hangzhou Medical College, Hangzhou, China
| | - Jian Zhou
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Ting Wang
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ben Wan
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Munerah Binshabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
| | - Guochao Xu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Nawal Alharbi
- Department of Prosthetic Dental Sciences, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| |
Collapse
|
10
|
Liu P, Bao T, Sun L, Wang Z, Sun J, Peng W, Gan D, Yin G, Liu P, Zhang WB, Shen J. In situ mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomater Sci 2022; 10:781-793. [PMID: 34988571 DOI: 10.1039/d1bm01521d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoconductive and osteoinductive scaffolds are highly desirable for functional restoration of large bone defects. Here, we report an in situ mineralized poly(lactic-co-glycolic acid)/poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide hydrogel (PLGA/PSBMA) scaffold as a novel high-efficiency carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2) for bone tissue regeneration. By virtue of the oppositely charged structure, the zwitterionic PSBMA component is able to template well-integrated dense mineralization of calcium phosphate throughout the PLGA/PSBMA scaffold. The high affinity between rhBMP-2 and the mineralized matrix, combined with the capability of the zwitterionic hydrogel to sequester and to enable sustained release of ionic proteins, endows the mineralized PLGA/PSBMA scaffolds with high-efficiency sustained release of rhBMP-2 (only 1.7% release within 35 days), thus enabling robust healing of critical-sized (5 mm) nonunion calvarial defects in rats at an ultralow dosage of rhBMP-2 (150 ng per scaffold), at which level successful healing of critical-sized bone defects has never been reported. These findings show that the mineralized PLGA/PSBMA scaffold is promising for bone defect repair.
Collapse
Affiliation(s)
- Peiming Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Changzhou Institute of Materia Medica Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tianyi Bao
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Lian Sun
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Zeyi Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Guoyong Yin
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wei-Bing Zhang
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China.,Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210093, P. R. China.
| |
Collapse
|
11
|
Shevchuk OO, Panasiuk YV, Korda MM. Locally delivered lovastatin-containing chitosan nanoparticles promote bone regeneration in rats. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Martin JR, Howard MT, Wang S, Berger AG, Hammond PT. Oxidation-Responsive, Tunable Growth Factor Delivery from Polyelectrolyte-Coated Implants. Adv Healthc Mater 2021; 10:e2001941. [PMID: 33738985 DOI: 10.1002/adhm.202001941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/04/2021] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte multilayer (PEM) coatings, constructed on the surfaces of tissue engineering scaffolds using layer-by-layer assembly (LbL), promote sustained release of therapeutic molecules and have enabled regeneration of large-scale, pre-clinical bone defects. However, these systems primarily rely on non-specific hydrolysis of PEM components to foster drug release, and their pre-determined drug delivery schedules potentially limit future translation into innately heterogeneous patient populations. To trigger therapeutic delivery directly in response to local environmental stimuli, an LbL-compatible polycation solely degraded by cell-generated reactive oxygen species (ROS) was synthesized. These thioketal-based polymers were selectively cleaved by physiologic doses of ROS, stably incorporated into PEM films alongside growth factors, and facilitated tunable release of therapeutic bone morphogenetic protein-2 (BMP-2) upon oxidation. These coatings' sensitivity to oxidation was also dependent on the polyanions used in film construction, providing a simple method for enhancing ROS-mediated protein delivery in vitro. Correspondingly, when implanted in critically-sized rat calvarial defects, the most sensitive ROS-responsive coatings generated a 50% increase in bone regeneration compared with less sensitive formulations and demonstrated a nearly threefold extension in BMP-2 delivery half-life over conventional hydrolytically-sensitive coatings. These combined results highlight the potential of environmentally-responsive PEM coatings as tunable drug delivery systems for regenerative medicine.
Collapse
Affiliation(s)
- John R. Martin
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - MayLin T. Howard
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sheryl Wang
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Adam G. Berger
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|