1
|
Chen S, Wang T, Chen J, Sui M, Wang L, Zhao X, Sun J, Lu Y. 3D bioprinting technology innovation in female reproductive system. Mater Today Bio 2025; 31:101551. [PMID: 40026632 PMCID: PMC11870202 DOI: 10.1016/j.mtbio.2025.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Several diseases affect the female reproductive system, and both disease factors and treatments impact its integrity and function. Consequently, understanding the mechanisms of disease occurrence and exploring treatment methods are key research focuses in obstetrics and gynecology. However, constructing accurate disease models requires a microenvironment closely resembling the human body, and current animal models and 2D in vitro cell models fall short in this regard. Thus, innovative in vitro female reproductive system models are urgently needed. Additionally, female reproductive system diseases often cause tissue loss, yet effective tissue repair and regeneration have long been a bottleneck in the medical field. 3D bioprinting offers a solution by enabling the construction of implants with tissue repair and regeneration capabilities, promoting cell adhesion, extension, and proliferation. This helps maintain the long-term efficacy of bioactive implants and achieves both structural and functional repair of the reproductive system. By combining live cells with biomaterials, 3D bioprinting can create in vitro 3D biomimetic cellular models, facilitating in-depth studies of cell-cell and cell-extracellular microenvironment interactions, which enhances our understanding of reproductive system diseases and supports disease-specific drug screening. This article reviews 3D bioprinting methods and materials applicable to the female reproductive system, discussing their advantages and limitations to aid in selecting optimal 3D bioprinting strategies. We also summarize and critically evaluate recent advancements in 3D bioprinting applications for tissue regeneration and in vitro disease models and address the prospects and challenges for translating 3D bioprinting technology into clinical applications within the female reproductive system.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | | | - Jiaqi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Mingxing Sui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Luyao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Xueyu Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianqiao Sun
- Reproductive Clinical Science, Macon & Joan Brock Virginia Health Sciences, Old Dominion University, Norfolk, VA, 23507, USA
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|
2
|
Orozco-Galindo BV, Sánchez-Ramírez B, González-Trevizo CL, Castro-Valenzuela B, Varela-Rodríguez L, Burrola-Barraza ME. Folliculogenesis: A Cellular Crosstalk Mechanism. Curr Issues Mol Biol 2025; 47:113. [PMID: 39996834 PMCID: PMC11854572 DOI: 10.3390/cimb47020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
In vitro embryo production has accelerated in the cattle industry in recent years. Because women are similar to cows, this represents an opportunity to improve women's reproductive protocols. This review focuses on crosstalk communication during folliculogenesis for an in-depth understanding of the events involved in developing the oocyte competence necessary to generate an embryo after fertilization. This knowledge can be used to improve oocytes in in vitro maturation cultures, which would allow us to obtain oocytes of high quality and competence, resulting in successful pregnancies in both women and cows. The first part of this review covers the concepts of cellular crosstalk before puberty in the primordial, primary, and secondary follicles. The next part involves cellular crosstalk after puberty, when gonadotropin hormones act on the ovary, promoting oocyte maturation. The final part comprises a perspective on using cow models to study human ovary physiology.
Collapse
Affiliation(s)
- Bianca Viviana Orozco-Galindo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua (UACH), Perif. Fco. R. Almada Km. 1, 31453 Chihuahua, Mexico; (B.V.O.-G.); (B.C.-V.)
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua (UACH), Campus Universitario #2, 31125 Chihuahua, Mexico; (B.S.-R.); (L.V.-R.)
| | - Cynthia Lizeth González-Trevizo
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. H. Colegio Militar 4700, Nombre de Dios, 31300 Chihuahua, Mexico;
| | - Beatriz Castro-Valenzuela
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua (UACH), Perif. Fco. R. Almada Km. 1, 31453 Chihuahua, Mexico; (B.V.O.-G.); (B.C.-V.)
| | - Luis Varela-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua (UACH), Campus Universitario #2, 31125 Chihuahua, Mexico; (B.S.-R.); (L.V.-R.)
| | - M. Eduviges Burrola-Barraza
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua (UACH), Campus Universitario #2, 31125 Chihuahua, Mexico; (B.S.-R.); (L.V.-R.)
| |
Collapse
|
3
|
Yano Maher JC, Zelinski MB, Oktay KH, Duncan FE, Segars JH, Lujan ME, Lou H, Yun BH, Hanfling SN, Schwartz LE, Laronda MM, Halvorson LM, O'Neill KE, Gomez-Lobo V. Classification system of human ovarian follicle morphology: recommendations of the National Institute of Child Health and Human Development - sponsored ovarian nomenclature workshop. Fertil Steril 2024:S0015-0282(24)02394-X. [PMID: 39549739 DOI: 10.1016/j.fertnstert.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE To develop a consensus on histologic human ovarian follicle staging nomenclature, provide guidelines for follicle density calculation, and assess changes due to fixation to enhance communication among clinicians and ovarian biology researchers to gain a deeper understanding of human fertility. SETTING Beginning in March 2021, the Ovarian Nomenclature Workshop's Follicle Classification Working Subgroup was organized by the Pediatric and Adolescent Gynecology program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. METHODS After the initial workshop held in May 2021, a Follicle Working Subgroup comprised of experts in reproductive endocrinology and ovarian biology held multiple meetings to develop the human follicle classification system and reported to the collective group during two follow up workshops. RESULT(S) The Follicle Working Subgroup recommends consolidation and expansion of the current classification systems to include six stages of normal preantral follicles, five stages of normal antral follicles, as well as categories of corpus lutea, abnormal preantral follicles, abnormal antral follicles, and other distinct follicle types. The new preantral staging added intermediate stages (primordial, transitional primordial, primary, transitional primary, secondary, and multilayer ovarian follicles). The antral follicle staging includes early, preselection, selection, dominance, and preovulatory follicles. Abnormal preantral follicles include those with an abnormal oocyte, granulosa cells, or both. We suggest a uniform way of calculating the mean follicle density in the number of follicles/mm2. CONCLUSION(S) To establish a consensus in human ovarian follicle terminology, the Ovarian Follicle Working Subgroup of the National Institute of Child Health and Human Development Ovarian Nomenclature Workshop standardized follicle staging nomenclature and follicle density calculating systems so consistent common language can be used among ovarian biology researchers and clinicians.
Collapse
Affiliation(s)
- Jacqueline C Yano Maher
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - Mary B Zelinski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Kutluk H Oktay
- Laboratory of Molecular Reproduction and Fertility Preservation, Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, Connecticut
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - James H Segars
- Division of Reproductive Science and Women's Health Research, Johns Hopkins University, Baltimore, Maryland
| | - Marla E Lujan
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York
| | - Hong Lou
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Bo Hyon Yun
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sarina N Hanfling
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Lauren E Schwartz
- Division of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Endocrinology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lisa M Halvorson
- Gynecologic Health and Disease Branch, Division of Extramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Kathleen E O'Neill
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Veronica Gomez-Lobo
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
6
|
Granados-Aparici S, Volodarsky-Perel A, Yang Q, Anam S, Tulandi T, Buckett W, Son WY, Younes G, Chung JT, Jin S, Terret MÉ, Clarke HJ. MYO10 promotes transzonal projection (TZP)-dependent germ line-somatic contact during mammalian folliculogenesis. Biol Reprod 2022; 107:474-487. [PMID: 35470858 PMCID: PMC9382396 DOI: 10.1093/biolre/ioac078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Granulosa cells of growing ovarian follicles elaborate filopodia-like structures termed transzonal projections (TZPs) that supply the enclosed oocyte with factors essential for its development. Little is known, however, of the mechanisms underlying the generation of TZPs. We show in mouse and human that filopodia, defined by an actin backbone, emerge from granulosa cells in early-stage primary follicles and that actin-rich TZPs become detectable as soon as a space corresponding to the zona pellucida appears. mRNA encoding Myosin10 (MYO10), a motor protein that accumulates at the base and tips of filopodia and has been implicated in their initiation and elongation, is present in granulosa cells and oocytes of growing follicles. MYO10 protein accumulates in foci located mainly between the oocyte and innermost layer of granulosa cells, where it co-localizes with actin. In both mouse and human, the number of MYO10 foci increases as oocytes grow, corresponding to the increase in the number of actin-TZPs. RNAi-mediated depletion of MYO10 in cultured mouse granulosa cell-oocyte complexes is associated with a 52% reduction in the number of MYO10 foci and a 28% reduction in the number of actin-TZPs. Moreover, incubation of cumulus-oocyte complexes in the presence of epidermal growth factor, which triggers a 93% reduction in the number of actin-TZPs, is associated with a 55% reduction in the number of MYO10 foci. These results suggest that granulosa cells possess an ability to elaborate filopodia, which when directed towards the oocyte become actin-TZPs, and that MYO10 increases the efficiency of formation or maintenance of actin-TZPs.
Collapse
Affiliation(s)
- Sofia Granados-Aparici
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Alexander Volodarsky-Perel
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Qin Yang
- Research Institute of the McGill University Health Center, Montreal, Canada
| | - Sibat Anam
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Togas Tulandi
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Weon-Young Son
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Grace Younes
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Jin-Tae Chung
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Shaoguang Jin
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | | | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| |
Collapse
|