1
|
Yang X, Yang Y, Zhao M, Bai H, Fu C. Identification of DYRK2 and TRIM32 as keloids programmed cell death-related biomarkers: insights from bioinformatics and machine learning in multiple cohorts. Comput Methods Biomech Biomed Engin 2025:1-15. [PMID: 40127455 DOI: 10.1080/10255842.2025.2482129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025]
Abstract
This study aims to explore the expression patterns and mechanisms of programmed cell death-related genes in keloids and identify molecular targets for early diagnosis and treatment. We first explored the expression, immune, and biological function profiles of keloids. Using various machine learning methods, two key genes, DYRK2 and TRIM32, were identified, with ROC curves demonstrating their diagnostic potential. Further analyses, including GSEA, immune cell profiling, competing endogenous RNA network, and single-cell analysis, revealed their mechanism of action and regulatory network. Finally, SB-431542 was identified as a potential therapeutic agent for keloids through CMap and molecular docking.
Collapse
Affiliation(s)
- Xi Yang
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yao Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mingjian Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - He Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chongyang Fu
- Department of Hand and Microsurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Figueiredo IAD, Martins AMDO, Cavalcanti AMT, Fernandes JM, Gomes LEDS, Vieira MM, de Oliveira GNM, Felício IM, de Oliveira LN, Ramalho IGDS, de Sousa NF, Scotti L, Scotti MT, Alves JLDB, Diniz MDFFM, Ximenes DIJ, Vasconcelos LHC, Cavalcante FDA. Repeated-Dose Toxicity of Lauric Acid and Its Preventive Effect Against Tracheal Hyper-Responsiveness in Wistar Rats with Possible In Silico Molecular Targets. Pharmaceuticals (Basel) 2025; 18:221. [PMID: 40006035 PMCID: PMC11859213 DOI: 10.3390/ph18020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lauric acid (LA), a medium-chain fatty acid, is a promising drug for asthma treatment. This study evaluated the toxicity of repeated doses and the effect of LA on pulmonary ventilation and tracheal reactivity in asthmatic Wistar rats and identified possible molecular targets of LA action in silico. METHODS The rats were divided into control (CG) and LA-treated groups at 100 mg/kg (AL100G) for toxicity analysis. Pulmonary ventilation and tracheal reactivity were assessed in the control (CG), asthmatic (AG), asthmatic treated with LA at 25, 50, or 100 mg/kg (AAL25G, AAL50G, and AAL100G), and dexamethasone-treated groups (ADEXAG). RESULTS The results showed that LA at a dose of 100 mg/kg did not cause death or toxicity. A pulmonary ventilation analysis indicated that AG had reduced minute volume, which was prevented in AAL25G. LA at all doses prevented carbachol-induced tracheal hyper-responsiveness and reduced the relaxing effect of aminophylline, as observed in AG. An in silico analysis revealed that LA had a good affinity for nine proteins (β2-adrenergic receptor, CaV, BKCa, KATP, adenylyl cyclase, PKG, eNOS, iNOS, and COX-2). CONCLUSIONS LA at 100 mg/kg has low toxicity, prevents hyper-responsiveness in an asthma model in rats, and acts as a multitarget compound with a good affinity for proteins related to airway hyper-responsiveness.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Alissa Maria de Oliveira Martins
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Alexya Mikelle Teixeira Cavalcanti
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Jayne Muniz Fernandes
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Ludmila Emilly da Silva Gomes
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Mateus Mendes Vieira
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Gabriel Nunes Machado de Oliveira
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Isabela Motta Felício
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Lucas Nóbrega de Oliveira
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Igor Gabriel da Silva Ramalho
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Natália Ferreira de Sousa
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Luciana Scotti
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Marcus Tullius Scotti
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil
| | - José Luiz de Brito Alves
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Margareth de Fátima Formiga Melo Diniz
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil;
| | - Daniele Idalino Janebro Ximenes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil;
| | - Luiz Henrique César Vasconcelos
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Fabiana de Andrade Cavalcante
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
3
|
Wang X, Cui L, Wang Y, Zeng Z, Wang H, Tian L, Guo J, Chen Y. Mechanistic investigation of wogonin in delaying the progression of endothelial mesenchymal transition by targeting the TGF-β1 pathway in pulmonary hypertension. Eur J Pharmacol 2024; 978:176786. [PMID: 38942264 DOI: 10.1016/j.ejphar.2024.176786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, which endothelial-to-mesenchymal transition (EndMT) being its main progressive phase. Wogonin, a flavonoid extracted from the root of Scutellaria baicalensis Georgi, hinders the abnormal proliferation of cells and has been employed in the treatment of several cardiopulmonary diseases. This study was designed to investigate how wogonin affected EndMT during PH. Monocrotaline (MCT) was used to induce PH in rats. Binding capacity of TGF-β1 receptor to wogonin detected by molecular docking and molecular dynamics. EndMT model was established in pulmonary microvascular endothelial cells (PMVECs) by transforming growth factor beta-1 (TGF-β1). The result demonstrated that wogonin (20 mg/kg/day) attenuated right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular thickness in PH rats. EndMT in the pulmonary vascular was inhibited after wogonin treatment as evidenced by the restored expression of CD31 and decreased expression of α-SMA. Wogonin has strong affinity for both TGFBRI and TGFBRII, and has a better binding stability for TGFBRI. In TGF-β1-treated PMVECs, wogonin (0.3, 1, and 3 μM) exhibited significant inhibitory effects on this transformation process via down-regulating the expression of p-Smad2 and Snail, while up-regulating the expression of p-Smad1/5. Additionally, results of Western blot and fluorescence shown that the expression of α-SMA were decrease with increasing level of CD31 in PMVECs. In conclusion, our research showed that wogonin suppressed EndMT via the TGF-β1/Smad pathway which may lead to its alleviated effect on PH. Wogonin may be a promising drug against PH.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Asgharnezhad G, Mohamadi S, Mohseni MM, Mousvi-Niri N, Naseroleslami M. Conditioned Medium from Human Amniotic Membrane-Derived Mesenchymal Stem Cells Modulates Inflammatory and Myofibrotic Factors in Vivo. J Tehran Heart Cent 2024; 19:198-205. [PMID: 40271173 PMCID: PMC12014178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/03/2024] [Indexed: 04/25/2025] Open
Abstract
Background Heart failure (HF) is a prevalent diagnosis with a significant mortality rate. Various therapeutic approaches exist for treating HF, and human adipose-derived mesenchymal stem cells-conditioned medium (hAMSCs-CM) therapy has emerged as a promising option. Despite its potential efficacy, the precise mechanism of action underlying hAMSCs-CM treatment remains unclear. To address this knowledge gap, we conducted a novel animal study to investigate the mechanism of action of hAMSCs-CM in an HF model, with a specific focus on transforming growth factor-β (TGF-β)/galectin-3, monocyte chemoattractant protein-1 (MCP1), B-type natriuretic peptide (BNP), and aldosterone (ALD). Methods Forty adult male Wistar rats were divided into 4 groups: control, HF, culture medium, and CM. All rats, except those in the control group, received an injection of isoproterenol to induce an animal model of HF. The CM group was administered the CM, while those in the culture medium group received standard culture media. Subsequently, serum levels of fibrotic factors, including TGF-β/galectin-3, MCP1, BNP, and ALD, were measured using ELISA. Statistical analysis was performed using one-way analysis of variance and the Tukey test. Results Serum levels of TGF-β/galectin-3, MCP1, BNP, and ALD were significantly elevated in the HF, CM, and culture medium groups compared with the control group (P<0.001). Additionally, these fibrotic factors were significantly reduced in the CM group compared with the HF group (P<0.001). Notably, CM therapy could not restore TGF-β/galectin-3, MCP1, BNP, or ALD levels to the normal range observed in the control group. Conclusion Our findings indicate that hAMSCs-CM modulates the expression of inflammatory and fibrotic cytokines, such as TGF-β/galectin-3, MCP1, BNP, and ALD, in isoproterenol-induced HF in male rats. These results contribute to a better understanding of the therapeutic mechanisms underlying hAMSCs-CM treatment for HF.
Collapse
Affiliation(s)
- Gazaleh Asgharnezhad
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sachli Mohamadi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdieh Mehrab Mohseni
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousvi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Lee AJ, Gangi LR, Zandkarimi F, Stockwell BR, Hung CT. Red blood cell exposure increases chondrocyte susceptibility to oxidative stress following hemarthrosis. Osteoarthritis Cartilage 2023; 31:1365-1376. [PMID: 37364817 PMCID: PMC10529126 DOI: 10.1016/j.joca.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/11/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE The detrimental effects of blood exposure on articular tissues are well characterized, but the individual contributions of specific whole blood components are yet to be fully elucidated. Better understanding of mechanisms that drive cell and tissue damage in hemophilic arthropathy will inform novel therapeutic strategies. The studies here aimed to identify the specific contributions of intact and lysed red blood cells (RBCs) on cartilage and the therapeutic potential of Ferrostatin-1 in the context of lipid changes, oxidative stress, and ferroptosis. METHODS Changes to biochemical and mechanical properties following intact RBC treatment were assessed in human chondrocyte-based tissue-engineered cartilage constructs and validated against human cartilage explants. Chondrocyte monolayers were assayed for changes to intracellular lipid profiles and the presence of oxidative and ferroptotic mechanisms. RESULTS Markers of tissue breakdown were observed in cartilage constructs without parallel losses in DNA (control: 786.3 (102.2) ng/mg; RBCINT: 751 (126.4) ng/mg; P = 0.6279), implicating nonlethal chondrocyte responses to intact RBCs. Dose-dependent loss of viability in response to intact and lysed RBCs was observed in chondrocyte monolayers, with greater toxicity observed with lysates. Intact RBCs induced changes to chondrocyte lipid profiles, upregulating highly oxidizable fatty acids (e.g., FA 18:2) and matrix disrupting ceramides. RBC lysates induced cell death via oxidative mechanisms that resemble ferroptosis. CONCLUSIONS Intact RBCs induce intracellular phenotypic changes to chondrocytes that increase vulnerability to tissue damage while lysed RBCs have a more direct influence on chondrocyte death by mechanisms that are representative of ferroptosis.
Collapse
Affiliation(s)
- Andy J Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, USA.
| | - Lianna R Gangi
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, USA.
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, 216 Havemeyer Hall, 3000 Broadway, Mail Code 3183, New York, NY, USA.
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, 216 Havemeyer Hall, 3000 Broadway, Mail Code 3183, New York, NY, USA; Department of Biological Sciences, Columbia University, 1208 NWC Building, 550 West 120th St. M.C. 4846, New York, NY, USA.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, USA; Department of Orthopaedic Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Sapudom J, Karaman S, Quartey BC, Mohamed WKE, Mahtani N, Garcia-Sabaté A, Teo J. Collagen Fibril Orientation Instructs Fibroblast Differentiation Via Cell Contractility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301353. [PMID: 37249413 PMCID: PMC10401101 DOI: 10.1002/advs.202301353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Collagen alignment is one of the key microarchitectural signatures of many pathological conditions, including scarring and fibrosis. Investigating how collagen alignment modulates cellular functions will pave the way for understanding tissue scarring and regeneration and new therapeutic strategies. However, current approaches for the fabrication of three-dimensional (3D) aligned collagen matrices are low-throughput and require special devices. To overcome these limitations, a simple approach to reconstitute homogeneous 3D collagen matrices with adjustable degree of fibril alignment using 3D printed inclined surfaces is developed. By characterizing the mechanical properties of reconstituted matrices, it is found that the elastic modulus of collagen matrices is enhanced with an increase in the alignment degree. The reconstituted matrices are used to study fibroblast behavior to reveal the progression of scar formation where a gradual enhancement of collagen alignment can be observed. It is found that matrices with aligned fibrils trigger fibroblast differentiation into myofibroblasts via cell contractility, while collagen stiffening through a crosslinker does not. The results suggest the impact of collagen fibril organization on the regulation of fibroblast differentiation. Overall, this approach to reconstitute 3D collagen matrices with fibril alignment opens opportunities for biomimetic pathological-relevant tissue in vitro, which can be applied for other biomedical research.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Shaza Karaman
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Walaa Kamal Eldin Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Nick Mahtani
- School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical and Biomedical Engineering, Tandon School of Engineering, New York University, New York, 11201, USA
| |
Collapse
|
8
|
Marshall BP, Ferrer XE, Kunes JA, Innis AC, Luzzi AJ, Forrester LA, Burt KG, Lee AJ, Song L, Hung CT, Levine WN, Kovacevic D, Thomopoulos S. The subacromial bursa is a key regulator of the rotator cuff and a new therapeutic target for improving repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547347. [PMID: 37425730 PMCID: PMC10327214 DOI: 10.1101/2023.07.01.547347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Rotator cuff injuries result in over 500,000 surgeries performed annually, an alarmingly high number of which fail. These procedures typically involve repair of the injured tendon and removal of the subacromial bursa. However, recent identification of a resident population of mesenchymal stem cells and inflammatory responsiveness of the bursa to tendinopathy indicate an unexplored biological role of the bursa in the context of rotator cuff disease. Therefore, we aimed to understand the clinical relevance of bursa-tendon crosstalk, characterize the biologic role of the bursa within the shoulder, and test the therapeutic potential for targeting the bursa. Proteomic profiling of patient bursa and tendon samples demonstrated that the bursa is activated by tendon injury. Using a rat to model rotator cuff injury and repair, tenotomy-activated bursa protected the intact tendon adjacent to the injured tendon and maintained the morphology of the underlying bone. The bursa also promoted an early inflammatory response in the injured tendon, initiating key players in wound healing. In vivo results were supported by targeted organ culture studies of the bursa. To examine the potential to therapeutically target the bursa, dexamethasone was delivered to the bursa, prompting a shift in cellular signaling towards resolution of inflammation in the healing tendon. In conclusion, contrary to current clinical practice, the bursa should be retained to the greatest extent possible and provides a new therapeutically target for improving tendon healing outcomes. One Sentence Summary The subacromial bursa is activated by rotator cuff injury and regulates the paracrine environment of the shoulder to maintain the properties of the underlying tendon and bone.
Collapse
|
9
|
Teplitsky JE, Vinokurtseva A, Armstrong JJ, Denstedt J, Liu H, Hutnik CML. ALK5 Inhibition of Subconjunctival Scarring From Glaucoma Surgery: Effects of SB-431542 Compared to Mitomycin C in Human Tenon's Capsule Fibroblasts. Transl Vis Sci Technol 2023; 12:31. [PMID: 36826843 PMCID: PMC9973532 DOI: 10.1167/tvst.12.2.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Purpose The gold standard for managing postoperative ocular fibrosis in glaucoma surgery is the chemotherapeutic mitomycin C (MMC) despite its association with significant adverse effects. This study compares in vitro the antifibrotic efficacy and cytotoxicity of the small-molecule TGFβ1 inhibitor SB-431542 (SB) to MMC. Methods To measure collagen contraction, human Tenon's capsule fibroblasts (HTCFs) embedded in a three-dimensional collagen lattice were exposed to 0.2 mg/mL MMC or 20 µM SB followed by incubation with 2 ng/mL TGFβ1. Total protein extracted from experimentally treated HTCFs underwent immunoblotting for α-smooth muscle actin (α-SMA), matrix metallopeptidase 9 (MMP-9), and EDA splice-variant fibronectin (EDA-FN) expression. Cytotoxicity and cell metabolism were assessed using LIVE/DEAD staining, lactate dehydrogenase (LDH) assay, and methylthiazole tetrazolium (MTT) assay. Results Collagen lattice contraction in TGFβ1-induced HTCFs was significantly lowered by SB and MMC. Pretreatment with SB and MMC significantly lowered protein expression of α-SMA, MMP-9, and EDA-FN in HTCFs relative to TGFβ1 alone. HTCF viability in collagen lattices was significantly reduced with MMC pretreatment but not SB pretreatment. MMC-pretreated HTCFs had a significant increase in LDH release after 3 hours and a decrease in MTT activity after 20 minutes, while SB-pretreated HTCFs showed no significant changes via MTT or LDH assay during the same treatment period. Conclusions SB shows comparable efficacy to MMC in reducing expression of fibrosis-promoting proteins in HTCFs and in vitro scarring activity. SB distinguishes itself from MMC by exhibiting less cytotoxicity in both two-dimensional and three-dimensional in vitro assays. Translational Relevance This study demonstrates in vitro the potential of SB as a safer alternative ocular antifibrotic agent.
Collapse
Affiliation(s)
- Jack E. Teplitsky
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Anastasiya Vinokurtseva
- Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - James J. Armstrong
- Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Ivey Eye Institute, St. Joseph's Health Care, London, Ontario, Canada
| | - James Denstedt
- Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hong Liu
- Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Lawson Health Research Institute, London, Ontario, Canada
| | - Cindy M. L. Hutnik
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Ivey Eye Institute, St. Joseph's Health Care, London, Ontario, Canada,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
10
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Pellicore MJ, Gangi LR, Murphy LA, Lee AJ, Jacobsen T, Kenawy HM, Shah RP, Chahine NO, Ateshian GA, Hung CT. Toward defining the role of the synovium in mitigating normal articular cartilage wear and tear. J Biomech 2023; 148:111472. [PMID: 36753853 PMCID: PMC10295808 DOI: 10.1016/j.jbiomech.2023.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Cartilage repair has been studied extensively in the context of injury and disease, but the joint's management of regular sub-injurious damage to cartilage, or 'wear and tear,' which occurs due to normal activity, is poorly understood. We hypothesize that this cartilage maintenance is mediated in part by cells derived from the synovium that migrate to the worn articular surface. Here, we demonstrate in vitro that the early steps required for such a process can occur. First, we show that under physiologic mechanical loads, chondrocyte death occurs in the cartilage superficial zone along with changes to the cartilage surface topography. Second, we show that synoviocytes are released from the synovial lining under physiologic loads and attach to worn cartilage. Third, we show that synoviocytes parachuted onto a simulated or native cartilage surface will modify their behavior. Specifically, we show that synoviocyte interactions with chondrocytes lead to changes in synoviocyte mechanosensitivity, and we demonstrate that cartilage-attached synoviocytes can express COL2A1, a hallmark of the chondrogenic phenotype. Our findings suggest that synoviocyte-mediated repair of cartilage 'wear and tear' as a component of joint homeostasis is feasible and is deserving of future study.
Collapse
Affiliation(s)
- Matthew J Pellicore
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lianna R Gangi
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lance A Murphy
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Timothy Jacobsen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hagar M Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roshan P Shah
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Nadeen O Chahine
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Gerard A Ateshian
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA; Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopedic Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Yi M, Li T, Niu M, Wu Y, Zhao Z, Wu K. TGF-β: A novel predictor and target for anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:1061394. [PMID: 36601124 PMCID: PMC9807229 DOI: 10.3389/fimmu.2022.1061394] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling regulates multiple physiological processes, such as cell proliferation, differentiation, immune homeostasis, and wound healing. Besides, TGF-β plays a vital role in diseases, including cancer. Accumulating evidence indicates that TGF-β controls the composition and behavior of immune components in the tumor microenvironment (TME). Advanced cancers leverage TGF-β to reshape the TME and escape immune surveillance. TGF-β-mediated immune evasion is an unfavorable factor for cancer immunotherapy, especially immune checkpoint inhibitors (ICI). Numerous preclinical and clinical studies have demonstrated that hyperactive TGF-β signaling is closely associated with ICI resistance. It has been validated that TGF-β blockade synergizes with ICI and overcomes treatment resistance. TGF-β-targeted therapies, including trap and bispecific antibodies, have shown immense potential for cancer immunotherapy. In this review, we summarized the predictive value of TGF-β signaling and the prospects of TGF-β-targeted therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Zhao
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kongming Wu, ; Zhenyu Zhao,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kongming Wu, ; Zhenyu Zhao,
| |
Collapse
|
13
|
[Inhibition of TGF-β promotes functional recovery of spinal cord injury in mice by reducing fibronectin deposition]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1686-1691. [PMID: 34916195 PMCID: PMC8685702 DOI: 10.12122/j.issn.1673-4254.2021.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the effect of transforming growth factor (TGF-β) inhibition on functional recovery of spinal cord injury in mice. METHODS Twelve mice were divided into treatment group, control group and sham-operated group (n=4). The mice in the treatment group were subjected to hemisection of the spinal cord and received intraperitoneal injection of TGF-β neutralizing antibody (1D11) 3 times a week (25 μL each time), and those in control group were injected with the vehicle antibody (13C4) following spinal cord hemisection. The sham-operated mice underwent sham operation to expose the spinal cord without hemisection. Four weeks later, the heart of the mice was perfused and 1-2 cm of the spinal cord spanning the injury site was harvested. Immunofluorescence staining of FSP1, fibronectin, and PGP9.5 was performed to assess fibroblast recruitment in the injury area, fibronectin deposition, and neurological recovery. For further verification of the results, we used a mouse model of spinal cord clamp injury to observe the survival of axons and distribution of astrocytes by detecting expressions of 5-HT and GFAP with immunofluorescence assay. RESULTS In the hemisection injury model, fibroblasts recruitment and fibronectin deposition in the injured area was significantly reduced and the neurological function was improved in 1D11 treatment group as compared with those in 13C4-treated group (P < 0.05). In the spinal cord clamp injury model, treatment with 1D11, as compared with the 13C4, resulted in significantly increased number of 5-HT-positive axons with extended axonal length and obviously increased the number of GFAP-positive astrocytes in the injured area (P < 0.05). CONCLUSION Inhibiting TGF-β after spinal cord injury can reduce the recruitment of fibroblasts and fibronectin deposition to promote recovery of neurological function and repair of the injured spinal cord in mice.
Collapse
|
14
|
Chen X, Wang Z, Huang Y, Deng W, Zhou Y, Chu M. Identification of novel biomarkers for arthrofibrosis after total knee arthroplasty in animal models and clinical patients. EBioMedicine 2021; 70:103486. [PMID: 34311327 PMCID: PMC8325099 DOI: 10.1016/j.ebiom.2021.103486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Background Arthrofibrosis is a debilitating complication after total knee arthroplasty (TKA) which becomes a considerable burden for both patients and clinical practitioners. Our study aimed to identify novel biomarkers and therapeutic targets for drug discovery. Methods Potential biomarker genes were identified based on bioinformatic analysis. Twelve male New Zealand white rabbits underwent surgical fixation of unilateral knees to mimics the joint immobilization of the clinical scenario after TKA surgery. Macroscopic assessment, hydroxyproline content determination, and histological analysis of tissue were performed separately after 3-days, 1-week, 2-weeks, and 4-weeks of fixation. We also enrolled 46 arthrofibrosis patients and 92 controls to test the biomarkers. Clinical information such as sex, age, range of motion (ROM), and visual analogue scale (VAS) was collected by experienced surgeons Findings Base on bioinformatic analysis, transforming growth factor-beta receptor 1 (TGFBR1) was identified as the potential biomarkers. The level of TGFBR1 was significantly raised in the rabbit synovial tissue after 4-weeks of fixation (p<0.05). TGFBR1 also displayed a highly positive correlation with ROM loss and hydroxyproline contents in the animal model. TGFBR1 showed a significantly higher expression level in arthrofibrosis patients with a receiver operating characteristic (ROC) area under curve (AUC) of 0.838. TGFBR1 also performed positive correlations with VAS baseline (0.83) and VAS after 1 year (0.76) while negatively correlated with ROM baseline (-0.76) in clinical patients. Interpretation Our findings provided novel biomarkers for arthrofibrosis diagnosis and uncovered the role of TGFBR1. This may contribute to arthrofibrosis prevention and therapeutic drug discovery.
Collapse
Affiliation(s)
- Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China; Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China
| | - Zhaolun Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yong Huang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Wang Deng
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yixin Zhou
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China.
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China.
| |
Collapse
|