1
|
Øvrebø Ø, De Lauretis A, Ma Q, Lyngstadaas SP, Perale G, Nilsen O, Rossi F, Haugen HJ. Towards bone regeneration: Understanding the nucleating ability of proline-rich peptides in biomineralisation. BIOMATERIALS ADVANCES 2024; 159:213801. [PMID: 38401402 DOI: 10.1016/j.bioadv.2024.213801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Obtaining rapid mineralisation is a challenge in current bone graft materials, which has been attributed to the difficulty of guiding the biological processes towards osteogenesis. Amelogenin, a key protein in enamel formation, inspired the design of two intrinsically disordered peptides (P2 and P6) that enhance in vivo bone formation, but the process is not fully understood. In this study, we have elucidated the mechanism by which these peptides induce improved mineralisation. Our molecular dynamics analysis demonstrated that in an aqueous environment, P2 and P6 fold to interact with the surrounding Ca2+, PO43- and OH- ions, which can lead to apatite nucleation. Although P2 has a less stable backbone, it folds to a stable structure that allows for the nucleation of larger calcium phosphate aggregates than P6. These results were validated experimentally in a concentrated simulated body fluid solution, where the peptide solutions accelerated the mineralisation process compared to the control and yielded mineral structures mimicking the amorphous calcium phosphate crystals that can be found in lamella bone. A pH drop for the peptide groups suggests depletion of calcium and phosphate, a prerequisite for intrinsic osteoinduction, while S/TEM and SEM suggested that the peptide regulated the mineral nucleation into lamella flakes. Evidently, the peptides accelerate and guide mineral formation, elucidating the mechanism for how these peptides can improve the efficacy of P2 or P6 containing devices for bone regeneration. The work also demonstrates how experimental mineralisation study coupled with molecular dynamics is a valid method for understanding and predicting in vivo performance prior to animal trials.
Collapse
Affiliation(s)
- Øystein Øvrebø
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy; Material Biomimetic AS, Oslo Science Park, 0349 Oslo, Norway
| | - Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, Mezzovico-Vira 6805, Switzerland; Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano 6900, Switzerland; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Ola Nilsen
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milano, Italy
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway.
| |
Collapse
|
2
|
Huang Y, Zhang X, Mao R, Li D, Luo F, Wang L, Chen Y, Lu J, Ge X, Liu Y, Yang X, Fan Y, Zhang X, Wang K. Nucleation Domains in Biomineralization: Biomolecular Sequence and Conformational Features. Inorg Chem 2024; 63:689-705. [PMID: 38146716 DOI: 10.1021/acs.inorgchem.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biomolecules play a vital role in the regulation of biomineralization. However, the characteristics of practical nucleation domains are still sketchy. Herein, the effects of the representative biomolecular sequence and conformations on calcium phosphate (Ca-P) nucleation and mineralization are investigated. The results of computer simulations and experiments prove that the line in the arrangement of dual acidic/essential amino acids with a single interval (Bc (Basic) -N (Neutral) -Bc-N-Ac (Acidic)- NN-Ac-N) is most conducive to the nucleation. 2α-helix conformation can best induce Ca-P ion cluster formation and nucleation. "Ac- × × × -Bc" sequences with α-helix are found to be the features of efficient nucleation domains, in which process, molecular recognition plays a non-negligible role. It further indicates that the sequence determines the potential of nucleation/mineralization of biomolecules, and conformation determines the ability of that during functional execution. The findings will guide the synthesis of biomimetic mineralized materials with improved performance for bone repair.
Collapse
Affiliation(s)
- Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xinyue Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Dongxuan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Yue Liu
- Key Laboratory for Industrial Ceramics of Jiangxi Province, Pingxiang University, Pingxiang 337055 China
| | - Xusheng Yang
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China
| |
Collapse
|
3
|
Alkhodary MA. Effect of controlled surface roughness and biomimetic coating on titanium implants adhesion to the bone: An experiment animal study. Saudi Dent J 2023; 35:819-826. [PMID: 38025594 PMCID: PMC10658383 DOI: 10.1016/j.sdentj.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Laser micromachining of titanium and its alloys can create micro-grooves with sizes similar to cell diameter of about 10 μm. Its coating with arginine-glycine-aspartic acid (RGD) may enhance cellular spreading and adhesion. This study aimed to evaluate the effect of laser micro-grooving and laser micro-grooving combined with RGD coating on the strength of the dental implants/bone interface using destructive mechanical pullout testing in experimental animals. Materials and methods In this study, the test groups consisted of 1.5-mm diameter, 5-mm long laser-grooved and laser-grooved/RGD coated titanium alloy (Ti-6Al-4 V) rods, and the control group included plain titanium alloy (Ti-6Al-4 V) rods. These rods were implanted in the mandibles of New Zealand white rabbits for 2, 4, and 6 weeks. After sacrifice, the test and control specimens were retrieved for mechanical pullout testing. The DMA 7-e was used to pull the titanium rods out of the bone, the probe position was plotted versus time graph to monitor the test progression, and the static modulus versus time graph was viewed; such graphs was then transformed into tables. The results were analyzed using the Mann-Whitney test. Results The laser-grooved/RGD coated rods had significantly higher pull-out strength than the laser-grooved and control rods. Additionally, the laser-grooved rods had significantly higher pull-out strength than control rods. Conclusion Two novel surface treatments were used: laser micro-grooving and tri peptide RGD coating, both of which had different effects on the dental implant interface. Laser grooving improved peri-implant bone healing, whereas RGD coating facilitated earlier bone-implant adhesion and better mineralization.
Collapse
Affiliation(s)
- Mohamed Ahmed Alkhodary
- Corresponding author at: Department of Prosthetic Dental Sciences, College of Dentistry, Qassim University, P.O. Box 6700, Burydah 51452, Saudi Arabia.
| |
Collapse
|
4
|
Raymond Y, Bonany M, Lehmann C, Thorel E, Benítez R, Franch J, Espanol M, Solé-Martí X, Manzanares MC, Canal C, Ginebra MP. Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment. Acta Biomater 2021; 135:671-688. [PMID: 34496283 DOI: 10.1016/j.actbio.2021.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Hydrothermal (H) processes accelerate the hydrolysis reaction of α-tricalcium phosphate (α-TCP) compared to the long-established biomimetic (B) treatments. They are of special interest for patient-specific 3D-printed bone graft substitutes, where the manufacturing time represents a critical constraint. Altering the reaction conditions has implications for the physicochemical properties of the reaction product. However, the impact of the changes produced by the hydrothermal reaction on the in vivo performance was hitherto unknown. The present study compares the bone regeneration potential of 3D-printed α-TCP scaffolds hardened using these two treatments in rabbit condyle monocortical defects. Although both consolidation processes resulted in biocompatible scaffolds with osseointegrative and osteoconductive properties, the amount of newly formed bone increased by one third in the hydrothermal vs the biomimetic samples. B and H scaffolds consisted mostly of high specific surface area calcium-deficient hydroxyapatite (38 and 27 m2 g-1, respectively), with H samples containing also 10 wt.% β-tricalcium phosphate (β-TCP). The shrinkage produced during the consolidation process was shown to be very small in both cases, below 3%, and smaller for H than for B samples. The differences in the in vivo performance were mainly attributed to the distinct crystallisation nanostructures, which proved to have a major impact on permeability and protein adsorption capacity, using BSA as a model protein, with B samples being highly impermeable. Given the crucial role that soluble proteins play in osteogenesis, this is proposed to be a relevant factor behind the distinct in vivo performances observed for the two materials. STATEMENT OF SIGNIFICANCE: The possibility to accelerate the consolidation of self-setting calcium phosphate inks through hydrothermal treatments has aroused great interest due to the associated advantages for the development of 3D-printed personalised bone scaffolds. Understanding the implications of this approach on the in vivo performance of the scaffolds is of paramount importance. This study compares, for the first time, this treatment to the long-established biomimetic setting strategy in terms of osteogenic potential in vivo in a rabbit model, and relates the results obtained to the physicochemical properties of the 3D-printed scaffolds (composition, crystallinity, nanostructure, nanoporosity) and their interaction with soluble proteins.
Collapse
|
5
|
Kuczumow A, Chałas R, Nowak J, Smułek W, Jarzębski M. Novel Approach to Tooth Chemistry: Quantification of Human Enamel Apatite in Context for New Biomaterials and Nanomaterials Development. Int J Mol Sci 2020; 22:E279. [PMID: 33383975 PMCID: PMC7796202 DOI: 10.3390/ijms22010279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
A series of linear profiles of the elements of the enamel in human molar teeth were made with the use of an electron microprobe and a Raman microscope. It is postulated that the enamel can be treated as the superposition of variable "overbuilt" enamel on the stable "core" enamel at the macro-, micro- and nanoscale level. The excessive values characterize the "overbuilt enamel". All the profiles of excessive parameters along the enamel thickness from the enamel surface to the dentin enamel junction (DEJ) can be approximated very precisely with the use of exponential functions, where Ca, P, Cl and F spatial profiles are decaying while Mg, Na, K and CO32- ones are growing distributions. The "overbuilt" apatite formed on the boundary with DEJ, enriched in Na, Mg, OH and carbonates, reacts continuously with Ca, Cl and F, passing into an acid-resistant form of the "overbuilt" enamel. The apparent phases arriving in boundary regions of the "overbuilt enamel" were proposed. Microdiffraction measurements reveal relative variation of energy levels during enamel transformations. Our investigations are the milestones for a further new class of biomaterial and nanomaterial development for biomedical applications.
Collapse
Affiliation(s)
- Andrzej Kuczumow
- ComerLab Dorota Nowak Radawiec Duży 196, 21-030 Motycz, Poland; (A.K.); (J.N.)
| | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | - Jakub Nowak
- ComerLab Dorota Nowak Radawiec Duży 196, 21-030 Motycz, Poland; (A.K.); (J.N.)
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznan, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland
| |
Collapse
|
6
|
Lin Y, Schuphan J, Dickmeis C, Buhl EM, Commandeur U, Fischer H. Attachment of Ultralow Amount of Engineered Plant Viral Nanoparticles to Mesenchymal Stem Cells Enhances Osteogenesis and Mineralization. Adv Healthc Mater 2020; 9:e2001245. [PMID: 32940006 DOI: 10.1002/adhm.202001245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Hydrogel-based materials are widely used to mimic the extracellular matrix in bone tissue engineering, although they often lack biofunctional cues. In the authors' previous work, Potato virus X (PVX), a flexible rod-shaped biocompatible plant virus nanoparticle (VNP) with 1270 coat protein subunits, is genetically modified to present functional peptides for generating a bone substitute. Here, PVX is engineered to present mineralization- and osteogenesis-associated peptides and laden in hydrogels at a concentration lower by two orders of magnitude. Its competence in mineralization is demonstrated both on 2D surfaces and in hydrogels and the superiority of enriched peptides on VNPs is verified and compared with free peptides and VNPs presenting fewer functional peptides. Alkaline phosphatase activity and Alizarin red staining of human mesenchymal stem cells increase 1.2-1.7 times when stimulate by VNPs. Engineered PVX adheres to cells, exhibiting a stimulation of biomimetic peptides in close proximity to the cells. The retention of VNPs in hydrogels is monitored and more than 80% of VNPs remain inside after several washing steps. The mechanical properties of VNP-laden hydrogels are investigated, including viscosity, gelling temperature, and compressive tangent modulus. This study demonstrates that recombinant PVX nanoparticles are excellent candidates for hydrogel nanocomposites in bone tissue engineering.
Collapse
Affiliation(s)
- Ying‐Ying Lin
- Department of Dental Materials and Biomaterials Research RWTH Aachen University Hospital Pauwelsstrasse 30 52074 Aachen Germany
| | - Juliane Schuphan
- Institute for Molecular Biotechnology RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Christina Dickmeis
- Institute for Molecular Biotechnology RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility Institute of Pathology RWTH Aachen University Hospital Pauwelsstrasse 30 52074 Aachen Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research RWTH Aachen University Hospital Pauwelsstrasse 30 52074 Aachen Germany
| |
Collapse
|
7
|
Sinitsyna OV, Makarov VV, McGeachy K, Bukharova T, Whale E, Hepworth D, Yaminsky IV, Kalinina NO, Taliansky ME, Love AJ. Virus-Like Particle Facilitated Deposition of Hydroxyapatite Bone Mineral on Nanocellulose after Exposure to Phosphate and Calcium Precursors. Int J Mol Sci 2019; 20:E1814. [PMID: 31013736 PMCID: PMC6515374 DOI: 10.3390/ijms20081814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
We produced and isolated tobacco mosaic virus-like particles (TMV VLPs) from bacteria, which are devoid of infectious genomes, and found that they have a net negative charge and can bind calcium ions. Moreover, we showed that the TMV VLPs could associate strongly with nanocellulose slurry after a simple mixing step. We sequentially exposed nanocellulose alone or slurries mixed with the TMV VLPs to calcium and phosphate salts and utilized physicochemical approaches to demonstrate that bone mineral (hydroxyapatite) was deposited only in nanocellulose mixed with the TMV VLPs. The TMV VLPs confer mineralization properties to the nanocellulose for the generation of new composite materials.
Collapse
Affiliation(s)
- Olga V Sinitsyna
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119991, Russia.
| | - Valentine V Makarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 119991, Russia.
| | - Kara McGeachy
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Tatyana Bukharova
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Eric Whale
- CelluComp Ltd., Unit 3, West Dock, Harbour Place, Burntisland KY3 9DW, UK.
| | - David Hepworth
- CelluComp Ltd., Unit 3, West Dock, Harbour Place, Burntisland KY3 9DW, UK.
| | - Igor V Yaminsky
- Physical Faculty, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia O Kalinina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 119991, Russia.
| | - Michael E Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 119991, Russia.
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Andrew J Love
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| |
Collapse
|
8
|
Asha S, Vanitha Kumar G, Nimrodh Ananth A, Jose S, Jothi Rajan M. Investigations on Bio-mineralization of reduced graphene oxide aerogel in thepresence of various polymers. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.02.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Rustom LE, Poellmann MJ, Wagoner Johnson AJ. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater 2019; 83:435-455. [PMID: 30408560 DOI: 10.1016/j.actbio.2018.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
With the increasing demand for novel bone repair solutions that overcome the drawbacks of current grafting techniques, the design of artificial bone scaffolds is a central focus in bone regeneration research. Calcium phosphate scaffolds are interesting given their compositional similarity with bone mineral. The majority of studies focus on bone growth in the macropores (>100 µm) of implanted calcium phosphate scaffolds where bone structures such as osteons and trabeculae can form. However, a growing body of research shows that micropores (<50 µm) play an important role not only in improving bone growth in the macropores, but also in providing additional space for bone growth. Bone growth in the micropores of calcium phosphate scaffolds offers major mechanical advantages as it improves the mechanical properties of the otherwise brittle materials, further stabilizes the implant, improves load transfer, and generally enhances osteointegration. In this paper, we review evidence in the literature of bone growth into micropores, emphasizing on identification techniques and conditions under which bone components are observed in the micropores. We also review theories on mineralization and propose mechanisms, mediated by cells or not, by which mineralization may occur in the confined micropore space of calcium phosphate scaffolds. Understanding and validating these mechanisms will allow to better control and enhance mineralization in micropores to improve the design and efficiency of bone implants. STATEMENT OF SIGNIFICANCE: The design of synthetic bone scaffolds remains a major focus for engineering solutions to repair damaged and diseased bone. Most studies focus on the design of and growth in macropores (>100 µm), however research increasingly shows the importance of microporosity (<50 µm). Micropores provide an additional space for bone growth, which provides multiple mechanical advantages to the scaffold/bone composite. Here, we review evidence of bone growth into micropores in calcium phosphate scaffolds and conditions under which growth occurs in micropores, and we propose mechanisms that enable or facilitate growth in these pores. Understanding these mechanisms will allow researchers to exploit them and improve the design and efficiency of bone implants.
Collapse
|
10
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
11
|
Jang JH, Lee CO, Kim HJ, Kim SG, Lee SW, Kim SY. Enhancing Effect of Elastinlike Polypeptide-based Matrix on the Physical Properties of Mineral Trioxide Aggregate. J Endod 2018; 44:1702-1708. [DOI: 10.1016/j.joen.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
12
|
Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater 2018; 5:115-124. [PMID: 29644093 PMCID: PMC5887944 DOI: 10.1093/rb/rby001] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Microporosity has a critical role in improving the osteogenesis of scaffolds for bone tissue engineering. Although the exact mechanism, by which it promotes new bone formation, is not well recognized yet, the related hypothesis can be found in many previous studies. This review presents those possible mechanisms about how the microporosity enhances the osteogenic-related functions of cells in vitro and the osteogenic activity of scaffolds in vivo. In summary, the increased specific surface areas by microporosity can offer more protein adsorption sites and accelerate the release of degradation products, which facilitate the interactions between scaffolds and cells. Meanwhile, the unique surface properties of microporous scaffolds have a considerable effect on the protein adsorption. Moreover, capillary force generated by the microporosity can improve the attachment of bone-related cells on the scaffolds surface, and even make the cells achieve penetration into the micropores smaller than them. This review also pays attention to the relationship between the biological and mechanical properties of microporous scaffolds. Although lots of achievements have been obtained, there is still a lot of work to do, some of which has been proposed in the conclusions and perspectives part.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 102402, China
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Liu Z, Song L, Lu L, Zhang X, Zhang F, Wang K, Linhardt RJ. Comparative proteomics of matrix fractions between pimpled and normal chicken eggshells. J Proteomics 2017; 167:1-11. [PMID: 28755913 DOI: 10.1016/j.jprot.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
Eggshell matrix can be dissociated into three matrix fractions: acid-insoluble matrix (M1), water-insoluble matrix (M2) and acid-water facultative-soluble matrix (M3). Matrix fractions from pimpled and normal eggshells were compared using label-free proteomic method to understand the differences among three matrix fractions and the proteins involved with eggshell quality. A total of 738 and 600 proteins were identified in the pimpled and normal calcified eggshells, respectively. Both eggshells showed a combined proteomic inventory of 769 proteins. In the same type of eggshell, a high similarity was present in the proteomes of three matrix fractions. These triply overlapped common proteins formed the predominant contributor to proteomic abundance in the matrix fractions. In each matrix fraction and between both eggshell models, normal and pimpled eggshells, a majority of the proteomes of the fractions were commonly observed. Forty-two common major proteins (iBAQ-derived abundance ≥0.095% of proteomic abundance) were identified throughout the three matrix fractions and these proteins might act as backbone constituents in chicken eggshell matrix. Finally, using 1.75-fold as up-regulated and using 0.57-fold as down-regulated cutoff values, twenty-five differential major proteins were screened and they all negatively influence and none showed any effect on eggshell quality. Overall, we uncovered the characteristics of proteomics of three eggshell matrix fractions and identified candidate proteins influencing eggshell quality. The next research on differential proteins will uncover the potential mechanisms underlying how proteins affect eggshell quality. BIOLOGICAL SIGNIFICANCE It was reported that the proteins in an eggshell can be divided into insoluble and soluble proteins. The insoluble proteins are thought to be an inter-mineral matrix and acts as a structural framework, while the soluble proteins are thought as intra-mineral matrix that are embedded within the crystal during calcification. However, the difference between matrix fractions is unknown. Cross-analysis of proteomic data of three matrix fractions from the same type of eggshell, uncovered triply overlapped common proteins formed the predominant contributor to proteomic abundance of any matrix fraction, and we suggested that abundance variance of some common proteins between the three matrix fractions might be an important cause of their solubility differences. Moreover, eggshell is formed in hen's uterus, and uterus tend to be considered as unique organ determining eggshell quality. By cross-analysis on proteomic data of three matrix fractions between two eggshell models, normal and pimpled eggshells, the differential proteins were screened as candidates influencing eggshell quality. And we suggested that the liver and spleen or lymphocytes might be the major organs influencing eggshell quality, because the most promising candidates are almost blood and non-collagenous proteins, and originated from above organs.
Collapse
Affiliation(s)
- Zhangguo Liu
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, PR China.
| | - Lingzi Song
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, PR China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Provincial Academy of Agricultural Science, Hangzhou 311000, Zhejiang, PR China
| | - Xianfu Zhang
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, PR China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA
| | - Kehua Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225000, Jiangsu, PR China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, NY, USA
| |
Collapse
|
14
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
15
|
Wan W, Zhang S, Ge L, Li Q, Fang X, Yuan Q, Zhong W, Ouyang J, Xing M. Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration. Int J Nanomedicine 2015; 10:1273-90. [PMID: 25709448 PMCID: PMC4334347 DOI: 10.2147/ijn.s77118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bone tissue engineering through seeding of stem cells in three-dimensional scaffolds has greatly improved bone regeneration technology, which historically has been a constant challenge. In this study, we researched the use of adipose-derived stem cell (ADSC)-laden layer-by-layer paper-stacking polycaprolactone/gelatin electrospinning nanofibrous membranes for bone regeneration. Using this novel paper-stacking method makes oxygen distribution, nutrition, and waste transportation work more efficiently. ADSCs can also secrete multiple growth factors required for osteogenesis. After the characterization of ADSC surface markers CD29, CD90, and CD49d using flow cytometry, we seeded ADSCs on the membranes and found cells differentiated, with significant expression of the osteogenic-related proteins osteopontin, osteocalcin, and osteoprotegerin. During 4 weeks in vitro, the ADSCs cultured on the paper-stacking membranes in the osteogenic medium exhibited the highest osteogenic-related gene expressions. In vivo, the paper-stacking scaffolds were implanted into the rat calvarial defects (5 mm diameter, one defect per parietal bone) for 12 weeks. Investigating with microcomputer tomography, the ADSC-laden paper-stacking membranes showed the most significant bone reconstruction, and from a morphological perspective, this group occupied 90% of the surface area of the defect, produced the highest bone regeneration volume, and showed the highest bone mineral density of 823.06 mg/cm(3). From hematoxylin and eosin and Masson staining, the new bone tissue was most evident in the ADSC-laden scaffold group. Using quantitative polymerase chain reaction analysis from collected tissues, we found that the ADSC-laden paper-stacking membrane group presented the highest osteogenic-related gene expressions of osteocalcin, osteopontin, osteoprotegerin, bone sialoprotein, runt-related transcription factor 2, and osterix (two to three times higher than the control group, and 1.5 times higher than the paper-stacking membrane group in all the genes). It is proposed that ADSC-laden layer-by-layer paper-stacking scaffolds could be used as a way of promoting bone defect treatment.
Collapse
Affiliation(s)
- Wenbing Wan
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Shiwen Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
- Sichuan University, Chengdu, People’s Republic of China
| | - Liangpeng Ge
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Qingtao Li
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingxing Fang
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
| | - Quan Yuan
- Sichuan University, Chengdu, People’s Republic of China
| | - Wen Zhong
- Department of Textile Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Ouyang
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
| | - Malcolm Xing
- Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Tejeda-Montes E, Klymov A, Nejadnik MR, Alonso M, Rodriguez-Cabello J, Walboomers XF, Mata A. Mineralization and bone regeneration using a bioactive elastin-like recombinamer membrane. Biomaterials 2014; 35:8339-47. [DOI: 10.1016/j.biomaterials.2014.05.095] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/30/2014] [Indexed: 01/19/2023]
|
17
|
Tejeda-Montes E, Smith KH, Rebollo E, Gómez R, Alonso M, Rodriguez-Cabello JC, Engel E, Mata A. Bioactive membranes for bone regeneration applications: effect of physical and biomolecular signals on mesenchymal stem cell behavior. Acta Biomater 2014; 10:134-41. [PMID: 24035887 DOI: 10.1016/j.actbio.2013.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/07/2013] [Accepted: 09/03/2013] [Indexed: 12/25/2022]
Abstract
This study focuses on the in vitro characterization of bioactive elastin-like recombinamer (ELR) membranes for bone regeneration applications. Four bioactive ELRs exhibiting epitopes designed to promote mesenchymal stem cell adhesion (RGDS), endothelial cell adhesion (REDV), mineralization (HAP), and both cell adhesion and mineralization (HAP-RGDS) were synthesized using standard recombinant protein techniques. The materials were then used to fabricate ELR membranes incorporating a variety of topographical micropatterns including channels, holes and posts. Primary rat mesenchymal stem cells (rMSCs) were cultured on the different membranes and the effects of biomolecular and physical signals on cell adhesion, morphology, proliferation, and differentiation were evaluated. All results were analyzed using a custom-made MATLAB program for high throughput image analysis. Effects on cell morphology were mostly dependent on surface topography, while cell proliferation and cell differentiation were largely dependent on the biomolecular signaling from the ELR membranes. In particular, osteogenic differentiation (evaluated by staining for the osteoblastic marker osterix) was significantly enhanced on cells cultured on HAP membranes. Remarkably, cells growing on membranes containing the HAP sequence in non-osteogenic differentiation media exhibited significant up-regulation of the osteogenic marker as early as day 5, while those growing on fibronectin-coated glass in osteogenic differentiation media did not. These results are part of our ongoing effort to develop an optimized molecularly designed periosteal graft.
Collapse
|
18
|
Effects of peptide concentration on remineralization of eroded enamel. J Mech Behav Biomed Mater 2013; 28:213-21. [DOI: 10.1016/j.jmbbm.2013.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/11/2013] [Accepted: 08/04/2013] [Indexed: 11/23/2022]
|
19
|
Wang K, Leng Y, Lu X, Ren F. Calcium phosphate bioceramics induce mineralization modulated by proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3245-55. [DOI: 10.1016/j.msec.2013.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
|
20
|
Marei MK, Nagy NB, Saad MS, Zaky SH, Elbackly RM, Eweida AM, Alkhodary MA. Strategy for a Biomimetic Paradigm in Dental and Craniofacial Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Gomes S, Gallego-Llamas J, Leonor IB, Mano JF, Reis RL, Kaplan DL. In vivo biological responses to silk proteins functionalized with bone sialoprotein. Macromol Biosci 2013; 13:444-54. [PMID: 23359587 DOI: 10.1002/mabi.201200372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/12/2012] [Indexed: 11/09/2022]
Abstract
Recombinant 6mer + BSP protein, combining six repeats of the consensus sequence for Nephila clavipes dragline (6mer) and bone sialoprotein sequence (BSP), shows good support for cell viability and induces the nucleation of hydroxyapatite and tricalcium phosphate during osteoblast in vitro culture. The present study is conducted to characterize this bioengineered protein-based biomaterial further for in vivo behavior related to biocompatibility. 6mer + BSP protein films are implanted in subcutaneous pouches in the back of mice and responses are evaluated by flow cytometry and histology. The results show no major differences between the inflammatory responses induced by 6mer + BSP films and the responses observed for the controls. Thus, this new chimeric protein could represent an alternative for bone regeneration applications.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Indústrial da Gandra, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | | | | | | | | | | |
Collapse
|
22
|
Chen X, Li Y, Aparicio C. Biofunctional Coatings for Dental Implants. THIN FILMS AND COATINGS IN BIOLOGY 2013. [DOI: 10.1007/978-94-007-2592-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Natural and Genetically Engineered Proteins for Tissue Engineering. Prog Polym Sci 2012; 37:1-17. [PMID: 22058578 PMCID: PMC3207498 DOI: 10.1016/j.progpolymsci.2011.07.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
24
|
Wang K, Leng Y, Lu X, Ren F, Ge X, Ding Y. Theoretical analysis of protein effects on calcium phosphate precipitation in simulated body fluid. CrystEngComm 2012. [DOI: 10.1039/c2ce25216c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Abstract
In nature, organic matrix macromolecules play a critical role in enhancing the mechanical properties of biomineralized composites such as bone and teeth. Designing artificial matrix analogues is promising but challenging because relatively little is known about how natural matrix components function. Therefore, in lieu of using natural components, we created biomimetic matrices using genetically engineered elastin-like polypeptides (ELPs) and then used them to construct mechanically robust ELP-hydroxyapatite (HAP) composites. ELPs were engineered with well-defined backbone charge distributions by periodic incorporation of negative, positive, or neutral side chains or with HAP-binding octaglutamic acid motifs at one or both protein termini. ELPs exhibited sequence-specific capacities to interact with ions, bind HAP, and disperse HAP nanoparticles. HAP-binding ELPs were incorporated into calcium phosphate cements, resulting in materials with improved mechanical strength, injectability, and antiwashout properties. The results demonstrate that rational design of genetically engineered polymers is a powerful system for determining sequence-property relationships and for improving the properties of organic-inorganic composites. Our approach may be used to further develop novel, multifunctional bone cements and expanded to the design of other advanced composites.
Collapse
Affiliation(s)
- Eddie Wang
- Department of Bioengineering, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, CA, 94720 USA
| | - Sang-Hyuk Lee
- Department of Bioengineering, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, CA, 94720 USA
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, CA, 94720 USA
| |
Collapse
|
26
|
Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Wagoner Johnson AJ. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 2010; 31:3552-63. [DOI: 10.1016/j.biomaterials.2010.01.052] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 01/12/2010] [Indexed: 02/07/2023]
|
27
|
Dubey DK, Tomar V. Role of Molecular Level Interfacial Forces in Hard Biomaterial Mechanics: A Review. Ann Biomed Eng 2010; 38:2040-55. [DOI: 10.1007/s10439-010-9988-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/24/2010] [Indexed: 01/26/2023]
|
28
|
Alves NM, Leonor IB, Azevedo HS, Reis RL, Mano JF. Designing biomaterials based on biomineralization of bone. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b910960a] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Wu CY, Martel J, Young D, Young JD. Fetuin-A/albumin-mineral complexes resembling serum calcium granules and putative nanobacteria: demonstration of a dual inhibition-seeding concept. PLoS One 2009; 4:e8058. [PMID: 19956594 PMCID: PMC2779105 DOI: 10.1371/journal.pone.0008058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/04/2009] [Indexed: 12/02/2022] Open
Abstract
Serum-derived granulations and purported nanobacteria (NB) are pleomorphic apatite structures shown to resemble calcium granules widely distributed in nature. They appear to be assembled through a dual inhibitory-seeding mechanism involving proteinaceous factors, as determined by protease (trypsin and chymotrypsin) and heat inactivation studies. When inoculated into cell culture medium, the purified proteins fetuin-A and albumin fail to induce mineralization, but they will readily combine with exogenously added calcium and phosphate, even in submillimolar amounts, to form complexes that will undergo morphological transitions from nanoparticles to spindles, films, and aggregates. As a mineralization inhibitor, fetuin-A is much more potent than albumin, and it will only seed particles at higher mineral-to-protein concentrations. Both proteins display a bell-shaped, dose-dependent relationship, indicative of the same dual inhibitory-seeding mechanism seen with whole serum. As ascertained by both seeding experiments and gel electrophoresis, fetuin-A is not only more dominant but it appears to compete avidly for nanoparticle binding at the expense of albumin. The nanoparticles formed in the presence of fetuin-A are smaller than their albumin counterparts, and they have a greater tendency to display a multi-layered ring morphology. In comparison, the particles seeded by albumin appear mostly incomplete, with single walls. Chemically, spectroscopically, and morphologically, the protein-mineral particles resemble closely serum granules and NB. These particles are thus seen to undergo an amorphous to crystalline transformation, the kinetics and completeness of which depend on the protein-to-mineral ratios, with low ratios favoring faster conversion to crystals. Our results point to a dual inhibitory-seeding, de-repression model for the assembly of particles in supersaturated solutions like serum. The presence of proteins and other inhibitory factors tend to block apatite nuclei formation or to stabilize the nascent nuclei as amorphous or semi-crystalline spherical nanoparticles, until the same inhibitory influences are overwhelmed or de-repressed, whereby the apatite nuclei grow in size to coalesce into crystalline spindles and films-a mechanism that may explain not only the formation of calcium granules in nature but also normal or ectopic calcification in the body.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taiwan, Republic of China
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taiwan, Republic of China
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John D. Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
- Biochemical Engineering Research Center, Mingchi University of Technology, Taipei, Taiwan, Republic of China
| |
Collapse
|
30
|
Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 2009; 61:1065-83. [PMID: 19646493 DOI: 10.1016/j.addr.2009.07.008] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 07/16/2009] [Indexed: 01/21/2023]
Abstract
Nanofibrous materials produced by electrospinning processes have attracted considerable interest in tissue regeneration, including bone reconstruction. A range of novel materials and processing tools have been developed to mimic the native bone extracellular matrix for potential applications as tissue engineering scaffolds and ultimately to restore degenerated functions of the bone. Degradable polymers, bioactive inorganics and their nanocomposites/hybrids nanofibers with suitable mechanical properties and bone bioactivity for osteoblasts and progenitor/stem cells have been produced. The surface functionalization with apatite minerals and proteins/peptides as well as drug encapsulation within the nanofibers is a promising strategy for achieving therapeutic functions with nanofibrous materials. Recent attempts to endow a 3D scaffolding technique to the electrospinning regime have shown some promise for engineering 3D tissue constructs. With the improvement in knowledge and techniques of bone-targeted nanofibrous matrices, bone tissue engineering is expected to be realized in the near future.
Collapse
Affiliation(s)
- Jun-Hyeog Jang
- Department of Biochemistry, Inha University College of Medicine, South Korea
| | | | | |
Collapse
|
31
|
Young JD, Martel J, Young D, Young A, Hung CM, Young L, Chao YJ, Young J, Wu CY. Characterization of granulations of calcium and apatite in serum as pleomorphic mineralo-protein complexes and as precursors of putative nanobacteria. PLoS One 2009; 4:e5421. [PMID: 19412552 PMCID: PMC2673041 DOI: 10.1371/journal.pone.0005421] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal.
Collapse
Affiliation(s)
- John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|