1
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
2
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Xu Z, Wang B, Huang R, Guo M, Han D, Yin L, Zhang X, Huang Y, Li X. Efforts to promote osteogenesis-angiogenesis coupling for bone tissue engineering. Biomater Sci 2024; 12:2801-2830. [PMID: 38683241 DOI: 10.1039/d3bm02017g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Ruoyu Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Mengyao Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Di Han
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| |
Collapse
|
4
|
Li H, He Y, Chen X, Yang A, Lyu F, Dong Y. Exosomal miR-423-5p Derived from Cerebrospinal Fluid Pulsation Stress-Stimulated Osteoblasts Improves Angiogenesis of Endothelial Cells via DUSP8/ERK1/2 Signaling Pathway. Stem Cells Int 2024; 2024:5512423. [PMID: 38765936 PMCID: PMC11102110 DOI: 10.1155/2024/5512423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Exosomes secreted from osteoblasts (OBs) can regulate the angiogenesis of endothelial cells (ECs); however, whether cerebrospinal fluid pulsation (CSFP) stress, a special mechanical stimulation, can influence the cell's communication in the context of angiogenesis remains unknown. In this study, the effect of exosomes derived from CSFP stress-stimulated OBs on facilitating the angiogenesis of ECs was investigated. First, OBs were cultured in a CSFP bioreactor, and exosomes derived from OBs were isolated and identified. Cell Counting Kit 8 assay, transwell migration assay, wound healing migration assay, and tube formation assay were conducted to assess the effects of CSFP stress-stimulated OBs-derived exosomes (CSFP-Exos) on the angiogenesis of ECs. Then high-throughput RNA sequencing was used to determine the miRNA profiles of Non-CSFP stress-stimulated OBs-derived exosomes (NCSFP-Exos) and CSFP-Exos, and the luciferase reporter gene assay was performed to confirm the binging of miR-423-5p to DUSP8. In addition, the Matrigel plug assay was performed to explore whether exosomal miR-423-5p has the same effects in vivo. Our results suggested that CSFP-Exos can promote the angiogenesis of ECs, and miR-423-5p was enriched in CSFP-Exos. Moreover, miR-423-5p could promote the effect of angiogenesis via directly targeting dual-specificity phosphatase 8 (DUSP8), which inhibited the ERK1/2 signaling pathway. In conclusion, exosomal miR-423-5p derived from CSFP stress-stimulated OBs could promote the angiogenesis of ECs by the DUSP8/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yiqun He
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xujun Chen
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Aolei Yang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Feizhou Lyu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Youhai Dong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Abdollahi F, Saghatchi M, Paryab A, Malek Khachatourian A, Stephens ED, Toprak MS, Badv M. Angiogenesis in bone tissue engineering via ceramic scaffolds: A review of concepts and recent advancements. BIOMATERIALS ADVANCES 2024; 159:213828. [PMID: 38479240 DOI: 10.1016/j.bioadv.2024.213828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.
Collapse
Affiliation(s)
- Farnoosh Abdollahi
- Department of Dentistry, Kashan University of Medical Science, Kashan, Iran
| | - Mahshid Saghatchi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Emma D Stephens
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Maryam Badv
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Goker M, Derici US, Gokyer S, Parmaksiz MG, Kaya B, Can A, Yilgor P. Spatial Growth Factor Delivery for 3D Bioprinting of Vascularized Bone with Adipose-Derived Stem/Stromal Cells as a Single Cell Source. ACS Biomater Sci Eng 2024; 10:1607-1619. [PMID: 38416687 PMCID: PMC10934245 DOI: 10.1021/acsbiomaterials.3c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted vascularized bone grafts were cultured in a perfusion bioreactor. Results proved localized expression of osteopontin and CD31 by the ASCs, which was made possible through the localized delivery activity of the built-in delivery system. In conclusion, this approach provided a methodology for generating off-the-shelf constructs for vascularized bone regeneration and has the potential to enable single-step, in situ bioprinting procedures for creating vascularized bone implants when applied to bone defects.
Collapse
Affiliation(s)
- Meric Goker
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Utku Serhat Derici
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
| | - Seyda Gokyer
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
| | - Mehmet Goktug Parmaksiz
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
| | - Burak Kaya
- Department
of Plastic, Reconstructive and Aesthetic Surgery, Ankara University Faculty of Medicine, Ankara 06620, Turkey
- Ankara
University Medical Design Research and Application Center, MEDITAM, Ankara 06520, Turkey
| | - Alp Can
- Department
of Histology and Embryology, Ankara University
Faculty of Medicine, Ankara 06230, Turkey
| | - Pinar Yilgor
- Department
of Biomedical Engineering, Ankara University
Faculty of Engineering, Ankara 06830, Turkey
- Ankara
University Medical Design Research and Application Center, MEDITAM, Ankara 06520, Turkey
| |
Collapse
|
7
|
Balachandran Megha K, Syama S, Padmalayathil Sangeetha V, Vandana U, Oyane A, Valappil Mohanan P. Development of a 3D multifunctional collagen scaffold impregnated with peptide LL-37 for vascularised bone tissue regeneration. Int J Pharm 2024; 652:123797. [PMID: 38199447 DOI: 10.1016/j.ijpharm.2024.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Bone is a highly dynamic connective tissue that provides structural support, locomotion and acts as a shield for many vital organs from damage. Bone inherits the ability to heal after non-severe injury. In case of severe bone abnormalities due to trauma, infections, genetic disorders and tumors, there is a demand for a scaffold that can enhance bone formation and regenerate the lost bone tissue. In this study, a 3D collagen scaffold (CS) was functionalized and assessed under in vitro and in vivo conditions. For this, a collagen scaffold coated with hydroxyapatite (Ap-CS) was developed and loaded with a peptide LL-37. The physico-chemical characterisation confirmed the hydroxyapatite coating on the outer and inner surfaces of Ap-CS. In vitro studies confirmed that LL-37 loaded Ap-CS promotes osteogenic differentiation of human osteosarcoma cells without showing significant cytotoxicity. The efficacy of the LL-37 loaded Ap-CS for bone regeneration was evaluated at 4 and 12 weeks post-implantation by histopathological and micro-CT analysis in rabbit femur defect model. The implanted LL-37 loaded Ap-CS facilitated the new bone formation at 4 weeks compared with Ap-CS without LL-37. The LL-37 loaded Ap-CS incorporating apatite and peptide LL-37 would be useful as a multifunctional scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Kizhakkepurakkal Balachandran Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Santhakumar Syama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Vijayan Padmalayathil Sangeetha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Unnikrishnan Vandana
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Parayanthala Valappil Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
8
|
Lee CY, Nedunchezian S, Lin SY, Su YF, Wu CW, Wu SC, Chen CH, Wang CK. Bilayer osteochondral graft in rabbit xenogeneic transplantation model comprising sintered 3D-printed bioceramic and human adipose-derived stem cells laden biohydrogel. J Biol Eng 2023; 17:74. [PMID: 38012588 PMCID: PMC10680339 DOI: 10.1186/s13036-023-00389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Reconstruction of severe osteochondral defects in articular cartilage and subchondral trabecular bone remains a challenging problem. The well-integrated bilayer osteochondral graft design expects to be guided the chondrogenic and osteogenic differentiation for stem cells and provides a promising solution for osteochondral tissue repair in this study. The subchondral bone scaffold approach is based on the developed finer and denser 3D β-tricalcium phosphate (β-TCP) bioceramic scaffold process, which is made using a digital light processing (DLP) technology and the novel photocurable negative thermo-responsive (NTR) bioceramic slurry. Then, the concave-top disc sintered 3D-printed bioceramic incorporates the human adipose-derived stem cells (hADSCs) laden photo-cured hybrid biohydrogel (HG + 0.5AFnSi) comprised of hyaluronic acid methacryloyl (HAMA), gelatin methacryloyl (GelMA), and 0.5% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker. The 3D β-TCP bioceramic compartment is used to provide essential mechanical support for cartilage regeneration in the long term and slow biodegradation. However, the apparent density and compressive strength of the 3D β-TCP bioceramics can be obtained for ~ 94.8% theoretical density and 11.38 ± 1.72 MPa, respectively. In addition, the in vivo results demonstrated that the hADSC + HG + 0.5AFnSi/3D β-TCP of the bilayer osteochondral graft showed a much better osteochondral defect repair outcome in a rabbit model. The other word, the subchondral bone scaffold of 3D β-TCP bioceramic could accelerate the bone formation and integration with the adjacent host cancellous tissue at 12 weeks after surgery. And then, a thicker cartilage layer with a smooth surface and uniformly aligned chondrocytes were observed by providing enough steady mechanical support of the 3D β-TCP bioceramic scaffold.
Collapse
Affiliation(s)
- Chih-Yun Lee
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Swathi Nedunchezian
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Sung-Yen Lin
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Departments of Orthopaedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
| | - Yu-Feng Su
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
- Department of Surgery, Division of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Che-Wei Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - Chung-Hwan Chen
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Departments of Orthopaedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chih-Kuang Wang
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
9
|
Patlataya NN, Bolshakov IN, Khorzhevskii VA, Levenets AA, Medvedeva NN, Cherkashina MA, Nikolaenko MM, Ryaboshapko EI, Dmitrienko AE. Morphological Reconstruction of a Critical-Sized Bone Defect in the Maxillofacial Region Using Modified Chitosan in Rats with Sub-Compensated Type I Diabetes Mellitus. Polymers (Basel) 2023; 15:4337. [PMID: 37960017 PMCID: PMC10647318 DOI: 10.3390/polym15214337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
It is known that complexes based on natural polysaccharides are able to eliminate bone defects. Prolonged hyperglycemia leads to low bone regeneration and a chronic inflammatory response. The purpose of this study was to increase the efficiency of early bone formation in a cavity of critical size in diabetes mellitus in the experiment. The polyelectrolyte complex contains high-molecular ascorbate of chitosan, chondroitin sulfate, sodium hyaluronate, heparin, adgelon serum growth factor, sodium alginate and amorphous nanohydroxyapatite (CH-SA-HA). Studies were conducted on five groups of white female Wistar rats: group 1-regeneration of a bone defect in healthy animals under a blood clot; group 2-regeneration of a bone defect under a blood clot in animals with diabetes mellitus; group 3-bone regeneration in animals with diabetes mellitus after filling the bone cavity with a collagen sponge; group 4-filling of a bone defect with a CH-SA-HA construct in healthy animals; group 5-filling of a bone defect with a CH-SA-HA construct in animals with diabetes mellitus. Implantation of the CH-SA-HA construct into bone cavities in type I diabetic rats can accelerate the rate of bone tissue repair. The inclusion of modifying polysaccharides and apatite agents in the construction may be a prospect for further improvement of the properties of implants.
Collapse
Affiliation(s)
- Nadezhda N. Patlataya
- Department of Fundamental Medical Disciplines, Institute of Medicine and Biology, Faculty of Medicine, State Educational Institution of Higher Education, Moscow State Regional University, Moscow 105005, Russia;
| | - Igor N. Bolshakov
- Department Operative Surgery and Topographic Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Vladimir A. Khorzhevskii
- Department Pathological Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Pathological and Anatomical Department Krasnoyarsk Clinical Regional Hospital, Krasnoyarsk 660022, Russia;
| | - Anatoli A. Levenets
- Department Surgical Dentistry and Maxillofacial Surgery, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | - Nadezhda N. Medvedeva
- Department of Human Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | - Mariya A. Cherkashina
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| | - Matvey M. Nikolaenko
- Department of Maxillofacial and Plastic Surgery, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia;
| | - Ekaterina I. Ryaboshapko
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| | - Anna E. Dmitrienko
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| |
Collapse
|
10
|
Patlataya NN, Bolshakov IN, Levenets AA, Medvedeva NN, Khorzhevskii VA, Cherkashina MA. Experimental Early Stimulation of Bone Tissue Neo-Formation for Critical Size Elimination Defects in the Maxillofacial Region. Polymers (Basel) 2023; 15:4232. [PMID: 37959911 PMCID: PMC10650047 DOI: 10.3390/polym15214232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
A biomaterial is proposed for closing extensive bone defects in the maxillofacial region. The composition of the biomaterial includes high-molecular chitosan, chondroitin sulfate, hyaluronate, heparin, alginate, and inorganic nanostructured hydroxyapatite. The purpose of this study is to demonstrate morphological and histological early signs of reconstruction of a bone cavity of critical size. The studies were carried out on 84 white female rats weighing 200-250 g. The study group consisted of 84 animals in total, 40 in the experimental group and 44 in the control group. In all animals, three-walled bone defects measuring 0.5 × 0.4 × 0.5 cm3 were applied subperiosteally in the region of the angle of the lower jaw and filled in the experimental group using lyophilized gel mass of chitosan-alginate-hydroxyapatite (CH-SA-HA). In control animals, the bone cavities were filled with their own blood clots after bone trepanation and bleeding. The periods for monitoring bone regeneration were 3, 5, and 7 days and 2, 3, 4, 6, 8, and 10 weeks. The control of bone regeneration was carried out using multiple morphological and histological analyses. Results showed that the following process is an obligatory process and is accompanied by the binding and release of angiogenic implantation: the chitosan construct actively replaced early-stage defects with the formation of full-fledged new bone tissue compared to the control group. By the 7th day, morphological analysis showed that the formation of spongy bone tissue could be seen. After 2 weeks, there was a pronounced increase in bone volume (p < 0.01), and at 6 weeks after surgical intervention, the closure of the defect was 70-80%; after 8 weeks, it was 100% without violation of bone morphology with a high degree of mineralization. Thus, the use of modified chitosan after filling eliminates bone defects of critical size in the maxillofacial region, revealing early signs of bone regeneration, and serves as a promising material in reconstructive dentistry.
Collapse
Affiliation(s)
| | - Igor Nicolaevich Bolshakov
- Department Operative Surgery and Topographic Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anatoliy Alexandrovich Levenets
- Department Surgical Dentistry and Maxillofacial Surgery, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | | | - Vladimir Alexeevich Khorzhevskii
- Department Pathological Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
- Krasnoyarsk Regional Pathological and Anatomical Bureau, Krasnoyarsk 660022, Russia
| | | |
Collapse
|
11
|
de Oliveira ES, Ribas-Filho JM, Sigwalt M, Lourenço ES, Figueiredo FP, Czeczko NG, Giovanini AF. Platelet-rich fibrin improves the osteoneogenesis in non-critical defects in calvaria: a histological and histometric study. Acta Cir Bras 2023; 38:e383423. [PMID: 37851781 PMCID: PMC10578093 DOI: 10.1590/acb383423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the effect of platelet-rich fibrin (PRF) and autograft on non-critical bone repair. METHODS Four bone defects (8.3 × 2 mm) were produced on the calvarium of 15 rabbits. The surgical defects were treated with either autograft, autograft associated to PRF, PRF alone, and sham. Animals were euthanized on the second, fourth or sixth posteoperative week. Histological analyses for presence of bone development on deffect was evaluated comparing the groups treated with autograft and without the autograft separately within the same period. Mann-Whitney's tests were used to compare the percentage of bone repair in each post-operative period for autograft × autograft + PRF groups and also for control × PRF groups (α = 5%). RESULTS No differences were observed between the groups that received autograft and autograft associated to PRF on the second and fourth postoperative week, but areas treated with PRF demonstrated significant osteogenesis when compared to sham group on the fourth and sixth weeks. The groups that received PRF (with autograft or alone) demonstrated an enlarged bone deposition when compared to their control group. CONCLUSIONS The use of PRF may influence bone repair and improve the bone deposition in late period of repair demonstrating osteoconductive and osteogenic properties.
Collapse
Affiliation(s)
- Evans Soares de Oliveira
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | - Jurandir Marcondes Ribas-Filho
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | - Marcos Sigwalt
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | | | | | - Nicolau Gregori Czeczko
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| | - Allan Fernando Giovanini
- Faculdade Evangélica do Paraná – Program in Principles of Surgery – Intituto de Pesquisas Médicas – Curitiba (Paraná) – Brazil
| |
Collapse
|
12
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
14
|
Kim MK, Paek K, Woo SM, Kim JA. Bone-on-a-Chip: Biomimetic Models Based on Microfluidic Technologies for Biomedical Applications. ACS Biomater Sci Eng 2023. [PMID: 37183366 DOI: 10.1021/acsbiomaterials.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the increasing importance of preclinical evaluation of newly developed drugs or treatments, in vitro organ or disease models are necessary. Although various organ-specific on-chip (organ-on-a-chip, or OOC) systems have been developed as emerging in vitro models, bone-on-a-chip (BOC) systems that recapitulate the bone microenvironment have been less developed or reviewed compared with other OOCs. The bone is one of the most dynamic organs and undergoes continuous remodeling throughout its lifetime. The aging population is growing worldwide, and healthcare costs are rising rapidly. Since in vitro BOC models that recapitulate native bone niches and pathological features can be important for studying the underlying mechanism of orthopedic diseases and predicting drug responses in preclinical trials instead of in animals, the development of biomimetic BOCs with high efficiency and fidelity will be accelerated further. Here, we review recently engineered BOCs developed using various microfluidic technologies and investigate their use to model the bone microenvironment. We have also explored various biomimetic strategies based on biological, geometrical, and biomechanical cues for biomedical applications of BOCs. Finally, we addressed the limitations and challenging issues of current BOCs that should be overcome to obtain more acceptable BOCs in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyurim Paek
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Mi Woo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| |
Collapse
|
15
|
Dibazar ZE, Nie L, Azizi M, Nekounam H, Hamidi M, Shavandi A, Izadi Z, Delattre C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2799. [PMID: 37049093 PMCID: PMC10095723 DOI: 10.3390/ma16072799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Bone tissue engineering integrates biomaterials, cells, and bioactive agents to propose sophisticated treatment options over conventional choices. Scaffolds have central roles in this scenario, and precisely designed and fabricated structures with the highest similarity to bone tissue have shown promising outcomes. On the other hand, using nanotechnology and nanomaterials as the enabling options confers fascinating properties to the scaffolds, such as precisely tailoring the physicochemical features and better interactions with cells and surrounding tissues. Among different nanomaterials, polymeric nanofibers and carbon nanofibers have attracted significant attention due to their similarity to bone extracellular matrix (ECM) and high surface-to-volume ratio. Moreover, bone ECM is a biocomposite of collagen fibers and hydroxyapatite crystals; accordingly, researchers have tried to mimic this biocomposite using the mineralization of various polymeric and carbon nanofibers and have shown that the mineralized nanofibers are promising structures to augment the bone healing process in the tissue engineering scenario. In this paper, we reviewed the bone structure, bone defects/fracture healing process, and various structures/cells/growth factors applicable to bone tissue engineering applications. Then, we highlighted the mineralized polymeric and carbon nanofibers and their fabrication methods.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz 5165687386, Iran
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
16
|
Hao D, Liu R, Fernandez TG, Pivetti C, Jackson JE, Kulubya ES, Jiang HJ, Ju HY, Liu WL, Panitch A, Lam KS, Leach JK, Farmer DL, Wang A. A bioactive material with dual integrin-targeting ligands regulates specific endogenous cell adhesion and promotes vascularized bone regeneration in adult and fetal bone defects. Bioact Mater 2023; 20:179-193. [PMID: 35663336 PMCID: PMC9160290 DOI: 10.1016/j.bioactmat.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration. However, current strategies lack regulation of the specific endogenous cell populations for vascularized bone regeneration, thus leading to adverse tissue formation and decreased regenerative efficiency. Here, we engineered a biomaterial to regulate endogenous cell adhesion and promote vascularized bone regeneration. The biomaterial works by presenting two synthetic ligands, LLP2A and LXW7, explicitly targeting integrins α4β1 and αvβ3, respectively, expressed on the surfaces of the cells related to bone formation and vascularization, such as mesenchymal stem cells (MSCs), osteoblasts, endothelial progenitor cells (EPCs), and endothelial cells (ECs). In vitro, the LLP2A/LXW7 modified biomaterial improved the adhesion of MSCs, osteoblasts, EPCs, and ECs via integrin α4β1 and αvβ3, respectively. In an adult rat calvarial bone defect model, the LLP2A/LXW7 modified biomaterial enhanced bone formation and vascularization by synergistically regulating endogenous cells with osteogenic and angiogenic potentials, such as DLX5+ cells, osteocalcin+ cells, CD34+/CD45- cells and CD31+ cells. In a fetal sheep spinal bone defect model, the LLP2A/LXW7 modified biomaterial augmented bone formation and vascularization without any adverse effects. This innovative biomaterial offers an off-the-shelf, easy-to-use, and biologically safe product suitable for vascularized bone regeneration in both fetal and adult disease environments.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Tomas Gonzalez Fernandez
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jordan Elizabeth Jackson
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Edwin Samuel Kulubya
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Hong-Jiang Jiang
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Hai-Yang Ju
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Wen-Liang Liu
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
17
|
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, Zhang X. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:249-264. [PMID: 36548196 DOI: 10.1021/acsami.2c15000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sike Lai
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Li
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Weili Fu
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Li A, Sasaki JI, Abe GL, Katata C, Sakai H, Imazato S. Vascularization of a Bone Organoid Using Dental Pulp Stem Cells. Stem Cells Int 2023; 2023:5367887. [PMID: 37200632 PMCID: PMC10188257 DOI: 10.1155/2023/5367887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Bone organoids offer a novel path for the reconstruction and repair of bone defects. We previously fabricated scaffold-free bone organoids using cell constructs comprising only bone marrow-derived mesenchymal stem cells (BMSCs). However, the cells in the millimetre-scale constructs were likely to undergo necrosis because of difficult oxygen diffusion and nutrient delivery. Dental pulp stem cells (DPSCs) are capable of differentiating into vascular endothelial lineages and have great vasculogenic potential under endothelial induction. Therefore, we hypothesized that DPSCs can serve as a vascular source to improve the survival of the BMSCs within the bone organoid. In this study, the DPSCs had greater sprouting ability, and the proangiogenic marker expressions were significantly greater than those of BMSCs. DPSCs were incorporated into the BMSC constructs at various ratios (5%-20%), and their internal structures and vasculogenic and osteogenic characteristics were investigated after endothelial differentiation. As a result, the DPSCs are differentiated into the CD31-positive endothelial lineage in the cell constructs. The incorporation of DPSCs significantly suppressed cell necrosis and improved the viability of the cell constructs. In addition, lumen-like structures were visualized by fluorescently labelled nanoparticles in the DPSC-incorporated cell constructs. The vascularized BMSC constructs were successfully fabricated using the vasculogenic ability of the DPSCs. Next, osteogenic induction was initiated in the vascularized BMSC/DPSC constructs. Compared with only BMSCs, constructs with DPSCs had increased mineralized deposition and a hollow structure. Overall, this study demonstrated that vascularized scaffold-free bone organoids were successfully fabricated by incorporating DPSCs into BMSC constructs, and the biomimetic biomaterial is promising for bone regenerative medicine and drug development.
Collapse
Affiliation(s)
- Aonan Li
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gabriela L. Abe
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chihiro Katata
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hirohiko Sakai
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
19
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
20
|
Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment. Bioact Mater 2022; 24:236-250. [PMID: 36606257 PMCID: PMC9803906 DOI: 10.1016/j.bioactmat.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Carbon fiber reinforced polyetheretherketone (CFRPEEK) possesses a similar elastic modulus to that of human cortical bone and is considered as a promising candidate to replace metallic implants. However, the bioinertness and deficiency of antibacterial activities impede its application in orthopedic and dentistry. In this work, titanium plasma immersion ion implantation (Ti-PIII) is applied to modify CFRPEEK, achieving unique multi-hierarchical nanostructures and active sites on the surface. Then, hybrid polydopamine (PDA)@ZnO-EDN1 nanoparticles (NPs) are introduced to construct versatile surfaces with improved osteogenic and angiogenic properties and excellent antibacterial properties. Our study established that the modified CFRPEEK presented favorable stability and cytocompatibility. Compared with bare CFRPEEK, improved osteogenic differentiation of rat mesenchymal stem cells (BMSCs) and vascularization of human umbilical vein endothelial cells (HUVECs) are found on the functionalized surface due to the zinc ions and EDN1 releasing. In vitro bacteriostasis assay confirms that hybrid PDA@ZnO NPs on the functionalized surface provided an effective antibacterial effect. Moreover, the rat infected model corroborates the enhanced antibiosis and osteointegration of the functionalized CFRPEEK. Our findings indicate that the multilevel nanostructured PDA@ZnO-EDN1 coated CFRPEEK with enhanced antibacterial, angiogenic, and osteogenic capacity has great potential as an orthopedic/dental implant material for clinical application.
Collapse
|
21
|
Cojocaru FD, Balan V, Verestiuc L. Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects. Int J Mol Sci 2022; 23:16190. [PMID: 36555827 PMCID: PMC9788029 DOI: 10.3390/ijms232416190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.
Collapse
Affiliation(s)
| | | | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| |
Collapse
|
22
|
Wu Y, Li M, Su H, Chen H, Zhu Y. Up-to-date progress in bioprinting of bone tissue. Int J Bioprint 2022; 9:628. [PMID: 36636136 PMCID: PMC9830997 DOI: 10.18063/ijb.v9i1.628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022] Open
Abstract
The major apparatuses used for three-dimensional (3D) bioprinting include extrusion-based, droplet-based, and laser-based bioprinting. Numerous studies have been proposed to fabricate bioactive 3D bone tissues using different bioprinting techniques. In addition to the development of bioinks and assessment of their printability for corresponding bioprinting processes, in vitro and in vivo success of the bioprinted constructs, such as their mechanical properties, cell viability, differentiation capability, immune responses, and osseointegration, have been explored. In this review, several major considerations, challenges, and potential strategies for bone bioprinting have been deliberated, including bioprinting apparatus, biomaterials, structure design of vascularized bone constructs, cell source, differentiation factors, mechanical properties and reinforcement, hypoxic environment, and dynamic culture. In addition, up-to-date progress in bone bioprinting is summarized in detail, which uncovers the immense potential of bioprinting in re-establishing the 3D dynamic microenvironment of the native bone. This review aims to assist the researchers to gain insights into the reconstruction of clinically relevant bone tissues with appropriate mechanical properties and precisely regulated biological behaviors.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China,Corresponding author: Yang Wu ()
| | - Ming Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| | - Hao Su
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
23
|
Bai X, Li J, Zhao Z, Wang Q, Lv N, Wang Y, Gao H, Guo Z, Li Z. In vivo evaluation of osseointegration ability of sintered bionic trabecular porous titanium alloy as artificial hip prosthesis. Front Bioeng Biotechnol 2022; 10:928216. [PMID: 36185453 PMCID: PMC9516407 DOI: 10.3389/fbioe.2022.928216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Hydroxyapatite (HA) coatings have been widely used for improving the bone-implant interface (BII) bonding of the artificial joint prostheses. However, the incidence of prosthetic revisions due to aseptic loosening remains high. Porous materials, including three-dimensional (3D) printing, can reduce the elastic modulus and improve osseointegration at the BII. In our previous study, we identified a porous material with a sintered bionic trabecular structure with in vitro and in vivo bio-safety as well as in vivo mechanical safety. This study aimed to compare the difference in osseointegration ability of the different porous materials and HA-coated titanium alloy in the BII. We fabricated sintered bionic trabecular porous titanium acetabular cups, 3D-printed porous titanium acetabular cups, and HA-coated titanium alloy acetabular cups for producing a hip prosthesis suitable for beagle dogs. Subsequently, the imaging and histomorphological analysis of the three materials under mechanical loading in animals was performed (at months 1, 3, and 6). The results suggested that both sintered bionic porous titanium alloy and 3D-printed titanium alloy exhibited superior performances in promoting osseointegration at the BII than the HA-coated titanium alloy. In particular, the sintered bionic porous titanium alloy exhibited a favorable bone ingrowth performance at an early stage (month 1). A comparison of the two porous titanium alloys suggested that the sintered bionic porous titanium alloys exhibit superior bone in growth properties and osseointegration ability. Overall, our findings provide an experimental basis for the clinical application of sintered bionic trabecular porous titanium alloys.
Collapse
Affiliation(s)
- Xiaowei Bai
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Orthopaedics, The 987th Hospital of Logistics Support Force of Chinese PLA, Baoji, China
| | - Ji Li
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhidong Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ningyu Lv
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuxing Wang
- Medical School of Chinese PLA, Beijing, China
| | - Huayi Gao
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zheng Guo
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhongli Li
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhongli Li,
| |
Collapse
|
24
|
Advances in Biomaterials for Promoting Vascularization. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Yu H, Xia L, Leng X, Chen Y, Zhang L, Ni X, Luo J, Leng W. Improved repair of rabbit calvarial defects with hydroxyapatite/chitosan/polycaprolactone composite scaffold-engrafted EPCs and BMSCs. Front Bioeng Biotechnol 2022; 10:928041. [PMID: 35992335 PMCID: PMC9382592 DOI: 10.3389/fbioe.2022.928041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) expressing vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) and bone marrow mesenchymal stem cells (BMSCs) expressing endogenous bone morphogenetic protein-2 (BMP-2) play the important role in new bone formation. This study investigated the effects of a porous hydroxyapatite (HA)/chitosan (CS)/polycaprolactone (PCL) composite scaffold-engrafted EPCs and BMSCs on the expression of BMP-2, VEGF, and PDGF in the calvarial defect rabbit model in vivo. It showed that a three-dimensional composite scaffold was successfully constructed by physical interaction with a pore size of 250 μm. The HA/CS/PCL scaffold degraded slowly within 10 weeks and showed non-cytotoxicity. By X-ray, micro-CT examination, and H&E staining, compared with the HA/CS/PCL group, HA/CS/PCL + EPCs, HA/CS/PCL + BMSCs, and HA/CS/PCL + EPCs + BMSCs groups performed a more obvious repair effect, and the dual factor group presented particularly significant improvement on the percentages of bone volume at week 4 and week 8, with evident bone growth. Osteogenesis marker (BMP-2) and vascularization marker (VEGF and PDGF) expression in the dual factor group were much better than those of the HA/CS/PCL control group and single factor groups. Collectively, the HA/CS/PCL composite scaffold-engrafting EPCs and BMSCs is effective to repair calvarial defects by regulating endogenous expression of BMP-2, VEGF, and PDGF. Thus, this study provides important implications for the potential clinical application of biomaterial composite scaffold-engrafted engineering cells.
Collapse
Affiliation(s)
- Hedong Yu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Xieyuan Leng
- The First Clinical College, Anhui Medical University, Hefei, China
| | - Yongji Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Li Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Xiaobing Ni
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Weidong Leng, ; Jie Luo,
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
- *Correspondence: Weidong Leng, ; Jie Luo,
| |
Collapse
|
26
|
Won JE, Kim WJ, Ryu JJ, Shim JS. Guided Bone Regeneration with a Nitric-Oxide Releasing Polymer Inducing Angiogenesis and Osteogenesis in Critical-Sized Bone Defects. Macromol Biosci 2022; 22:e2200162. [PMID: 35895972 DOI: 10.1002/mabi.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Indexed: 11/07/2022]
Abstract
Synthetic scaffolds, as bone grafts, provide a favorable environment for the repair and growth of new bone tissue at defect sites. However, the lack of angio- and osteo-induction limits the usefulness of artificial scaffolds for bone regeneration. Nitric oxide (NO) performs essential roles in healing processes, such as regulating inflammation and addressing incomplete revascularization. In this study, we developed a polymer capable of controlled NO release to promote the osteogenic capacity in artificial scaffolds. The biological efficiency of the NO compound was assessed by its effect on pre-osteoblasts and macrophages in vitro and the extent of vascularization and bone formation in the calvaria defect model in vivo. The compound did not inhibit cell adhesion or proliferation. NO treatment significantly increased both alkaline phosphatase activity and mineralization in pre-osteoblasts. Macrophages treated with NO secreted high levels of anti-inflammatory factors and adopted the pro-regenerative M2 phenotype. In the critical-sized defect model, the collagen scaffold containing the NO compound enhanced neovascularization and bone formation. The developed NO-releasing system promoted osteogenesis and regeneration of damaged bone tissue. As the multiple functions of NO involve macrophage modulation and angiogenesis, such release systems may be valuable for guiding bone regeneration in critical-sized defects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jong-Eun Won
- Institute for Clinical Dental Research, Department of Dentistry, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang-si, 37673, Republic of Korea
| | - Jae Jun Ryu
- Department of Dentistry, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Ji Suk Shim
- Institute for Clinical Dental Research, Department of Dentistry, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| |
Collapse
|
27
|
Belaid H, Barou C, Collart-Dutilleul PY, Desoutter A, Kajdan M, Bernex F, Tétreau R, Cuisinier F, Barés J, Huon V, Teyssier C, Cornu D, Cavaillès V, Bechelany M. Fabrication of Radio-Opaque and Macroporous Injectable Calcium Phosphate Cement. ACS APPLIED BIO MATERIALS 2022; 5:3075-3085. [PMID: 35584545 DOI: 10.1021/acsabm.2c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this work was the development of injectable radio-opaque and macroporous calcium phosphate cement (CPC) to be used as a bone substitute for the treatment of pathologic vertebral fractures. A CPC was first rendered radio-opaque by the incorporation of zirconium dioxide (ZrO2). In order to create macroporosity, poly lactic-co-glycolic acid (PLGA) microspheres around 100 μm were homogeneously incorporated into the CPC as observed by scanning electron microscopy. Physicochemical analyses by X-ray diffraction and Fourier transform infrared spectroscopy confirmed the brushite phase of the cement. The mechanical properties of the CPC/PLGA cement containing 30% PLGA (wt/wt) were characterized by a compressive strength of 2 MPa and a Young's modulus of 1 GPa. The CPC/PLGA exhibited initial and final setting times of 7 and 12 min, respectively. Although the incorporation of PLGA microspheres increased the force necessary to inject the cement and decreased the percentage of injected mass as a function of time, the CPC/PLGA appeared fully injectable at 4 min. Moreover, in comparison with CPC, CPC/PLGA showed a full degradation in 6 weeks (with 100% mass loss), and this was associated with an acidification of the medium containing the CPC/PLGA sample (pH of 3.5 after 6 weeks). A cell viability test validated CPC/PLGA biocompatibility, and in vivo analyses using a bone defect assay in the caudal vertebrae of Wistar rats showed the good opacity of the CPC through the tail and a significant increased degradation of the CPC/PLGA cement a month after implantation. In conclusion, this injectable CPC scaffold appears to be an interesting material for bone substitution.
Collapse
Affiliation(s)
- Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Carole Barou
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
- Biologics 4 Life, 84120 Pertuis, France
| | | | - Alban Desoutter
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
- BioCampus, RHEM, Université de Montpellier, CNRS UAR3426, INSERM, F-34298 Montpellier, France
| | - Raphaël Tétreau
- Service d'Imagerie, Institut Régional du Cancer Montpellier, Montpellier F-34298, France
| | - Frédéric Cuisinier
- Laboratoire de Bioingénierie et Nanosciences, EA4203, Université de Montpellier, 34193 Montpellier, France
| | - Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Vincent Huon
- Laboratoire de Mécanique et Génie Civil, Univ Montpellier, CNRS, Montpellier 34090, France
| | - Catherine Teyssier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
28
|
Shibli JA, Nagay BE, Suárez LJ, Urdániga Hung C, Bertolini M, Barão VAR, Souza JGS. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application. Tissue Eng Part C Methods 2022; 28:179-192. [PMID: 35166162 DOI: 10.1089/ten.tec.2022.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of tissue engineering to restore and to build new bone tissue is under active research at present. The following review summarizes the latest studies and clinical trials related to the use of osteogenic cells, biomaterials, and scaffolds to regenerate bone defects in the human jaws. Bone tissue engineering (BTE) combined with scaffolds have provided a range of advantages not only to transport the target cells to their desired destination but also to support the early phases of the mineralization process. The mechanical, chemical, and physical properties of scaffolds have been evaluated as they affect the quantity of bone regeneration, particularly in the oral cavity. This review also highlighted the mechanisms underlying bone homeostasis, including the key transcription factors and signaling pathways responsible for regulating the differentiation of osteoblast lineage. Furthering understanding of the mechanisms of cellular signaling in skeletal remodeling with the use of mesenchymal stem cells and the proper scaffold properties are key-factors to enable the incorporation of new and effective treatment methods into clinical practice for bone tissue regeneration using BTE. Impact Statement The use of mesenchymal stem cells able to differentiate in osteoblast lineage for bone tissue engineering (BTE) remains a major challenge. Viable cells and signaling pathways play an essential role in bone repair and regeneration of critical size defects. Recent advances in scaffolds and biological factors such as growth factors (e.g., cytokines and hormones) controlling the osteogenic signaling cascade are now becoming new players affecting the osteogenic potential of cells. Such techniques will significantly impact the maxillofacial bone tissue replacement, repair, and regeneration for patients without having to rely on donor banks or other surgical sites.
Collapse
Affiliation(s)
- Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Lina J Suárez
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Celeste Urdániga Hung
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
| |
Collapse
|
29
|
Huang L, Gong W, Huang G, Li J, Wu J, Wang Y, Dong Y. The additive effects of photobiomodulation and bioactive glasses on enhancing early angiogenesis. Biomed Mater 2022; 17. [PMID: 35477157 DOI: 10.1088/1748-605x/ac6b07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Early angiogenesis is important to facilitate biomaterials' osteogenic effects and avoid the bone regeneration failure for large-sized bone defects. Bioactive glasses (BG) have been widely utilized as a biomaterial for bone repair. However, the early angiogenesis of BG may be inadequate. In this study, we explored the effects of photobiomodulation (PBM) combined with BG on early angiogenesis to solve this bottleneck problem of insufficient early angiogenesis. In vitro, human umbilical vein endothelial cells (HUVECs) were cultured with BG extracts and treated with PBM using 1 J/cm2. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) and tubule formation assay were utilized to detect HUVECs' proliferation, vascular growth factor genes expression and tubules formation. In vivo, bone defects at the femoral metaphysis in Sprague-Dawley rats were treated with BG particulates and PBM at 120 J/cm2. Immunohistochemical staining was applied to observe the vascular-like structure formation. In vitro results showed that PBM combined with BG significantly promoted HUVECs' proliferation, genes expression and mature tubules formation. On days 2, 4 and 7, the VEGF gene expression in BG+PBM group was 2.70-, 2.59- and 3.05-fold higher than control (P<0.05), and higher than PBM and BG groups (P<0.05). On days 4 and 7, the bFGF gene expression in BG+PBM group was 2.42- and 1.82-fold higher than control (P<0.05), and also higher than PBM and BG groups (P<0.05). Tube formation assay showed that mature tubules formed in BG+PBM and PBM groups after 4 hours. The tubules number in BG+PBM group was significantly higher than other groups (P<0.05). In vivo results further confirmed that PBM induced early angiogenesis. More vascular-like structures were observed in BG+PBM and PBM groups 2-week post surgery. In conclusion, with the optimum PBM fluence and BG concentration, PBM combined with BG exerted additive effects on enhancing early angiogenesis.
Collapse
Affiliation(s)
- Lidong Huang
- Peking University School of Stomatology, 22 Zhongguancun South Street, Beijing, 100081, CHINA
| | - Weiyu Gong
- Peking University School of Stomatology, 22 Zhongguancun South Street, Beijing, Beijing, 100081, CHINA
| | - Guibin Huang
- Peking University School of Stomatology, 22 Zhongguancun South Street, Beijing, Beijing, 100081, CHINA
| | - Jingyi Li
- Peking University School of Stomatology, 22 Zhongguancun South Street, Beijing, Beijing, 100081, CHINA
| | - Jilin Wu
- Peking University School of Stomatology, 22 Zhongguancun South Street, Beijing, Beijing, 100081, CHINA
| | - Yuguang Wang
- Peking University School of Stomatology, 22 Zhongguancun South Street, Beijing, Beijing, 100081, CHINA
| | - Yanmei Dong
- Peking University School of Stomatology, 22 Zhongguancun South Street, Beijing, Beijing, 100081, CHINA
| |
Collapse
|
30
|
Lin Z, Zhang X, Fritch MR, Li Z, Kuang B, Alexander PG, Hao T, Cao G, Tan S, Bruce KK, Lin H. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials 2022; 283:121451. [DOI: 10.1016/j.biomaterials.2022.121451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 01/12/2023]
|
31
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Li J, Ahmed A, Degrande T, De Baerdemaeker J, Al-Rasheed A, van den Beucken JJ, Jansen JA, Alghamdi HS, Walboomers XF. Histological evaluation of titanium fiber mesh-coated implants in a rabbit femoral condyle model. Dent Mater 2021; 38:613-621. [PMID: 34955235 DOI: 10.1016/j.dental.2021.12.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study was aimed to comparatively evaluate new bone formation into the pores of a flexible titanium fiber mesh (TFM) applied on the surface of implant. METHODS Twenty-eight custom made cylindrical titanium implants (4 ×10 mm) with and without a layer of two different types of TFM (fiber diameter of 22 µm and 50 µm, volumetric porosity ~70%) were manufactured and installed bilaterally in the femoral condyles of 14 rabbits. The elastic modulus for these two TFM types was ~20 GPa and ~5 GPa respectively, whereas the solid titanium was ~110 GPa. The implants (Control, TFM-22, TFM-50) were retrieved after 14 weeks of healing and prepared for histological assessment. The percentage of the bone area (BA%), the bone-to-implant contact (BIC%) and amount were determined. RESULTS Newly formed bone into mesh porosity was observed for all three types of implants. Histomorphometric analyses revealed significantly higher (~2.5 fold) BA% values for TFM-22 implants (30.9 ± 9.5%) compared to Control implants (12.7 ± 6.0%), whereas BA% for TMF-50 did not significantly differ compared with Control implants. Furthermore, both TFM-22 and TFM-50 implants showed significantly higher BIC% values (64.9 ± 14.0%, ~2.5 fold; 47.1 ± 14.1%, ~2 fold) compared to Control (23.6 ± 17.4%). Finally, TFM-22 implants showed more and thicker trabeculae in the peri-implant region. SIGNIFICANCE This in vivo study demonstrated that implants with a flexible coating of TFM improve bone formation within the inter-fiber space and the peri-implant region.
Collapse
Affiliation(s)
- Jinmeng Li
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Abdulaziz Al-Rasheed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | - John A Jansen
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Hamdan S Alghamdi
- Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands; Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
33
|
Liang W, Wu X, Dong Y, Chen X, Zhou P, Xu F. Mechanical stimuli-mediated modulation of bone cell function-implications for bone remodeling and angiogenesis. Cell Tissue Res 2021; 386:445-454. [PMID: 34665321 DOI: 10.1007/s00441-021-03532-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Bone remodeling, expressed as bone formation and turnover, is a complex and dynamic process closely related to its form and function. Different events, such as development, aging, and function, play a critical role in bone remodeling and metabolism. The ability of the bone to adapt to new loads and forces has been well known and has proven useful in orthopedics and insightful for research in bone and cell biology. Mechanical stimulation is one of the most important drivers of bone metabolism. Interestingly, different types of forces will have specific consequences in bone remodeling, and their beneficial effects can be traced using different biomarkers. In this narrative review, we summarize the major mediators and events in bone remodeling, focusing on the effects of mechanical stimulation on bone metabolism, cell populations, and ultimately, bone health.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
34
|
Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Qiu H. The role of natural polymers in bone tissue engineering. J Control Release 2021; 338:571-582. [PMID: 34481026 DOI: 10.1016/j.jconrel.2021.08.055] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
Bone is a dynamic self-healing organ and a continuous remodeling ensures the restoration of the bone structure and function over time. However, bone remodeling is not able to repair large traumatic injuries. Therefore, surgical interventions and bone substitutes are required. The aim of bone tissue engineering is to repair and regenerate tissues and engineered a bone graft as a bone substitute. To met this goal, several natural or synthetic polymers have been used to develop a biocompatible and biodegradable polymeric construct. Among the polymers, natural polymers have higher biocompatibility, excellent biodegradability, and no toxicity. So far, collagen, chitosan, gelatin, silk fibroin, alginate, cellulose, and starch, alone or in combination, have been widely used in bone tissue engineering. These polymers have been used as scaffolds, hydrogels, and micro-nanospheres. The functionalization of the polymer with growth factors and bioactive glasses increases the potential use of polymers for bone regeneration. As bone is a dynamic highly vascularized tissue, the vascularization of the polymeric scaffolds is vital for successful bone regeneration. Several in vivo and in vitro strategies have been used to vascularize the polymeric scaffolds. In this review, the application of the most commonly used natural polymers is discussed.
Collapse
Affiliation(s)
- Linqi Guo
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Zhihui Liang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Liang Yang
- Department of Orthopaedics, The People's Hospital of Daqing, Daqing 163000, China
| | - Wenyan Du
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Tao Yu
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Huayu Tang
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Changde Li
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Hongbin Qiu
- Department of Public Health, Jiamusi University, Jiamusi, 154000, China.
| |
Collapse
|
35
|
Shanbhag S, Rashad A, Nymark EH, Suliman S, de Lange Davies C, Stavropoulos A, Bolstad AI, Mustafa K. Spheroid Coculture of Human Gingiva-Derived Progenitor Cells With Endothelial Cells in Modified Platelet Lysate Hydrogels. Front Bioeng Biotechnol 2021; 9:739225. [PMID: 34513817 PMCID: PMC8427051 DOI: 10.3389/fbioe.2021.739225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ahmad Rashad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ellen Helgeland Nymark
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Drapal V, Gamble JM, Robinson JL, Tamerler C, Arnold PM, Friis EA. Integration of clinical perspective into biomimetic bioreactor design for orthopedics. J Biomed Mater Res B Appl Biomater 2021; 110:321-337. [PMID: 34510706 PMCID: PMC9292211 DOI: 10.1002/jbm.b.34929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
The challenges to accommodate multiple tissue formation metrics in conventional bioreactors have resulted in an increased interest to explore novel bioreactor designs. Bioreactors allow researchers to isolate variables in controlled environments to quantify cell response. While current bioreactor designs can effectively provide either mechanical, electrical, or chemical stimuli to the controlled environment, these systems lack the ability to combine all these stimuli simultaneously to better recapitulate the physiological environment. Introducing a dynamic and systematic combination of biomimetic stimuli bioreactor systems could tremendously enhance its clinical relevance in research. Thus, cues from different tissue responses should be studied collectively and included in the design of a biomimetic bioreactor platform. This review begins by providing a summary on the progression of bioreactors from simple to complex designs, focusing on the major advances in bioreactor technology and the approaches employed to better simulate in vivo conditions. The current state of bioreactors in terms of their clinical relevance is also analyzed. Finally, this review provides a comprehensive overview of individual biophysical stimuli and their role in establishing a biomimetic microenvironment for tissue engineering. To date, the most advanced bioreactor designs only incorporate one or two stimuli. Thus, the cell response measured is likely unrelated to the actual clinical performance. Integrating clinically relevant stimuli in bioreactor designs to study cell response can further advance the understanding of physical phenomenon naturally occurring in the body. In the future, the clinically informed biomimetic bioreactor could yield more efficiently translatable results for improved patient care.
Collapse
Affiliation(s)
- Victoria Drapal
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA
| | - Jordan M Gamble
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L Robinson
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| | - Paul M Arnold
- Carle School of Medicine, University of Illinois-Champaign Urbana, Champaign, Illinois, USA
| | - Elizabeth A Friis
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
37
|
Fitzpatrick V, Martín-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DL. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 2021; 276:120995. [PMID: 34256231 PMCID: PMC8408341 DOI: 10.1016/j.biomaterials.2021.120995] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our goal was to generate functionalized 3D-printed scaffolds for bone regeneration using silk-hydroxyapatite bone cements and osteoinductive, proangiogenic and neurotrophic growth factors or morphogens for accelerated bone formation. 3D printing was utilized to generate macroporous scaffolds with controlled geometries and architectures that promote osseointegration. We build on the knowledge that the osteoinductive factor Bone Morphogenetic Protein-2 (BMP2) can also positively impact vascularization, Vascular Endothelial Growth Factor (VEGF) can impact osteoblastic differentiation, and that Neural Growth Factor (NGF)-mediated signaling can influence bone regeneration. We assessed functions on the 3D printed construct via the osteogenic differentiation of human mesenchymal stem cells; migration and proliferation of human umbilical vein endothelial cells; and proliferation of human induced neural stem cells. The scaffolds provided mechanical properties suitable for bone and the materials were cytocompatible, osteoconductive and maintained the activity of the morphogens and cytokines. Synergistic outcomes between BMP-2, VEGF and NGF in terms of osteoblastic differentiation in vitro were identified, based on the upregulation of genes associated with osteoblastic differentiation (Runt-related transcription factor-2, Osteopontin, Bone Sialoprotein). Additional studies will be required to assess these scaffold designs in vivo. These results are expected to have a strong impact in bone regeneration in dental, oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Anna Deck
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Anne Valat
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dana Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
38
|
Pedrero SG, Llamas-Sillero P, Serrano-López J. A Multidisciplinary Journey towards Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4896. [PMID: 34500986 PMCID: PMC8432705 DOI: 10.3390/ma14174896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Millions of patients suffer yearly from bone fractures and disorders such as osteoporosis or cancer, which constitute the most common causes of severe long-term pain and physical disabilities. The intrinsic capacity of bone to repair the damaged bone allows normal healing of most small bone injuries. However, larger bone defects or more complex diseases require additional stimulation to fully heal. In this context, the traditional routes to address bone disorders present several associated drawbacks concerning their efficacy and cost-effectiveness. Thus, alternative therapies become necessary to overcome these limitations. In recent decades, bone tissue engineering has emerged as a promising interdisciplinary strategy to mimic environments specifically designed to facilitate bone tissue regeneration. Approaches developed to date aim at three essential factors: osteoconductive scaffolds, osteoinduction through growth factors, and cells with osteogenic capability. This review addresses the biological basis of bone and its remodeling process, providing an overview of the bone tissue engineering strategies developed to date and describing the mechanisms that underlie cell-biomaterial interactions.
Collapse
Affiliation(s)
- Sara G. Pedrero
- Experimental Hematology Lab, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (S.G.P.); (P.L.-S.)
| | - Pilar Llamas-Sillero
- Experimental Hematology Lab, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (S.G.P.); (P.L.-S.)
- Hematology Department, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Juana Serrano-López
- Experimental Hematology Lab, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (S.G.P.); (P.L.-S.)
| |
Collapse
|
39
|
Iimori Y, Morioka M, Koyamatsu S, Tsumaki N. Implantation of Human-Induced Pluripotent Stem Cell-Derived Cartilage in Bone Defects of Mice. Tissue Eng Part A 2021; 27:1355-1367. [PMID: 33567995 DOI: 10.1089/ten.tea.2020.0346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although bone has an innate capacity for repair, clinical situations such as comminuted fracture, open fracture, or the surgical resection of bone tumors produce critical-sized bone defects that exceed the capacity and require external intervention. Initiating endochondral ossification (EO) by the implantation of a cartilaginous template into the bone defect is a relatively new approach to cure critical-sized bone defects. The combination of chondrogenically primed mesenchymal stromal/stem cells and artificial scaffolds has been the most extensively studied approach for inducing endochondral bone formation in bone defects. In this study, we prepared cartilage (human-induced pluripotent stem [hiPS]-Cart) from hiPS cells (hiPSCs) in a scaffoldless manner and implanted hiPS-Cart into 3.5 mm large defects created in the femurs of immunodeficient mice to examine the repair capacity. For the control, nothing was implanted into the defects. The implantation of hiPS-Cart significantly induced more new bone in the defect compared with the control. Culture periods for the chondrogenic differentiation of hiPSCs significantly affected the speed of bone induction, with less time resulting in faster bone formation. Histological analysis revealed that hiPS-Cart induced new bone formation in a manner resembling EO of the secondary ossification center, with the cartilage canal, which extended from the periphery to the center of hiPS-Cart, initially forming in unmineralized cartilage, followed by chondrocyte hypertrophy at the center. In the newly formed bone, the majority of osteocytes, osteoblasts, and adipocytes expressed human nuclear antigen (HNA), suggesting that these types of cells mainly derived from the perichondrium of hiPS-Cart. Osteoclasts and blood vessel cells did not express HNA and thus were mouse. Finally, integration between the newly formed bone and mouse femur was attained substantially. Although hiPS-Cart induced new bone that filled bone defects, the newly formed bone, which is a hybrid of human and mouse, had not remodeled to mature bone within the observation period of this study (28 weeks).
Collapse
Affiliation(s)
- Yuki Iimori
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Miho Morioka
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Saeko Koyamatsu
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
41
|
Yang YP, Gadomski BC, Bruyas A, Easley J, Labus KM, Nelson B, Palmer RH, Stewart H, McGilvray K, Puttlitz CM, Regan D, Stahl A, Lui E, Li J, Moeinzadeh S, Kim S, Maloney W, Gardner MJ. Investigation of a Prevascularized Bone Graft for Large Defects in the Ovine Tibia. Tissue Eng Part A 2021; 27:1458-1469. [PMID: 33858216 DOI: 10.1089/ten.tea.2020.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo bioreactors are a promising approach for engineering vascularized autologous bone grafts to repair large bone defects. In this pilot parametric study, we first developed a three-dimensional (3D) printed scaffold uniquely designed to accommodate inclusion of a vascular bundle and facilitate growth factor delivery for accelerated vascular invasion and ectopic bone formation. Second, we established a new sheep deep circumflex iliac artery (DCIA) model as an in vivo bioreactor for engineering a vascularized bone graft and evaluated the effect of implantation duration on ectopic bone formation. Third, after 8 weeks of implantation around the DCIA, we transplanted the prevascularized bone graft to a 5 cm segmental bone defect in the sheep tibia, using the custom 3D printed bone morphogenic protein 2 (BMP-2) loaded scaffold without prior in vivo bioreactor maturation as a control. Analysis by micro-computed tomography and histomorphometry found ectopic bone formation in BMP-2 loaded scaffolds implanted for 8 and 12 weeks in the iliac pouch, with greater bone formation occurring after 12 weeks. Grafts transplanted to the tibial defect supported bone growth, mainly on the periphery of the graft, but greater bone growth and less soft tissue invasion was observed in the avascular BMP-2 loaded scaffold implanted directly into the tibia without prior in vivo maturation. Histopathological evaluation noted considerably greater vascularity in the bone grafts that underwent in vivo maturation with an inserted vascular bundle compared with the avascular BMP-2 loaded graft. Our findings indicate that the use of an initial DCIA in vivo bioreactor maturation step is a promising approach to developing vascularized autologous bone grafts, although scaffolds with greater osteoinductivity should be further studied. Impact statement This translational pilot study aims at combining a tissue engineering scaffold strategy, in vivo prevascularization, and a modified transplantation technique to accelerate large segmental bone defect repair. First, we three-dimensional (3D) printed a 5 cm scaffold with a unique design to facilitate vascular bundle inclusion and osteoinductive growth factor delivery. Second, we established a new sheep deep circumflex iliac artery model as an in vivo bioreactor for prevascularizing the novel 3D printed osteoinductive scaffold. Subsequently, we transplanted the prevascularized bone graft to a clinically relevant 5 cm segmental bone defect in the sheep tibia for bone regeneration.
Collapse
Affiliation(s)
- Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Material Science and Engineering, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Benjamin C Gadomski
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Arnaud Bruyas
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Jeremiah Easley
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin M Labus
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brad Nelson
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Ross H Palmer
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Holly Stewart
- Department of Clinical Sciences, and Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Christian M Puttlitz
- Department of Mechanical Engineering and School of Biomedical Engineering, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Dan Regan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexander Stahl
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Chemistry and Stanford University, Stanford, California, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Jiannan Li
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - William Maloney
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
42
|
Masson-Meyers DS, Tayebi L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J Tissue Eng Regen Med 2021; 15:747-762. [PMID: 34058083 DOI: 10.1002/term.3225] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Insufficient vascularization during tissue repair is often associated with poor clinical outcomes. This is a concern especially when patients have critical-sized injuries, where the size of the defect restricts vascularity, or even in small defects that have to be treated under special conditions, such as after radiation therapy (relevant to tumor resection) that hinders vascularity. In fact, poor vascularization is one of the major obstacles for clinical application of tissue engineering methods in soft tissue repair. As a key issue, lack of graft integration, caused by inadequate vascularization after implantation, can lead to graft failure. Moreover, poor vascularization compromises the viability of cells seeded in deep portions of scaffolds/graft materials, due to hypoxia and insufficient nutrient supply. In this article we aim to review vascularization strategies employed in tissue engineering techniques to repair soft tissues. For this purpose, we start by providing a brief overview of the main events during the physiological wound healing process in soft tissues. Then, we discuss how tissue repair can be achieved through tissue engineering, and considerations with regards to the choice of scaffold materials, culture conditions, and vascularization techniques. Next, we highlight the importance of vascularization, along with strategies and methods of prevascularization of soft tissue equivalents, particularly cell-based prevascularization. Lastly, we present a summary of commonly used in vitro methods during the vascularization of tissue-engineered soft tissue constructs.
Collapse
Affiliation(s)
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
43
|
Pavek A, Nartker C, Saleh M, Kirkham M, Khajeh Pour S, Aghazadeh-Habashi A, Barrott JJ. Tissue Engineering Through 3D Bioprinting to Recreate and Study Bone Disease. Biomedicines 2021; 9:551. [PMID: 34068971 PMCID: PMC8156159 DOI: 10.3390/biomedicines9050551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
The applications of 3D bioprinting are becoming more commonplace. Since the advent of tissue engineering, bone has received much attention for the ability to engineer normal bone for tissue engraftment or replacement. While there are still debates on what materials comprise the most durable and natural replacement of normal tissue, little attention is given to recreating diseased states within the bone. With a better understanding of the cellular pathophysiology associated with the more common bone diseases, these diseases can be scaled down to a more throughput way to test therapies that can reverse the cellular pathophysiology. In this review, we will discuss the potential of 3D bioprinting of bone tissue in the following disease states: osteoporosis, Paget's disease, heterotopic ossification, osteosarcoma, osteogenesis imperfecta, and rickets disease. The development of these 3D bioprinted models will allow for the advancement of novel therapy testing resulting in possible relief to these chronic diseases.
Collapse
Affiliation(s)
- Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | | | - Matthew Kirkham
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| |
Collapse
|
44
|
Correia CR, Bjørge IM, Nadine S, Mano JF. Minimalist Tissue Engineering Approaches Using Low Material-Based Bioengineered Systems. Adv Healthc Mater 2021; 10:e2002110. [PMID: 33709572 DOI: 10.1002/adhm.202002110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Indexed: 12/14/2022]
Abstract
From an "over-engineering" era in which biomaterials played a central role, now it is observed to the emergence of "developmental" tissue engineering (TE) strategies which rely on an integrative cell-material perspective that paves the way for cell self-organization. The current challenge is to engineer the microenvironment without hampering the spontaneous collective arrangement ability of cells, while simultaneously providing biochemical, geometrical, and biophysical cues that positively influence tissue healing. These efforts have resulted in the development of low-material based TE strategies focused on minimizing the amount of biomaterial provided to the living key players of the regenerative process. Through a "minimalist-engineering" approach, the main idea is to fine-tune the spatial balance occupied by the inanimate region of the regenerative niche toward maximum actuation of the key living components during the healing process.
Collapse
Affiliation(s)
- Clara R. Correia
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Isabel M. Bjørge
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
45
|
Individualized plasticity autograft mimic with efficient bioactivity inducing osteogenesis. Int J Oral Sci 2021; 13:14. [PMID: 33846295 PMCID: PMC8041815 DOI: 10.1038/s41368-021-00120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mineralized tissue regeneration is an important and challenging part of the field of tissue engineering and regeneration. At present, autograft harvest procedures may cause secondary trauma to patients, while bone scaffold materials lack osteogenic activity, resulting in a limited application. Loaded with osteogenic induction growth factor can improve the osteoinductive performance of bone graft, but the explosive release of growth factor may also cause side effects. In this study, we innovatively used platelet-rich fibrin (PRF)-modified bone scaffolds (Bio-Oss®) to replace autograft, and used cytokine (BMP-2) to enhance osteogenesis. Encouragingly, this mixture, which we named “Autograft Mimic (AGM)”, has multiple functions and advantages. (1) The fiber network provided by PRF binds the entire bone scaffold together, thereby shaping the bone grafts and maintaining the space of the defect area. (2) The sustained release of BMP-2 from bone graft promoted bone regeneration continuously. (3) AGM recruited bone marrow mesenchymal stem cells (BMSCs) and promote their proliferation, migration, and osteogenic differentiation. Thus, AGM developed in this study can improve osteogenesis, and provide new guidance for the development of clinical bone grafts.
Collapse
|
46
|
Nuge T, Liu X, Tshai KY, Lim SS, Nordin N, Hoque ME, Liu Z. Accelerated wound closure: Systematic evaluation of cellulose acetate effects on biologically active molecules release from amniotic fluid stem cells. Biotechnol Appl Biochem 2021; 69:906-919. [PMID: 33826152 DOI: 10.1002/bab.2162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/26/2021] [Indexed: 01/07/2023]
Abstract
Despite a lot of intensive research on cell-scaffold interaction, the focus is mainly on the capacity of construct scaffolds to regulate cell mobility, migration, and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions have profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold are a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSC interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSC interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Kim Yeow Tshai
- Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Malaysia
| | - Siew Shee Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Malaysia
| | - Norshariza Nordin
- Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| |
Collapse
|
47
|
Twohig C, Helsinga M, Mansoorifar A, Athirasala A, Tahayeri A, França CM, Pajares SA, Abdelmoniem R, Scherrer S, Durual S, Ferracane J, Bertassoni LE. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111976. [PMID: 33812604 DOI: 10.1016/j.msec.2021.111976] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
A functional vascular supply is a key component of any large-scale tissue, providing support for the metabolic needs of tissue-remodeling cells. Although well-studied strategies exist to fabricate biomimetic scaffolds for bone regeneration, success rates for regeneration in larger defects can be improved by engineering microvascular capillaries within the scaffolds to enhance oxygen and nutrient supply to the core of the engineered tissue as it grows. Even though the role of calcium and phosphate has been well understood to enhance osteogenesis, it remains unclear whether calcium and phosphate may have a detrimental effect on the vasculogenic and angiogenic potential of endothelial cells cultured on 3D printed bone scaffolds. In this study, we presented a novel dual-ink bioprinting method to create vasculature interwoven inside CaP bone constructs. In this method, strands of a CaP ink and a sacrificial template material was used to form scaffolds containing CaP fibers and microchannels seeded with vascular endothelial and mesenchymal stem cells (MSCs) within a photo-crosslinkable gelatin methacryloyl (GelMA) hydrogel material. Our results show similar morphology of growing vessels in the presence of CaP bioink, and no significant difference in endothelial cell sprouting was found. Furthermore, our initial results showed the differentiation of hMSCs into pericytes in the presence of CaP ink. These results indicate the feasibility of creating vascularized bone scaffolds, which can be used for enhancing vascular formation in the core of bone scaffolds.
Collapse
Affiliation(s)
- Chelsea Twohig
- Department of Periodontology, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Mari Helsinga
- Department of Periodontology, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Amin Mansoorifar
- Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Avathamsa Athirasala
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, OR, USA
| | - Anthony Tahayeri
- Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Cristiane Miranda França
- Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Silvia Amaya Pajares
- Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Reyan Abdelmoniem
- Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Susanne Scherrer
- University of Geneva, University Clinic of Dental Medicine, Geneva, Switzerland
| | - Stéphane Durual
- University of Geneva, University Clinic of Dental Medicine, Geneva, Switzerland
| | - Jack Ferracane
- Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, OR, USA
| | - Luiz E Bertassoni
- Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, OR, USA; Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, OR, USA; Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, OR, USA; Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health and Science University, OR, USA.
| |
Collapse
|
48
|
Shokouhimehr M, Theus AS, Kamalakar A, Ning L, Cao C, Tomov ML, Kaiser JM, Goudy S, Willett NJ, Jang HW, LaRock CN, Hanna P, Lechtig A, Yousef M, Martins JDS, Nazarian A, Harris MB, Mahmoudi M, Serpooshan V. 3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration. Polymers (Basel) 2021; 13:polym13071099. [PMID: 33808295 PMCID: PMC8036866 DOI: 10.3390/polym13071099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied. Scaffolds are bioprinted with the geometry that closely correspond to that of the bone defect, using an osteoconductive, highly elastic, surgically friendly bioink mainly composed of hydroxyapatite. Incorporation of SPIONs into HB bioink results in enhanced bacteriostatic properties of bone grafts while exhibiting no cytotoxicity. In vitro culture of mouse embryonic cells and human osteoblast-like cells remain viable and functional up to 14 days on printed HB scaffolds. Implantation of damage-specific bioprinted constructs into a rat model of femoral bone defect demonstrates significant regenerative effect over the 2-week time course. While no infection, immune rejection, or fibrotic encapsulation is observed, HB grafts show rapid integration with host tissue, ossification, and growth of new bone. These results suggest a great translational potential for 3D bioprinted HB scaffolds, laden with functional nanoparticles, for hard tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea; (M.S.); (H.W.J.)
| | - Andrea S. Theus
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
| | - Archana Kamalakar
- Department of Otolaryngology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.K.); (S.G.)
| | - Liqun Ning
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
| | - Cong Cao
- Department of Physics, Emory University, Atlanta, GA 30322, USA;
| | - Martin L. Tomov
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
| | - Jarred M. Kaiser
- Department of Orthopedics, Emory University, Atlanta, GA 30322, USA;
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA 30033, USA
| | - Steven Goudy
- Department of Otolaryngology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.K.); (S.G.)
| | - Nick J. Willett
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
- Department of Orthopedics, Emory University, Atlanta, GA 30322, USA;
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA 30033, USA
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea; (M.S.); (H.W.J.)
| | - Christopher N. LaRock
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Philip Hanna
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (P.H.); (A.L.); (A.N.)
| | - Aron Lechtig
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (P.H.); (A.L.); (A.N.)
| | - Mohamed Yousef
- Department of Orthopedic Surgery, Sohag University, Sohag 82524, Egypt;
| | - Janaina Da Silva Martins
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom St, Thier 11, Boston, MA 02114, USA;
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (P.H.); (A.L.); (A.N.)
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Mitchel B. Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
49
|
Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. MICROMACHINES 2021; 12:mi12030287. [PMID: 33800485 PMCID: PMC8000586 DOI: 10.3390/mi12030287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.
Collapse
Affiliation(s)
- Ye Lin Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| |
Collapse
|
50
|
Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng 2021; 49:1128-1150. [PMID: 33674908 DOI: 10.1007/s10439-021-02752-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
The need for bone grafts is tremendous, and that leads to the use of autograft, allograft, and bone graft substitutes. The biology of the bone is quite complex regarding cellular composition and architecture, hence developing a mineralized connective tissue graft is challenging. Traditionally used bone graft substitutes including metals, biomaterial coated metals and biodegradable scaffolds, suffer from persistent limitations. With the advent and rise of additive manufacturing technologies, the future of repairing bone trauma and defects seems to be optimistic. 3D printing has significant advantages, the foremost of all being faster manipulation of various biocompatible materials and live cells or tissues into the complex natural geometries necessary to mimic and stimulate cellular bone growth. The advent of new-generation bioprinters working with high-precision, micro-dispensing and direct digital manufacturing is aiding in ground-breaking organ and tissue printing, including the bone. The future bone replacement for patients holds excellent promise as scientists are moving closer to the generation of better 3D printed bio-bone grafts that will be safer and more effective. This review aims to summarize the advances in scaffold fabrication techniques, emphasizing 3D printing of biomimetic bone grafts.
Collapse
|