1
|
Kibet M, Abebayehu D. Crosstalk between T cells and fibroblasts in biomaterial-mediated fibrosis. Matrix Biol Plus 2025; 26:100172. [PMID: 40226302 PMCID: PMC11986236 DOI: 10.1016/j.mbplus.2025.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Biomaterial implants are a critical aspect of our medical therapies and biomedical research and come in various forms: stents, implantable glucose sensors, orthopedic implants, silicone implants, drug delivery systems, and tissue engineered scaffolds. Their implantation triggers a series of biological responses that often times lead to the foreign body response and subsequent fibrotic encapsulation, a dense ECM-rich capsule that isolates the biomaterial and renders it ineffective. These responses lead to the failure of biomaterials and is a major hurdle to overcome and in promoting their success. Much attention has been given to macrophage populations for the inflammatory component of these responses to biomaterials but recent work has identified an important role of T cells and their ability to modulate fibroblast activity and vice versa. In this review, we focus on T cell-fibroblast crosstalk by exploring T cell subsets, critical signaling pathways, and fibroblast populations that have been shown to dictate biomaterial-mediated fibrosis. We then highlight emerging technologies and model systems that enable new insights and avenues to T cell-fibroblast crosstalk that will improve biomaterial outcomes.
Collapse
Affiliation(s)
- Mathew Kibet
- Department of Biomedical Engineering, School of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, School of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
2
|
Kasmi N, Pieruccioni L, Pitot E, Fourquaux I, Wodrinski A, Gibot L, Fitremann J. The potential of carbohydrate supramolecular hydrogels for long-term 3D culture of primary fibroblasts. J Mater Chem B 2025; 13:4386-4405. [PMID: 40084972 DOI: 10.1039/d4tb02658f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
N-Alkyl-galactonamides, which are small synthetic molecules derived from galactose, self-assemble to give fibrous hydrogels. These molecules are biocompatible and, in a previous study, the cell culture of human neural stem cells was performed for 7 days on a gel of N-heptyl-D-galactonamide. With the objective of broadening the scope of these molecules as scaffolds for cell culture, in the present study, the culture of primary human dermal fibroblasts has been carried out on N-nonyl-D-galactonamide hydrogels. These supramolecular fibrillar hydrogels have a sufficient mechanical strength to withstand cell culture (≈50 kPa) and they are resistant enough on the long term to carry out the cell culture over at least 3 weeks. In contrast to N-heptyl-D-galactonamide, N-nonyl-D-galactonamide is insoluble in the culture medium. It avoids its dissolution at each renewal of the culture medium. The molecule is only slowly eliminated by other mechanisms (1/3rd in 3 weeks), which did not impair the cell culture on a monthly scale. The hydrogel's microstructure and how the cells organize on this scaffold have been studied using electron and two-photon microscopies. The gel is made of a quite homogeneous network with a width of ≈180 nm and hundreds of micrometer long fibers, except at the surface where a dense mat of heterogeneous fibers is formed. We focused on methods able to colocalize the cells and the gel fibers. Many cell clusters have elongated and multidirectionnal shapes, guided by the fibers. Chains of single cells are also found following the fibers from one cluster to another. N-Nonyl-D-galactonamide fibers, which have the advantage of not being autofluorescent, do not mask the fluorescence of cells. But interestingly, they give a strong second harmonic generation (SHG) signal, due to their well-organized lamellar structure. We also made a special effort to visualize the penetration of cells within the depth of the hydrogels, in 3D, notably by sectioning the hydrogels, despite their softness. It was found that most of the cells stayed at the surface, but several cells grew within the supramolecular fiber network between 50 and 100 μm depth.
Collapse
Affiliation(s)
- Nadia Kasmi
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Laetitia Pieruccioni
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Eve Pitot
- Cytometry and Imaging Core facility, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, Université de Toulouse III - Paul Sabatier, Toulouse, France
| | - Alexandre Wodrinski
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Juliette Fitremann
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| |
Collapse
|
3
|
Narayanan KB, Bhaskar R, Han SS. Leveraging the nanotopography of filamentous fungal chitin-glucan nano/microfibrous spheres (FNS) coated with collagen (type I) for scaffolded fibroblast spheroids in regenerative medicine. Tissue Cell 2025; 93:102734. [PMID: 39823707 DOI: 10.1016/j.tice.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment. These collagen-coated fungal nano/microfibrous spheres (C-FNS) were utilized to construct 3D scaffolded spheroids of human fibroblasts through suspension culture for tissue engineering and regenerative medicine. The particle sizes of C-FNS ranged from 1.4 to 3.25 µm (average: 2.27 ± 0.38 µm), with a porosity of 81.17 %. Field emission-scanning electron microscopy (FE-SEM) revealed that C-FNS comprised continuous chitin-glucan fibers with an average diameter of 363 ± 61 nm (range: 203-512 nm), exhibiting a highly interconnected structure. The reduced arithmetic average roughness (Ra) and root mean square roughness (Rq) values of C-FNS compared to uncoated FNS suggested that collagen coating reduced surface roughness, resulting in a smoother surface that enhanced hydrophilicity, crucial for mammalian cell adhesion and spheroid formation. Moreover, the in vitro cytocompatibility of C-FNS with fibroblasts was evaluated using a resazurin-based PrestoBlue assay, which demonstrated a time-dependent increase in the metabolic activity of C-FNS/fibroblast spheroids during suspension culture for up to 14 days. FE-SEM images of C-FNS/fibroblast spheroids further revealed enhanced adhesion and proliferation of fibroblasts on the nano/microfibrous mycelial architecture, accompanied by the secretion of ECM components and formation of multilayered cell sheets over the 14-day culture period. Similarly, an assessment of the hemocompatibility of C-FNS with erythrocytes revealed the non-hemolytic properties of the biomaterial. Overall, the interaction between collagen-coated fungal chitin-glucan nano/microfibrous structures and mammalian cells holds significant potential for the development of novel, sustainable biomaterials with tailored properties for a myriad of biomedical applications, including tissue engineering, regenerative medicine, drug screening, and wound healing.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Dondi C, Tsikritsis D, Vorng JL, Greenidge G, Kepiro IE, Belsey NA, McMahon G, Gilmore IS, Ryadnov MG, Shaw M. Multiparametric physicochemical analysis of a type 1 collagen 3D cell culture model using light and electron microscopy and mass spectrometry imaging. Sci Rep 2025; 15:9578. [PMID: 40113888 PMCID: PMC11926111 DOI: 10.1038/s41598-025-93700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Three-dimensional cell culture systems underpin cell-based technologies ranging from tissue scaffolds for regenerative medicine to tumor models and organoids for drug screening. However, to realise the full potential of these technologies requires analytical methods able to capture the diverse information needed to characterize constituent cells, scaffold components and the extracellular milieu. Here we describe a multimodal imaging workflow which combines fluorescence, vibrational and second harmonic generation microscopy with secondary ion mass spectrometry imaging and transmission electron microscopy to analyse the morphological, chemical and ultrastructural properties of cell-seeded scaffolds. Using cell nuclei as landmarks we register fluorescence with label-free optical microscopy images and high mass resolution with high spatial resolution secondary ion mass spectrometry images, with an accuracy comparable to the intrinsic spatial resolution of the techniques. We apply these methods to investigate relationships between cell distribution, cytoskeletal morphology, scaffold fiber organisation and biomolecular composition in type I collagen scaffolds seeded with human dermal fibroblasts.
Collapse
Affiliation(s)
- Camilla Dondi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Jean-Luc Vorng
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Gina Greenidge
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Natalie A Belsey
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Greg McMahon
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ian S Gilmore
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Michael Shaw
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
- UCL Hawkes Institute and Department of Computer Science, University College London, London, UK.
| |
Collapse
|
5
|
Novak CM, Wheat JS, Ghadiali SN, Ballinger MN. Mechanomemory of pulmonary fibroblasts demonstrates reversibility of transcriptomics and contraction phenotypes. Biomaterials 2025; 314:122830. [PMID: 39276408 DOI: 10.1016/j.biomaterials.2024.122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Fibroblasts are cells responsible for producing extracellular matrix (ECM) components, which provides physical support for organs. Although these mesenchymal cells are responsive to mechanical cues in their environment, the permanence of these mechanophenotypes is not well defined. We investigated the mechanomemory of lung fibroblasts and determined how switching culture conditions modulate cell responses and function. Primary murine lung fibroblasts were isolated and cultured on 2D tissue culture plates or within 3D collagen hydrogels and were then passaged within the same or opposite culture condition to assess changes in gene expression, protein production, fibroblast subpopulation, contractile behavior, and traction forces. Compared to fibroblasts isolated on 2D tissue culture plates, fibroblasts within 3D hydrogels exhibited a decreased activation phenotype including reduced contraction profiles, diminished cell traction forces and decreased αSMA gene expression. Cells initially isolated via 2D culture and then cultured in 3D hydrogels exhibited a reversal in activation phenotype as measured by gene expression and contraction profiles. Bulk RNAseq identified groups of genes that exhibit reversible and non-reversable expression patterns. Overall, these findings indicate that lung fibroblasts have a mechanical memory that is altered by culture condition and can be reversible through precondition of cells within a softer 3D microenvironment.
Collapse
Affiliation(s)
- Caymen M Novak
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 West 12th Ave, Columbus, OH, 43210, USA; Department of Mechanical Engineering, Bioengineering Program, University of Michigan Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Jana S Wheat
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 West 12th Ave, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 West 12th Ave, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue Columbus, OH, 43210, USA
| | - Megan N Ballinger
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 West 12th Ave, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Yang JP, Kulkarni NN, Yamaji M, Shiraishi T, Pham T, Do H, Aiello N, Shaw M, Nakamura T, Abiru A, Gavva NR, Horman SR. Unveiling immune cell response disparities in human primary cancer-associated fibroblasts between two- and three-dimensional cultures. PLoS One 2024; 19:e0314227. [PMID: 39700125 DOI: 10.1371/journal.pone.0314227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play pivotal roles in solid tumor initiation, growth, and immune evasion. However, the optimal biomimetic modeling conditions remain elusive. In this study, we investigated the effects of 2D and 3D culturing conditions on human primary CAFs integrated into a modular tumor microenvironment (TME). Using single-nucleus RNA sequencing (snRNAseq) and Proteomics' Proximity Extension Assays, we characterized CAF transcriptomic profiles and cytokine levels. Remarkably, when cultured in 2D, CAFs exhibited a myofibroblast (myCAF) subtype, whereas in 3D tumor spheroid cultures, CAFs displayed a more inflammatory (iCAF) pathological state. By integrating single-cell gene expression data with functional interrogations of critical TME-related processes [natural killer (NK)-mediated tumor killing, monocyte migration, and macrophage differentiation], we were able to reconcile form with function. In 3D TME spheroid models, CAFs enhance cancer cell growth and immunologically shield cells from NK cell-mediated cytotoxicity, in striking contrast with their 2D TME counterparts. Notably, 3D CAF-secreted proteins manifest a more immunosuppressive profile by enhancing monocyte transendothelial migration and differentiation into M2-like tumor-associated macrophages (TAMs). Our findings reveal a more immunosuppressive and clinically relevant desmoplastic TME model that can be employed in industrial drug discovery campaigns to expand the cellular target range of chemotherapeutics.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Nikhil Nitin Kulkarni
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Masashi Yamaji
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | | | - Thang Pham
- BioTuring, San Diego, California, United States of America
| | - Han Do
- BioTuring, San Diego, California, United States of America
| | - Nicole Aiello
- Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Shaw
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | | | - Akiko Abiru
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Narender R Gavva
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Shane R Horman
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| |
Collapse
|
7
|
Wang S, Neufurth M, Schepler H, Muñoz-Espí R, Ushijima H, Schröder HC, Wang X, Müller WEG. Liquid-liquid phase transition as a basis for novel materials for skin repair and regeneration. J Mater Chem B 2024; 12:9622-9638. [PMID: 39226118 DOI: 10.1039/d4tb01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Inorganic materials are of increasing interest not only for bone repair but also for other applications in regenerative medicine. In this study, the combined effects of energy-providing, regeneratively active inorganic polyphosphate (polyP) and also morphogenetically active pearl powder on wound healing were investigated. Aragonite, the mineralic constituent of pearl nacre and thermodynamically unstable form of crystalline calcium carbonate, was found to be converted into a soluble state in the presence of a Ca2+-containing wound exudate, particularly upon addition of sodium polyP (Na-polyP), driven by the transfer of Ca2+ ions from aragonite to polyP, leading to liquid-liquid phase separation to form an aqueous Ca-polyP coacervate. This process is further enhanced in the presence of Ca-polyP nanoparticles (Ca-polyP-NP). Kinetic studies revealed that the coacervation of polyP and nacre aragonite in wound exudate is a very rapid process that results in the formation of a stronger gel with a porous structure compared to polyP alone. Coacervate formation, enabled by phase transition of crystalline aragonite in the presence of Na-polyP/Ca-polyP-NP and wound exudate, could also be demonstrated in a hydroxyethyl cellulose-based hydrogel used for wound treatment. Furthermore, it is shown that Na-polyP/Ca-polyP-NP together with nacre aragonite strongly enhances the proliferation of mesenchymal stem cells and promotes microtube formation in the in vitro angiogenesis assay with HUVEC endothelial cells. The latter effect was confirmed by gene expression studies, applying real-time polymerase chain reaction, using the biomarker genes VEGF (vascular endothelial growth factor) and hypoxia-inducible factor-1 α (HIF-1α). Division of Escherichia coli is suppressed when suspended in a matrix containing Na-polyP/Ca-polyP-NP and aragonite. The potential medical relevance of these findings is supported by an animal study on genetically engineered diabetic mice (db/db), which demonstrated a marked increase in granulation tissue and microvessel formation in regenerating experimental wounds treated with Ca-polyP-NP compared to controls. Co-administration of aragonite significantly accelerated the wound healing-promoting effect of polyP in db/db mice. Based on these results, we propose that the ability of polyP to form a mixed coacervate with aragonite, in addition to its energy (ATP)-generating function, can decisively contribute to the regenerative activity of this polymer in wound repair.
Collapse
Affiliation(s)
- Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Hadrian Schepler
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José Beltrán 2, 46980 Paterna-València, Spain
| | - Hiroshi Ushijima
- Nihon University, Division of Microbiology, Department of Pathology and Microbiology, Nihon University-School of Medicine, Tokyo, Japan
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Garau Paganella L, Badolato A, Labouesse C, Fischer G, Sänger CS, Kourouklis A, Giampietro C, Werner S, Mazza E, Tibbitt MW. Variations in fluid chemical potential induce fibroblast mechano-response in 3D hydrogels. BIOMATERIALS ADVANCES 2024; 163:213933. [PMID: 38972277 DOI: 10.1016/j.bioadv.2024.213933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Mechanical deformation of skin creates variations in fluid chemical potential, leading to local changes in hydrostatic and osmotic pressure, whose effects on mechanobiology remain poorly understood. To study these effects, we investigate the specific influences of hydrostatic and osmotic pressure on primary human dermal fibroblasts in three-dimensional hydrogel culture models. Cyclic hydrostatic pressure and hyperosmotic stress enhanced the percentage of cells expressing the proliferation marker Ki67 in both collagen and PEG-based hydrogels. Osmotic pressure also activated the p38 MAPK stress response pathway and increased the expression of the osmoresponsive genes PRSS35 and NFAT5. When cells were cultured in two-dimension (2D), no change in proliferation was observed with either hydrostatic or osmotic pressure. Furthermore, basal, and osmotic pressure-induced expression of osmoresponsive genes differed in 2D culture versus 3D hydrogels, highlighting the role of dimensionality in skin cell mechanotransduction and stressing the importance of 3D tissue-like models that better replicate in vivo conditions. Overall, these results indicate that fluid chemical potential changes affect dermal fibroblast mechanobiology, which has implications for skin function and for tissue regeneration strategies.
Collapse
Affiliation(s)
- Lorenza Garau Paganella
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Asia Badolato
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gabriel Fischer
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Catharina S Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Fernandez Davila JG, Singh AK, Moore DW, Kim J, Khan JA, Lemma M, King CS, Nathan SD, Rodriguez LR, Grant GM, Moran JL. Pulmonary matrix-derived hydrogels from patients with idiopathic pulmonary fibrosis induce a proinflammatory state in lung fibroblasts in vitro. Mol Biol Cell 2024; 35:ar114. [PMID: 38985514 PMCID: PMC11321034 DOI: 10.1091/mbc.e23-11-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), one of the most common forms of interstitial lung disease, is a poorly understood, chronic, and often fatal fibroproliferative condition with only two FDA-approved medications. Understanding the pathobiology of the fibroblast in IPF is critical to evaluating and discovering novel therapeutics. Using a decellularized lung matrix derived from patients with IPF, we generate three-dimensional hydrogels as in vitro models of lung physiology and characterize the phenotype of fibroblasts seeded into the hydrogels. When cultured in IPF extracellular matrix hydrogels, IPF fibroblasts display differential contractility compared with their normal counterparts, lose the classical myofibroblast marker α-smooth muscle actin, and increase expression of proinflammatory cytokines compared with fibroblasts seeded two-dimensionally on tissue culture dishes. We validate this proinflammatory state in fibroblast-conditioned media studies with monocytes and monocyte-derived macrophages. These findings add to a growing understanding of the lung microenvironment effect on fibroblast phenotypes, shed light on the potential role of fibroblasts as immune signaling hubs during lung fibrosis, and suggest intervention in fibroblast-immune cell cross-talk as a possible novel therapeutic avenue.
Collapse
Affiliation(s)
| | - Amit K. Singh
- Department of Mechanical Engineering, George Mason University, Manassas, VA 20110
| | - Durwood W. Moore
- Department of Biology, George Mason University, Manassas, VA 20110
| | - Joseph Kim
- Department of Biology, George Mason University, Manassas, VA 20110
| | - Jawad A. Khan
- Department of Biology, George Mason University, Manassas, VA 20110
| | - Merte Lemma
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA 22042
| | - Christopher S. King
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA 22042
| | - Steven D. Nathan
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA 22042
| | | | | | - Jeffrey L. Moran
- Department of Mechanical Engineering, George Mason University, Manassas, VA 20110
- Department of Bioengineering, George Mason University, Manassas, VA 20110
| |
Collapse
|
10
|
Tang M, Qu Y, He P, Yao E, Guo T, Yu D, Zhang N, Kiratitanaporn W, Sun Y, Liu L, Wang Y, Chen S. Heat-inducible CAR-T overcomes adverse mechanical tumor microenvironment in a 3D bioprinted glioblastoma model. Mater Today Bio 2024; 26:101077. [PMID: 38765247 PMCID: PMC11099333 DOI: 10.1016/j.mtbio.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Glioblastoma (GBM) presents a significant therapeutic challenge due to the limited efficacy of existing treatments. Chimeric antigen receptor (CAR) T-cell therapy offers promise, but its potential in solid tumors like GBM is undermined by the physical barrier posed by the extracellular matrix (ECM). To address the inadequacies of traditional 2D cell culture, animal models, and Matrigel-based 3D culture in mimicking the mechanical characteristics of tumor tissues, we employed biomaterials and digital light processing-based 3D bioprinting to fabricate biomimetic tumor models with finely tunable ECM stiffness independent of ECM composition. Our results demonstrated that increased material stiffness markedly impeded CAR-T cell penetration and tumor cell cytotoxicity in GBM models. The 3D bioprinted models enabled us to examine the influence of ECM stiffness on CAR-T cell therapy effectiveness, providing a clinically pertinent evaluation tool for CAR-T cell development in stiff solid tumors. Furthermore, we developed an innovative heat-inducible CAR-T cell therapy, effectively overcoming the challenges posed by the stiff tumor microenvironment.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yunjia Qu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peixiang He
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tianze Guo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Di Yu
- Department of Human Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nancy Zhang
- Department of Human Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
11
|
Dong H, Hu F, Ma X, Yang J, Pan L, Xu J. Collective Cell Radial Ordered Migration in Spatial Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307487. [PMID: 38520715 PMCID: PMC11132034 DOI: 10.1002/advs.202307487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Collective cells, a typical active matter system, exhibit complex coordinated behaviors fundamental for various developmental and physiological processes. The present work discovers a collective radial ordered migration behavior of NIH3T3 fibroblasts that depends on persistent top-down regulation with 2D spatial confinement. Remarkably, individual cells move in a weak-oriented, diffusive-like rather than strong-oriented ballistic manner. Despite this, the collective movement is spatiotemporal heterogeneous and radial ordering at supracellular scale, manifesting as a radial ordered wavefront originated from the boundary and propagated toward the center of pattern. Combining bottom-up cell-to-extracellular matrix (ECM) interaction strategy, numerical simulations based on a developed mechanical model well reproduce and explain above observations. The model further predicts the independence of geometric features on this ordering behavior, which is validated by experiments. These results together indicate such radial ordered collective migration is ascribed to the couple of top-down regulation with spatial restriction and bottom-up cellular endogenous nature.
Collapse
Affiliation(s)
- Hao Dong
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Fen Hu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Xuehe Ma
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Jianyu Yang
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Leiting Pan
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- State Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanShanxi030006China
| | - Jingjun Xu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
| |
Collapse
|
12
|
Fernandez-Carro E, Remacha AR, Orera I, Lattanzio G, Garcia-Barrios A, del Barrio J, Alcaine C, Ciriza J. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int J Mol Sci 2024; 25:4020. [PMID: 38612828 PMCID: PMC11011913 DOI: 10.3390/ijms25074020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.
Collapse
Affiliation(s)
- Estibaliz Fernandez-Carro
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Ana Rosa Remacha
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Giuseppe Lattanzio
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Alberto Garcia-Barrios
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jesús del Barrio
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
13
|
González-Torres M, Martínez-Mata R, Ruvalcaba-Paredes EK, Del Real A, Leyva-Gómez G, Maciel-Cerda A. Preparation of xyloglucan-grafted poly(N-hydroxyethyl acrylamide) copolymer by free-radical polymerization for in vitro evaluation of human dermal fibroblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:20. [PMID: 38526669 PMCID: PMC10963570 DOI: 10.1007/s10856-024-06783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024]
Abstract
Xyloglucan is a rigid polysaccharide that belongs to the carbohydrate family. This hemicellulose compound has been widely used in biomedical research because of its pseudoplastic, mucoadhesive, mucomimetic, and biocompatibility properties. Xyloglucan is a polyose with no amino groups in its structure, which also limits its range of applications. It is still unknown whether grafting hydrophilic monomers onto xyloglucan can produce derivatives that overcome these shortcomings. This work aimed to prepare the first copolymers in which N-hydroxyethyl acrylamide is grafted onto tamarind xyloglucan by free-radical polymerization. The biocompatibility of these structures in vitro was evaluated using human dermal fibroblasts. Gamma radiation-induced graft polymerization was employed as an initiator by varying the radiation dose from 5-25 kGy. The structure of the graft copolymer, Xy-g-poly(N-hydroxyethyl acrylamide), was verified by thermal analysis, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The findings indicate that the degree of grafting and the cytotoxicity/viability of the xyloglucan-based copolymer were independent of dose. Notably, the grafted galactoxyloglucan exhibited efficient support for human dermal fibroblasts, showing heightened proliferative capacity and superior migration capabilities compared to the unmodified polymer. This copolymer might have the potential to be used in skin tissue engineering.
Collapse
Affiliation(s)
- Maykel González-Torres
- CONAHCYT & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra,", Ciudad de Mexico, 14389, Mexico
| | - Ricardo Martínez-Mata
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510, Mexico DF, Mexico
| | - Erika Karina Ruvalcaba-Paredes
- CONAHCYT & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra,", Ciudad de Mexico, 14389, Mexico
| | - Alicia Del Real
- Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, Mexico
| | - Alfredo Maciel-Cerda
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510, Mexico DF, Mexico.
| |
Collapse
|
14
|
Sun T, Xiang Y, Turner F, Bao X. Integrated Experimental and Mathematical Exploration of Modular Tissue Cultures for Developmental Engineering. Int J Mol Sci 2024; 25:2987. [PMID: 38474234 DOI: 10.3390/ijms25052987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental engineering (DE) involves culturing various cells on modular scaffolds (MSs), yielding modular tissues (MTs) assembled into three-dimensional (3D) tissues, mimicking developmental biology. This study employs an integrated approach, merging experimental and mathematical methods to investigate the biological processes in MT cultivation and assembly. Human dermal fibroblasts (HDFs) were cultured on tissue culture plastics, poly(lactic acid) (PLA) discs with regular open structures, or spherical poly(methyl methacrylate) (PMMA) MSs, respectively. Notably, HDFs exhibited flattened spindle shapes when adhered to solid surfaces, and complex 3D structures when migrating into the structured voids of PLA discs or interstitial spaces between aggregated PMMA MSs, showcasing coordinated colonization of porous scaffolds. Empirical investigations led to power law models simulating density-dependent cell growth on solid surfaces or voids. Concurrently, a modified diffusion model was applied to simulate oxygen diffusion within tissues cultured on solid surfaces or porous structures. These mathematical models were subsequently combined to explore the influences of initial cell seeding density, culture duration, and oxygen diffusion on MT cultivation and assembly. The findings underscored the intricate interplay of factors influencing MT design for tissue assembly. The integrated approach provides insights into mechanistic aspects, informing bioprocess design for manufacturing MTs and 3D tissues in DE.
Collapse
Affiliation(s)
- Tao Sun
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Yu Xiang
- Department of Materials, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Freya Turner
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Xujin Bao
- Department of Materials, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
15
|
Kitana W, Levario‐Diaz V, Cavalcanti‐Adam EA, Ionov L. Biofabrication of Composite Bioink-Nanofiber Constructs: Effect of Rheological Properties of Bioinks on 3D (Bio)Printing and Cells Interaction with Aligned Touch Spun Nanofibers. Adv Healthc Mater 2024; 13:e2303343. [PMID: 38009530 PMCID: PMC11469018 DOI: 10.1002/adhm.202303343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 11/29/2023]
Abstract
This paper reports on a novel approach for the fabrication of composite multilayered bioink-nanofibers construct. This work achieves this by using a hands-free 3D (bio)printing integrated touch-spinning approach. Additionally, this work investigates the interaction of fibroblasts in different bioinks with the highly aligned touch-spun nanofibers. This work conducts a comprehensive characterization of the rheological properties of the inks, starting with low-strain oscillatory rheology to analyze the viscoelastic behavior, when the material structure remains intact. Moreover, this work performs amplitude sweeps to investigate the stability of the inks under large deformations, rotational rheology to examine the shear thinning profile, and a three-step creep experiment to study time-dependent rheological behavior. The obtained rheological results are correlated to visual observation of the flow behavior of inks. These behaviors span from an ink with zero-shear viscosity, very weak shear thinning, and no thixotropic behavior to inks exhibiting flow stress, pronounced shear thinning, and thixotropy. It is demonstrated that inks have an essential effect on cell behavior. While all bioinks allow a preferred directionality of the fibroblasts along the fiber direction, cells tend to form aggregates in bioinks with higher viscosity, and a considerable number of agglomerates are observed in the presence of laponite-RD.
Collapse
Affiliation(s)
- Waseem Kitana
- Professorship of BiofabricationFaculty of Engineering ScienceUniversity of BayreuthLudwig‐Thoma‐Straße 36A95447BayreuthGermany
| | - Victoria Levario‐Diaz
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Elisabetta Ada Cavalcanti‐Adam
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
- Professorship of Cellular BiomechanicsFaculty of Engineering ScienceUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Leonid Ionov
- Professorship of BiofabricationFaculty of Engineering ScienceUniversity of BayreuthLudwig‐Thoma‐Straße 36A95447BayreuthGermany
- Bavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
16
|
Hahn F, Ferrandez-Montero A, Queri M, Vancaeyzeele C, Plesse C, Agniel R, Leroy-Dudal J. Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic In Vitro Cell Culture Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5613-5626. [PMID: 38278772 PMCID: PMC10859895 DOI: 10.1021/acsami.3c16686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
In vivo, cells reside in a 3D porous and dynamic microenvironment. It provides biochemical and biophysical cues that regulate cell behavior in physiological and pathological processes. In the context of fundamental cell biology research, tissue engineering, and cell-based drug screening systems, a challenge is to develop relevant in vitro models that could integrate the dynamic properties of the cell microenvironment. Taking advantage of the promising high internal phase emulsion templating, we here designed a polyHIPE scaffold with a wide interconnected porosity and functionalized its internal 3D surface with a thin layer of electroactive conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) to turn it into a 4D electroresponsive scaffold. The resulting scaffold was cytocompatible with fibroblasts, supported cellular infiltration, and hosted cells, which display a 3D spreading morphology. It demonstrated robust actuation in ion- and protein-rich complex culture media, and its electroresponsiveness was not altered by fibroblast colonization. Thanks to customized electrochemical stimulation setups, the electromechanical response of the polyHIPE/PEDOT scaffolds was characterized in situ under a confocal microscope and showed 10% reversible volume variations. Finally, the setups were used to monitor in real time and in situ fibroblasts cultured into the polyHIPE/PEDOT scaffold during several cycles of electromechanical stimuli. Thus, we demonstrated the proof of concept of this tunable scaffold as a tool for future 4D cell culture and mechanobiology studies.
Collapse
Affiliation(s)
- Franziska Hahn
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Ana Ferrandez-Montero
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
- Instituto
de Ceramica y Vidrio (ICV), CSIC, Campus Cantoblanco, Kelsen 5., 28049 Madrid, Spain
| | - Mélodie Queri
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Vancaeyzeele
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Plesse
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Rémy Agniel
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| | - Johanne Leroy-Dudal
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| |
Collapse
|
17
|
Pien N, Di Francesco D, Copes F, Bartolf-Kopp M, Chausse V, Meeremans M, Pegueroles M, Jüngst T, De Schauwer C, Boccafoschi F, Dubruel P, Van Vlierberghe S, Mantovani D. Polymeric reinforcements for cellularized collagen-based vascular wall models: influence of the scaffold architecture on the mechanical and biological properties. Front Bioeng Biotechnol 2023; 11:1285565. [PMID: 38053846 PMCID: PMC10694796 DOI: 10.3389/fbioe.2023.1285565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
A previously developed cellularized collagen-based vascular wall model showed promising results in mimicking the biological properties of a native vessel but lacked appropriate mechanical properties. In this work, we aim to improve this collagen-based model by reinforcing it using a tubular polymeric (reinforcement) scaffold. The polymeric reinforcements were fabricated exploiting commercial poly (ε-caprolactone) (PCL), a polymer already used to fabricate other FDA-approved and commercially available devices serving medical applications, through 1) solution electrospinning (SES), 2) 3D printing (3DP) and 3) melt electrowriting (MEW). The non-reinforced cellularized collagen-based model was used as a reference (COL). The effect of the scaffold's architecture on the resulting mechanical and biological properties of the reinforced collagen-based model were evaluated. SEM imaging showed the differences in scaffolds' architecture (fiber alignment, fiber diameter and pore size) at both the micro- and the macrolevel. The polymeric scaffold led to significantly improved mechanical properties for the reinforced collagen-based model (initial elastic moduli of 382.05 ± 132.01 kPa, 100.59 ± 31.15 kPa and 245.78 ± 33.54 kPa, respectively for SES, 3DP and MEW at day 7 of maturation) compared to the non-reinforced collagen-based model (16.63 ± 5.69 kPa). Moreover, on day 7, the developed collagen gels showed stresses (for strains between 20% and 55%) in the range of [5-15] kPa for COL, [80-350] kPa for SES, [20-70] kPa for 3DP and [100-190] kPa for MEW. In addition to the effect on the resulting mechanical properties, the polymeric tubes' architecture influenced cell behavior, in terms of proliferation and attachment, along with collagen gel compaction and extracellular matrix protein expression. The MEW reinforcement resulted in a collagen gel compaction similar to the COL reference, whereas 3DP and SES led to thinner and longer collagen gels. Overall, it can be concluded that 1) the selected processing technique influences the scaffolds' architecture, which in turn influences the resulting mechanical and biological properties, and 2) the incorporation of a polymeric reinforcement leads to mechanical properties closely matching those of native arteries.
Collapse
Affiliation(s)
- Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Dalila Di Francesco
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| | - Michael Bartolf-Kopp
- Department of Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Marguerite Meeremans
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Tomasz Jüngst
- Department of Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Catharina De Schauwer
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Francesca Boccafoschi
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|
18
|
Wang Y, Zhang Y, Li T, Shen K, Wang KJ, Tian C, Hu D. Adipose Mesenchymal Stem Cell Derived Exosomes Promote Keratinocytes and Fibroblasts Embedded in Collagen/Platelet-Rich Plasma Scaffold and Accelerate Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303642. [PMID: 37342075 DOI: 10.1002/adma.202303642] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Engineered skin substitutes derived from human skin significantly reduce inflammatory reactions mediated by foreign/artificial materials and are consequently easier to use for clinical application. Type I collagen is a main component of the extracellular matrix during wound healing and has excellent biocompatibility, and platelet-rich plasma can be used as the initiator of the healing cascade. Adipose mesenchymal stem cell derived exosomes are crucial for tissue repair and play key roles in enhancing cell regeneration, promoting angiogenesis, regulating inflammation, and remodeling extracellular matrix. Herein, Type I collagen and platelet-rich plasma, which provide natural supports for keratinocyte and fibroblast adhesion, migration, and proliferation, are mixed to form a stable 3D scaffold. Adipose mesenchymal stem cell derived exosomes are added to the scaffold to improve the performance of the engineered skin. The physicochemical properties of this cellular scaffold are analyzed, and the repair effect is evaluated in a full-thickness skin defect mouse model. The cellular scaffold reduces the level of inflammation and promotes cell proliferation and angiogenesis to accelerate wound healing. Proteomic analysis shows that exosomes exhibit excellent anti-inflammatory and proangiogenic effects in collagen/platelet-rich plasma scaffolds. The proposed method provides a new therapeutic strategy and theoretical basis for tissue regeneration and wound repair.
Collapse
Affiliation(s)
- Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, P. R. China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, P. R. China
| | - Ting Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, P. R. China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, P. R. China
| | - Ke Jia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, P. R. China
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, P. R. China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|
19
|
Angelini A, Trial J, Saltzman AB, Malovannaya A, Cieslik KA. A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience 2023; 26:107283. [PMID: 37520701 PMCID: PMC10372839 DOI: 10.1016/j.isci.2023.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The cardiac fibroblast interacts with an extracellular matrix (ECM), enabling myofibroblast maturation via a process called mechanosensing. Although in the aging male heart, ECM is stiffer than in the young mouse, myofibroblast development is impaired, as demonstrated in 2-D and 3-D experiments. In old male cardiac fibroblasts, we found a decrease in actin polymerization, α-smooth muscle actin (α-SMA), and Kindlin-2 expressions, the latter an effector of the mechanosensing. When Kindlin-2 levels were manipulated via siRNA interference, young fibroblasts developed an old-like fibroblast phenotype, whereas Kindlin-2 overexpression in old fibroblasts reversed the defective phenotype. Finally, inhibition of overactivated extracellular regulated kinases 1 and 2 (ERK1/2) in the old male fibroblasts rescued actin polymerization and α-SMA expression. Pathological ERK1/2 overactivation was also attenuated by Kindlin-2 overexpression. In contrast, old female cardiac fibroblasts retained an operant mechanosensing pathway. In conclusion, we identified defective components of the Kindlin/ERK/actin/α-SMA mechanosensing axis in aged male fibroblasts.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B. Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Katarzyna A. Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Kundu AN, Dougan CE, Mahmoud S, Kilic A, Panagiotou A, Richbourg N, Irakoze N, Peyton SR. Tenascin-C Activation of Lung Fibroblasts in a 3D Synthetic Lung Extracellular Matrix Mimic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301493. [PMID: 37227134 PMCID: PMC10528529 DOI: 10.1002/adma.202301493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Indexed: 05/26/2023]
Abstract
The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that match the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro. Here, a synthetic, bioactive hydrogel is synthesized that mimics the native lung modulus and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin-binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which enables quiescent culture of human lung fibroblasts (HLFs). Stimulation with transforming growth factor β1 (TGF-β1), metastatic breast cancer conditioned media (CM), or tenascin-C-derived integrin-binding peptide activated hydrogel-encapsulated HLFs demonstrates multiple environmental methods to activate HLFs in a lung ECM-mimicking hydrogel. This lung hydrogel platform is a tunable, synthetic approach to studying the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.
Collapse
Affiliation(s)
- Aritra Nath Kundu
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Samar Mahmoud
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Alara Kilic
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst
| | - Alexi Panagiotou
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Nathan Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
- Institute for Applied Life Sciences, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, MA 01003
| |
Collapse
|
21
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
22
|
González-Torres M, Elizalde-Cárdenas A, Leyva-Gómez G, González-Mendoza O, Lima E, Alfonso-Núñez I, Abad-Contreras DE, Del Prado-Audelo M, Pichardo-Bahena R, Carlos-Martínez A, Ribas-Aparicio RM. Combined use of novel chitosan-grafted N-hydroxyethyl acrylamide polyurethane and human dermal fibroblasts as a construct for in vitro-engineered skin. Int J Biol Macromol 2023; 238:124136. [PMID: 36965555 DOI: 10.1016/j.ijbiomac.2023.124136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
A rich plethora of information about grafted chitosan (CS) for medical use has been reported. The capability of CS-grafted poly(N-hydroxyethyl acrylamide) (CS-g-PHEAA) to support human dermal fibroblasts (HDFs) in vitro has been proven. However, CS-grafted copolymers lack good stiffness and the characteristic microstructure of a cellular matrix. In addition, whether CS-g-PHEAA can be used to prepare a scaffold with a suitable morphology and mechanical properties for skin tissue engineering (STE) is unclear. This study aimed to show for the first time that step-growth polymerizations can be used to obtain polyurethane (PU) platforms of CS-g-PHEAA, which can also have enhanced microhardness and be suitable for in vitro cell culture. The PU prepolymers were prepared from grafted CS, polyethylene glycol, and 1,6-hexamethylene diisocyanate. The results proved that a poly(saccharide-urethane) [(CS-g-PHEAA)-PU] could be successfully synthesized with a more suitable microarchitecture, thermal properties, and topology than CS-PU for the dynamic culturing of fibroblasts. Cytotoxicity, proliferation, histological and immunophenotype assessments revealed significantly higher biocompatibility and cell proliferation of the derivative concerning the controls. Cells cultured on (CS-g-PHEAA)-PU displayed a quiescent state compared to those cultured on CS-PU, which showed an activated phenotype. These findings may be critical factors in future studies establishing wound dressing models.
Collapse
Affiliation(s)
- Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Oswaldo González-Mendoza
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Israel Alfonso-Núñez
- Laboratorio de Biomateriales, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - David Eduardo Abad-Contreras
- Laboratorio de Biomateriales, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico
| | - Raúl Pichardo-Bahena
- Servicio de Anatomía Patológica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Alberto Carlos-Martínez
- Laboratorio de Microscopia Electrónica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, 07738, Mexico
| |
Collapse
|
23
|
Kundu AN, Dougan CE, Mahmoud S, Kilic A, Panagiotou A, Irakoze N, Richbourg N, Peyton SR. Tenascin-C activation of lung fibroblasts in a 3D synthetic lung extracellular matrix mimic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529926. [PMID: 36865293 PMCID: PMC9980292 DOI: 10.1101/2023.02.24.529926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that contain the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro . Here, we developed a synthetic, bioactive hydrogel that mimics the native lung modulus, and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which promotes quiescence of human lung fibroblasts (HLFs). Stimulation with transforming growth factor β1 (TGF-β1), metastatic breast cancer conditioned media (CM), or tenascin-C activated these hydrogel-encapsulated HLFs in a manner reflective of their native in vivo responses. We propose this lung hydrogel platform as a tunable, synthetic approach to study the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.
Collapse
Affiliation(s)
- Aritra Nath Kundu
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Samar Mahmoud
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Alara Kilic
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst
| | - Alexi Panagiotou
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Nathan Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
- Institute for Applied Life Sciences, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, MA 01003
| |
Collapse
|
24
|
Woodley JP, Lambert DW, Asencio IO. Reduced Fibroblast Activation on Electrospun Polycaprolactone Scaffolds. Bioengineering (Basel) 2023; 10:bioengineering10030348. [PMID: 36978739 PMCID: PMC10045272 DOI: 10.3390/bioengineering10030348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In vivo, quiescent fibroblasts reside in three-dimensional connective tissues and are activated in response to tissue injury before proliferating rapidly and becoming migratory and contractile myofibroblasts. When deregulated, chronic activation drives fibrotic disease. Fibroblasts cultured on stiff 2D surfaces display a partially activated phenotype, whilst many 3D environments limit fibroblast activation. Cell mechanotransduction, spreading, polarity, and integrin expression are controlled by material mechanical properties and micro-architecture. Between 3D culture systems, these features are highly variable, and the challenge of controlling individual properties without altering others has led to an inconsistent picture of fibroblast behaviour. Electrospinning offers greater control of mechanical properties and microarchitecture making it a valuable model to study fibroblast activation behaviour in vitro. Here, we present a comprehensive characterisation of the activation traits of human oral fibroblasts grown on a microfibrous scaffold composed of electrospun polycaprolactone. After over 7 days in the culture, we observed a reduction in proliferation rates compared to cells cultured in 2D, with low KI67 expression and no evidence of cellular senescence. A-SMA mRNA levels fell, and the expression of ECM protein-coding genes also decreased. Electrospun fibrous scaffolds, therefore, represent a tuneable platform to investigate the mechanisms of fibroblast activation and their roles in fibrotic disease.
Collapse
|
25
|
Chitosan, chondroitin sulfate, and hyaluronic acid based in-situ forming scaffold for efficient cell grafting. Int J Biol Macromol 2023; 225:938-951. [PMID: 36410536 DOI: 10.1016/j.ijbiomac.2022.11.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Current cell grafting techniques are majorly dependent on seeding cells on a pre-formed scaffold. However, cells grow in a 2-dimensional (2D) space in such constructs, not mimicking the tissue's 3-dimensional (3D) architecture. The present study evaluated a unique poly-electrolyte complexation (PEC) based strategy for the 3D engraftment of cells in a porous polymeric scaffold. The scaffold was synthesized using a positively charged polysaccharide chitosan (CH) and negatively charged glycosaminoglycans chondroitin sulfate (CS) and hyaluronic acid (HA). Two different scaffolds were synthesized, one using CH and CS [CH-CS] and another using CH and CS + HA [CH-(CS-HA)]. The physicochemical characterization of both the PECs confirmed electrostatic interactions, leading to a porous and viscoelastic PEC formation. Fibroblast cells were grafted and seeded in both scaffolds to evaluate the effect of different scaffold compositions and the difference between seeded and grafted cells. Imaging studies confirmed that grafting of the fibroblast cells supports cellular proliferation. The qPCR studies demonstrated increased expression of functional markers TGF-β, α-SMA, collagen-I, and fibronectin in the CH-(CS-HA) grafted cells. In summary, it was demonstrated that an in-situ forming PEC of CH, CS, and HA had good physicochemical properties for cell grafting and supported grafted cells with improved function.
Collapse
|
26
|
Bomb K, Pradhan L, Zhang Q, Jarai BM, Bhattacharjee A, Burris DL, Kloxin AM, Fromen CA. Destructive fibrotic teamwork: how both microenvironment stiffness and profibrotic interleukin 13 impair alveolar macrophage phenotype and function. Biomater Sci 2022; 10:5689-5706. [PMID: 36018297 PMCID: PMC9632634 DOI: 10.1039/d2bm00828a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pulmonary fibrotic microenvironment is characterized by increased stiffness of lung tissue and enhanced secretion of profibrotic soluble cues contributing to a feedback loop that leads to dysregulated wound healing and lung failure. Pinpointing the individual and tandem effects of profibrotic stimuli in impairing immune cell response remains difficult and is needed for improved therapeutic strategies. We utilized a statistical design of experiment (DOE) to investigate how microenvironment stiffness and interleukin 13 (IL13), a profibrotic soluble factor linked with disease severity, contribute to the impaired macrophage response commonly observed in pulmonary fibrosis. We used engineered bioinspired hydrogels of different stiffness, ranging from healthy to fibrotic lung tissue, and cultured murine alveolar macrophages (MH-S cells) with or without IL13 to quantify cell response and analyze independent and synergistic effects. We found that, while both stiffness and IL13 independently influence macrophage morphology, phenotype, phagocytosis and efferocytosis, these factors work synergistically to exacerbate impaired macrophage phenotype and efferocytosis. These unique findings provide insights into how macrophages in fibrotic conditions are not as effective in clearing debris, contributing to fibrosis initiation/progression, and more broadly inform how underlying drivers of fibrosis modulate immune cell response to facilitate therapeutic strategies.
Collapse
Affiliation(s)
- Kartik Bomb
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Lina Pradhan
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Qi Zhang
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Bader M Jarai
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | | | - David L Burris
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - April M Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
- Material Science and Engineering, University of Delaware, Newark, DE, USA
| | - Catherine A Fromen
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
27
|
Machahua C, Vicens-Zygmunt V, Ríos-Martín J, Llatjós R, Escobar-Campuzano I, Molina-Molina M, Montes-Worboys A. Collagen 3D matrices as a model for the study of cell behavior in pulmonary fibrosis. Exp Lung Res 2022; 48:126-136. [PMID: 35594338 DOI: 10.1080/01902148.2022.2067265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Purpose: Idiopathic pulmonary fibrosis (IPF) is a complex progressive chronic lung disease where epithelial to mesenchymal interaction, extracellular matrix (ECM) contact, and pro-fibrotic cytokines dynamics take part in the development of the disease. The study of IPF in the widespread in vitro two-dimensional (2 D) culture fails to explain the interaction of cells with the changing environment that occurs in fibrotic lung tissue. A three-dimensional (3 D) co-culture model might shed light on the pathogenesis of IPF by mimicking the fibrotic environment. Materials and Methods: Fibroblasts from nine IPF were isolated and embedded in collagen matrices with the alveolar epithelial human cell line (A549) on the top. Cells were also cultured in 2 D with and without TGF-β1 as a conventional model to compare with. Both types of cells were isolated separately. Protein and gene expression of the main fibrotic markers were measured by qPCR, Western blot, and ELISA. Results: IPF fibroblasts to myofibroblasts differentiation was observed in the 3 D model and in cells stimulated with TGF-β1. In addition, ECM-related genes were highly up-regulated in the 3 D collagen matrix. A549 co-cultured 3 D with IPF fibroblasts showed EMT activation, with down-regulation of E-cadherin (CDH1). However, other pro-fibrotic genes as VIM, TGFB1, and MMP7 were up-regulated in A549 co-cultured 3 D with fibroblasts. Conclusions: 3 D-collagen matrices might induce fibroblasts' fibrotic phenotype as in the classic TGF-β1 model, by up-regulating genes associated with matrix production. In addition, IPF lung fibroblasts seem to exert a pro-fibrotic influence in A549 cells when they are co-cultured. These results suggest that an improved 3 D co-culture model might serve as an important tool to study the fibrotic process and its regulation.
Collapse
Affiliation(s)
- Carlos Machahua
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,National Consortium of Research in Respiratory Diseases, CIBERES Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Vicens-Zygmunt
- National Consortium of Research in Respiratory Diseases, CIBERES Instituto de Salud Carlos III, Madrid, Spain.,Unit of Interstitial Lung Diseases, Respiratory Department, Bellvitge University Hospital, Respiratory Research group, IDIBELL, Barcelona, Spain
| | - Jesús Ríos-Martín
- Unit of Interstitial Lung Diseases, Respiratory Department, Bellvitge University Hospital, Respiratory Research group, IDIBELL, Barcelona, Spain
| | - Roger Llatjós
- Pathology Department, Bellvitge University Hospital, Barcelona, Spain
| | | | - María Molina-Molina
- National Consortium of Research in Respiratory Diseases, CIBERES Instituto de Salud Carlos III, Madrid, Spain.,Unit of Interstitial Lung Diseases, Respiratory Department, Bellvitge University Hospital, Respiratory Research group, IDIBELL, Barcelona, Spain
| | - Ana Montes-Worboys
- National Consortium of Research in Respiratory Diseases, CIBERES Instituto de Salud Carlos III, Madrid, Spain.,Unit of Interstitial Lung Diseases, Respiratory Department, Bellvitge University Hospital, Respiratory Research group, IDIBELL, Barcelona, Spain
| |
Collapse
|