1
|
Hamid HA, Ramasamy R, Mustafa MK, Hosseinpour Sarmadi V, Miskon A. Magnetic exposure using Samarium Cobalt (SmC O5) increased proliferation and stemness of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs). Sci Rep 2022; 12:8904. [PMID: 35618759 PMCID: PMC9135697 DOI: 10.1038/s41598-022-12653-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the extensive reports on the potential hazard of magnetic field (MF) exposures on humans, there are also concurrently reported on the improved proliferative property of stem cells at optimum exposure. However, the effect on mesenchymal stem cells (MSCs) remains unknown. Therefore, we aimed to investigate the impact of induced static MF (SMF) on human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) using Samarium Cobalt (SmCO5). At passage 3, hUC-MSCs (1 × 104) were exposed to 21.6 mT SMF by a direct exposure (DE) showed a significantly higher cell count (p < 0.05) in the growth kinetics assays with the shortest population doubling time relative to indirect exposure and negative control. The DE group was committed into the cell cycle with increased S phase (55.18 ± 1.38%) and G2/M phase (21.75 ± 1.38%) relative to the NC group [S-phase (13.54 ± 2.73%); G2/M phase (8.36 ± 0.28%)]. Although no significant changes were observed in the immunophenotype, the DE group showed an elevated expression of pluripotency-associated markers (OCT4, SOX2, NANOG, and REX1). These results suggest that the MFs could potentially induce proliferation of MSCs, a promising approach to promote stem cells propagation for clinical therapy and research without compromising the stemness of hUC-MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio Artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - Rajesh Ramasamy
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Malaysia.,Department of Dental Radiology, Faculty of Dental Medicine, Airlangga University, Surabaya, 60132, Indonesia
| | - Mohd Kamarulzaki Mustafa
- Department of Physics, Faculty of Applied Sciences and Technology, University Tun Hussein Onn Malaysia, Pagoh Campus, KM1, Jalan Panchor, Hub Pendidikan Tinggi Pagoh, 84600, Muar, Johor, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Azizi Miskon
- Bio Artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Paoletti C, Divieto C, Chiono V. Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes. Cells 2018; 7:E114. [PMID: 30134618 PMCID: PMC6162411 DOI: 10.3390/cells7090114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022] Open
Abstract
The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.
Collapse
Affiliation(s)
- Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| | - Carla Divieto
- Division of Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
3
|
Cardiac differentiation of induced pluripotent stem cells on elastin-like protein-based hydrogels presenting a single-cell adhesion sequence. Polym J 2018. [DOI: 10.1038/s41428-018-0110-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Daley MC, Fenn SL, Black LD. Applications of Cardiac Extracellular Matrix in Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:59-83. [PMID: 30238366 DOI: 10.1007/978-3-319-97421-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of the cardiac extracellular matrix (cECM) in providing biophysical and biochemical cues to the cells housed within during disease and development has become increasingly apparent. These signals have been shown to influence many fundamental cardiac cell behaviors including contractility, proliferation, migration, and differentiation. Consequently, alterations to cell phenotype result in directed remodeling of the cECM. This bidirectional communication means that the cECM can be envisioned as a medium for information storage. As a result, the reprogramming of the cECM is increasingly being employed in tissue engineering and regenerative medicine as a method with which to treat disease. In this chapter, an overview of the composition and structure of the cECM as well as its role in cardiac development and disease will be provided. Additionally, therapeutic modulation of cECM for cardiac regeneration as well as bottom-up and top-down approaches to ECM-based cardiac tissue engineering is discussed. Finally, lingering questions regarding the role of cECM in tissue engineering and regenerative medicine are offered as a catalyst for future research.
Collapse
Affiliation(s)
- Mark C Daley
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Spencer L Fenn
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Center for Biomedical Career Development, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
- Cellular, Molecular and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Yamaoka T, Hirata M, Dan T, Yamashita A, Otaka A, Nakaoki T, Miskon A, Kakinoki S, Mahara A. Individual evaluation of cardiac marker expression and self-beating during cardiac differentiation of P19CL6 cells on different culture substrates. J Biomed Mater Res A 2017; 105:1166-1174. [DOI: 10.1002/jbm.a.35977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Tetsuji Yamaoka
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Mitsuhi Hirata
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Takaaki Dan
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- Department of Materials Chemistry; Ryukoku University; 1-5 Seta Otsu Shiga 520-2194 Japan
| | - Atsushi Yamashita
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Akihisa Otaka
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Takahiko Nakaoki
- Department of Materials Chemistry; Ryukoku University; 1-5 Seta Otsu Shiga 520-2194 Japan
| | - Azizi Miskon
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| | - Sachiro Kakinoki
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
- JST-CREST; 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; 5-7-1 Fujishirodai Suita Osaka 565-8565 Japan
| |
Collapse
|
6
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Cutts J, Nikkhah M, Brafman DA. Biomaterial Approaches for Stem Cell-Based Myocardial Tissue Engineering. Biomark Insights 2015; 10:77-90. [PMID: 26052226 PMCID: PMC4451817 DOI: 10.4137/bmi.s20313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Adult and pluripotent stem cells represent a ready supply of cellular raw materials that can be used to generate the functionally mature cells needed to replace damaged or diseased heart tissue. However, the use of stem cells for cardiac regenerative therapies is limited by the low efficiency by which stem cells are differentiated in vitro to cardiac lineages as well as the inability to effectively deliver stem cells and their derivatives to regions of damaged myocardium. In this review, we discuss the various biomaterial-based approaches that are being implemented to direct stem cell fate both in vitro and in vivo. First, we discuss the stem cell types available for cardiac repair and the engineering of naturally and synthetically derived biomaterials to direct their in vitro differentiation to the cell types that comprise heart tissue. Next, we describe biomaterial-based approaches that are being implemented to enhance the in vivo integration and differentiation of stem cells delivered to areas of cardiac damage. Finally, we present emerging trends of using stem cell-based biomaterial approaches to deliver pro-survival factors and fully vascularized tissue to the damaged and diseased cardiac tissue.
Collapse
Affiliation(s)
- Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
8
|
Autogenic feeder free system from differentiated mesenchymal progenitor cells, maintains pluripotency of the MEL-1 human embryonic stem cells. Differentiation 2013; 85:110-8. [PMID: 23722082 DOI: 10.1016/j.diff.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells (hESc) are known for its pluripotency and self renewal capability, thus possess great potential in regenerative medicine. However, the lack of suitable xenofree extracellular matrix substrate inhibits further applications or the use of hESc in cell-based therapy. In this study, we described a new differentiation method, which generates a homogeneous population of mesenchymal progenitor cells (hESc-MPC) from hESc via epithelial-mesenchymal transition. The extracellular matrix (ECM) proteins from hESc-MPC had in turn supported the undifferentiated expansion of hESc. Immunocytochemistry and flow cytometry characterization of hESc-MPC revealed the presence of early mesenchymal markers. Tandem mass spectometry analysis of ECM produced by hESc-MPC revealed the presence of a mixture of extracellular proteins which includes tenascin C, fibronectin, and vitronectin. The pluripotency of hESc (MEL-1) cultured on the ECM was maintained as shown by the expression of pluripotent genes (FoxD3, Oct-4, Tdgf1, Sox-2, Nanog, hTERT, Rex1), protein markers (SSEA-3, SSEA-4, TRA-1-81, TRA-1-60, Oct-4) and the ability to differentiate into cells representative of ectoderm, endoderm and mesoderm. In summary, we have established a xeno-free autogenic feeder free system to support undifferentiated expansion of hESc, which could be of clinical relevance.
Collapse
|
9
|
French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, Davis ME. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater 2012; 8:4357-64. [PMID: 22842035 PMCID: PMC3488121 DOI: 10.1016/j.actbio.2012.07.033] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/12/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Myocardial infarction (MI) produces a collagen scar, altering the local microenvironment and impeding cardiac function. Cell therapy is a promising therapeutic option to replace the billions of myocytes lost following MI. Despite early successes, chronic function remains impaired and is likely a result of poor cellular retention, proliferation, and differentiation/maturation. While some efforts to deliver cells with scaffolds have attempted to address these shortcomings, they lack the natural cues required for optimal cell function. The goal of this study was to determine whether a naturally derived cardiac extracellular matrix (cECM) could enhance cardiac progenitor cell (CPC) function in vitro. CPCs were isolated via magnetic sorting of c-kit(+) cells and were grown on plates coated with either cECM or collagen I (Col). Our results show an increase in early cardiomyocyte markers on cECM compared with Col, as well as corresponding protein expression at a later time. CPCs show stronger serum-induced proliferation on cECM compared with Col, as well as increased resistance to apoptosis following serum starvation. Finally, a microfluidic adhesion assay demonstrated stronger adhesion of CPCs to cECM compared with Col. These data suggest that cECM may be optimal for CPC therapeutic delivery, as well as providing potential mechanisms to overcome the shortcomings of naked cell therapy.
Collapse
Affiliation(s)
- Kristin M. French
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute ofTechnology, Atlanta, GA, 30322, USA
| | - Archana V. Boopathy
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute ofTechnology, Atlanta, GA, 30322, USA
| | - Jessica A. DeQuach
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Loice Chingozha
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Karen L. Christman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute ofTechnology, Atlanta, GA, 30322, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
10
|
Riebeling C, Hayess K, Peters AK, Steemans M, Spielmann H, Luch A, Seiler AEM. Assaying embryotoxicity in the test tube: current limitations of the embryonic stem cell test (EST) challenging its applicability domain. Crit Rev Toxicol 2012; 42:443-64. [PMID: 22512667 DOI: 10.3109/10408444.2012.674483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Testing for embryotoxicity in vitro is an attractive alternative to animal experimentation. The embryonic stem cell test (EST) is such a method, and it has been formally validated by the European Centre for the Validation of Alternative Methods. A number of recent studies have underscored the potential of this method. However, the EST performed well below the 78% accuracy expected from the validation study using a new set of chemicals and pharmaceutical compounds, and also of toxicity criteria, tested to enlarge the database of the validated EST as part of the Work Package III of the ReProTect Project funded within the 6th Framework Programme of the European Union. To assess the performance and applicability domain of the EST we present a detailed review of the substances and their effects in the EST being nitrofen, ochratoxin A, D-penicillamine, methylazoxymethanol, lovastatin, papaverine, warfarin, β-aminopropionitrile, dinoseb, furosemide, doxylamine, pravastatin, and metoclopramide. By delineation of the molecular mechanisms of the substances we identify six categories of reasons for misclassifications. Some of these limitations might also affect other in vitro methods assessing embryotoxicity. Substances that fall into these categories need to be included in future validation sets and in validation guidelines for embryotoxicity testing. Most importantly, we suggest conceivable improvements and additions to the EST which will resolve most of the limitations.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), ZEBET - Alternative Methods to Animal Experiments, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Krishnamurthy S, Nör JE. Orosphere assay: a method for propagation of head and neck cancer stem cells. Head Neck 2012; 35:1015-21. [PMID: 22791367 DOI: 10.1002/hed.23076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Recent evidence suggests that head and neck squamous cell carcinomas (HNSCCs) harbor a small subpopulation of highly tumorigenic cells, designated cancer stem cells. A limiting factor in cancer stem cell research is the intrinsic difficulty of expanding cells in an undifferentiated state in vitro. METHODS Here, we describe the development of the orosphere assay, a method for the study of putative head and neck cancer stem cells. An orosphere is defined as a nonadherent colony of cells sorted from primary HNSCCs or from HNSCC cell lines and cultured in 3-dimensional soft agar or ultralow attachment plates. Aldehyde dehydrogenase activity and CD44 expression were used here as stem cell markers. RESULTS This assay allowed for the propagation of head and neck cancer cells that retained stemness and self-renewal. CONCLUSION The orosphere assay is well suited for studies designed to understand the pathobiology of head and neck cancer stem cells.
Collapse
Affiliation(s)
- Sudha Krishnamurthy
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | |
Collapse
|
12
|
Yang G, Tian J, Feng C, Zhao LL, Liu Z, Zhu J. Trichostatin a promotes cardiomyocyte differentiation of rat mesenchymal stem cells after 5-azacytidine induction or during coculture with neonatal cardiomyocytes via a mechanism independent of histone deacetylase inhibition. Cell Transplant 2011; 21:985-96. [PMID: 21944777 DOI: 10.3727/096368911x593145] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study was to investigate the effect of trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, on cardiac differentiation of bone marrow mesenchymal stem cells (MSCs) in vitro. Rat MSCs were isolated and divided into six groups: 1) control; 2) 5-azacytidine treatment (5-aza, 10 μM); 3) treatment with TSA (100, 300, and 500 nM); 4) treatment with 5-aza followed by incubation with TSA; 5) coculture with neonatal cardiomyocytes (CMs); and 6) treatment with TSA then coculture with CMs. HDAC activity was significantly inhibited in TSA-treated cells with the maximal inhibition after 24 h of exposure to TSA at 300 nM. No changes in HDAC activity were observed in control, 5-aza-treated, or coculture groups. Following 7 days of differentiation, the expression of early cardiac transcription factors GATA-4, NKx2.5, MEF2c, and cardiac troponin T (cTnT) was increased by 6-8 times in the cells in 5-aza-treated, coculture, or TSA-treated groups over control as determined using real-time PCR, immunofluorescence staining, and Western blotting. However, the percent cTnT-positive cells were dramatically different with 0.7% for control, 10% for 5-aza-treated, 25% for coculture, and 4% for TSA-treated group (500 nM). TSA treatment of the cells pretreated with 5-aza or cocultured with CMs dramatically increased the expression of GATA-4, NKx2.5, and MEF2c by 35-50 times over control. The cTnT protein expression was also significantly increased by over threefold by TSA treatment (500 nM) in both 5-aza-treated and coculture group over control. The percent cTnT-positive cells in both 5-aza-pre-treated and coculture groups were significantly increased by TSA treatment after 1 week of differentiation by up to 92.6% (from 10.3% to 19.8%) and 23.9% (from 24.5% to 30.2%), respectively. These data suggested that TSA enhanced the cardiac differentiation of MSCs after 5-aza induction or during coculture with CMs through a mechanism beyond the inhibition of HDAC activity.
Collapse
Affiliation(s)
- Ge Yang
- Department of Cell and Molecular Biology, Pediatric Institute of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
13
|
Prabhakaran MP, Kai D, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 2011; 6:055001. [PMID: 21813957 DOI: 10.1088/1748-6041/6/5/055001] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.
Collapse
Affiliation(s)
- Molamma P Prabhakaran
- Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|