1
|
Nokhbatolfoghahaei H, Bohlouli M, Adavi K, Paknejad Z, Rezai Rad M, Khani MM, Salehi-Nik N, Khojasteh A. Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering. Proc Inst Mech Eng H 2020; 234:1397-1408. [PMID: 32692276 DOI: 10.1177/0954411920944039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in order to alleviate the time and material consuming for evaluating bioreactor parameters and effect of fluid flow hydrodynamics (various amounts of shear stress) on osteogenesis. Also, biological assessments were performed in order to validate similar parameters under implementing the perfusion or rotating and perfusion fluid motions in bioreactors' prototype. Finite element method was used to investigate the effect of hydrodynamic of fluid flow inside the bioreactors. The equations used in the simulation to calculate the velocity values and consequently the shear stress values include Navier-Stokes and Brinkman equations. It has been shown that rotational fluid motion in rotating and perfusion bioreactor produces more velocity and shear stress compared with perfusion bioreactor. Moreover, implementing the perfusion together with rotational force in rotating and perfusion bioreactors has been shown to have more cell proliferation and higher activity of alkaline phosphatase enzyme as well as formation of extra cellular matrix sheet, as an indicator of bone-like tissue formation.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Adavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahrasadat Paknejad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, Faulty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Nokhbatolfoghahaei H, Bohlouli M, Paknejad Z, R Rad M, M Amirabad L, Salehi-Nik N, Khani MM, Shahriari S, Nadjmi N, Ebrahimpour A, Khojasteh A. Bioreactor cultivation condition for engineered bone tissue: Effect of various bioreactor designs on extra cellular matrix synthesis. J Biomed Mater Res A 2020; 108:1662-1672. [PMID: 32191385 DOI: 10.1002/jbm.a.36932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/18/2023]
Abstract
Dynamic-based systems are bio-designed in order to mimic the micro-environments of the bone tissue. There is limited direct comparison between perfusion and perfusion-rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two types of bioreactors including rotating & perfusion and perfusion bioreactors were designed. Mesenchymal stem cells derived from buccal fat pad were loaded on a gelatin/β-Tricalcium phosphate scaffold. Cell-scaffold constructs were subjected to different treatment condition and place in either of the bioreactors. Effect of different dynamic conditions on cellular behavior including cell proliferation, cell adhesion, and osteogenic differentiation were assessed. Osteogenic assessment of scaffolds after 24 days revealed that rotating & perfusion bioreactor led to significantly higher expression of OCN and RUNX2 genes and also greater amount of ALP and collagen I protein production compared to static groups and perfusion bioreactor. Observation of cellular sheets which filled the scaffold porosities in SEM images, approved the better cell responses to rotating & perfusion forces of the bioreactor. The outcomes demonstrated that rotating & perfusion bioreactor action on bone regeneration is much preferable than perfusion bioreactor. Therefore, it seems that exertion of multi-stimuli is more effective for bone engineering.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Student Research Committee, Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Paknejad
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam R Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila M Amirabad
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, Faulty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Mohammad M Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shayan Shahriari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasser Nadjmi
- The Team for Cleft and Craniofacial Anomalies, Oral and Maxillofacial Surgery, University of Antwerp, Antwerp, Belgium
| | - Adel Ebrahimpour
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Validation of a novel 3D flow model for the optimization of construct perfusion in radial-flow packed-bed bioreactors (rPBBs) for long-bone tissue engineering. N Biotechnol 2019; 52:110-120. [PMID: 31173925 DOI: 10.1016/j.nbt.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 12/25/2022]
Abstract
Osteogenic cell culture in three-dimensional (3D) hollow cylindrical porous scaffolds in radial-flow packed-bed bioreactors (rPBBs) may overcome the transport limitations of static and axial perfusion bioreactors in the engineering of long-bone substitutes. Flow models of rPBBs help optimize radial flux distribution of medium and tissue maturation in vitro. Only a 2D model is available for steady flow transport in rPBBs with axisymmetric inlet and outlet accounting for the fluid dynamics of void spaces, assessed against literature information. Here, a novel 3D model is proposed for steady flow transport in the three compartments of rPBBs with a more practical lateral outlet. A 3D model of transient tracer transport was developed based on the flow model to predict bioreactor residence time distribution (RTD). Model-predicted flow patterns were validated in terms of RTD against tracer experiments performed with bioreactor prototypes equipped with commercial scaffolds for bone tissue engineering. Bioreactors were challenged with a step change in entering tracer concentration in an optimized set-up under conditions promoting uniform radial flux distribution and typical shunt flows. Model-predicted RTDs agreed well with those experimentally determined. In conclusion, tracer experiments validate the use of the 3D flow model for optimizing construct perfusion in rPBBs to engineer long-bone substitutes.
Collapse
|
4
|
Nomoto H, Maehashi H, Shirai M, Nakamura M, Masaki T, Mezaki Y, Park J, Aizawa M, Ohkawa K, Yoshida K, Matsuura T. Bio-artificial bone formation model with a radial-flow bioreactor for implant therapy-comparison between two cell culture carriers: porous hydroxyapatite and β-tricalcium phosphate beads. Hum Cell 2018; 32:1-11. [PMID: 30276761 PMCID: PMC6315002 DOI: 10.1007/s13577-018-0218-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Bone grafting is necessary before dental implant treatment in patients with jaw bone defects. Currently, autologous bone grafting is a major burden on the patient. However, it is impossible to form a sufficient foundation for the implant with a bone-filling agent alone. It is, therefore, necessary to prepare hybrid artificial bone tissue containing osteoblasts and osteoclasts. In this study, mouse MC3T3-E1 pre-osteoblast cells and human embryonic-derived osteoblastic cell line hFOB1.19 were cultured in radial-flow bioreactors (RFB) to form three-dimensional artificial bone filled with porous beads of β-tricalcium phosphate (β-TCP) or hydroxyapatite (HA)—which are clinically used as bone-filling agents—as cell culture carriers. When circulation culturing was performed in the growth medium for the first 10–12 days, glucose consumption was increased in the cultures with HA beads in comparison to the cultures with β-TCP beads. When cultured in the differentiation culture medium during the second half of the culture period, the glucose consumption decreased in the culture with HA beads. A DNA microarray analysis suggested that osteogenesis progressed fast in three-dimensional culture filled with HA beads and that partly differentiation into osteoblasts was prominent in cultures with β-TCP beads. In the growth process of MC3T3-E1 cells, the vitamin A metabolism was also activated, the synthesis and degradation of retinoic acid was enhanced, and the metabolism of the same process decreased at the end of differentiation in three-dimensional cultures. Three-dimensional circulation culture in RFB is considered to be useful for the formation of hybrid bio-artificial bone tissue.
Collapse
Affiliation(s)
- Hideki Nomoto
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruka Maehashi
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinnbashi, Minato-ku, Tokyo, Japan
| | - Misako Shirai
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinnbashi, Minato-ku, Tokyo, Japan
| | - Mariko Nakamura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinnbashi, Minato-ku, Tokyo, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinnbashi, Minato-ku, Tokyo, Japan
| | - Yoshihiro Mezaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinnbashi, Minato-ku, Tokyo, Japan
| | - Jonghyuk Park
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinnbashi, Minato-ku, Tokyo, Japan
| | - Mamoru Aizawa
- Laboratory of Biomaterials, Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Kiyoshi Ohkawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinnbashi, Minato-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Bunpetch V, Wu H, Zhang S, Ouyang H. From "Bench to Bedside": Current Advancement on Large-Scale Production of Mesenchymal Stem Cells. Stem Cells Dev 2018; 26:1662-1673. [PMID: 28934885 DOI: 10.1089/scd.2017.0104] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the primary cell source in cell therapy and regenerative medicine due to its extraordinary self-renewing capacity and multilineage differentiation potential. Clinical trials involving MSCs are being conducted in a range of human diseases and the number of registered cases is continuously increasing. However, a wide gap exists between the number of MSCs obtainable from the donor site and the number required for implantation to damage tissues, and also between MSC scalability and MSC phenotype stability. The clinical translation of MSCs necessitates a scalable expansion bioprocess for the biomanufacturing of therapeutically qualified cells. This review presents current achievements for expansion of MSCs. Issues involving culture condition modification, bioreactor systems, as well as microcarrier and scaffold platforms for optimal MSC systems are discussed. Most importantly, the gap between current MSC expansion and clinical application, as well as outbreak directions for the future are discussed. The present systemic review will bring new insights into future large-scale MSC expansion and clinical application.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China
| | - Haoyu Wu
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China
| | - Shufang Zhang
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China
| | - Hongwei Ouyang
- 1 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,2 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,3 Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University , Hangzhou, China .,4 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China
| |
Collapse
|
6
|
Kanda Y, Nishimura I, Sato T, Katayama A, Arano T, Ikada Y, Yoshinari M. Dynamic cultivation with radial flow bioreactor enhances proliferation or differentiation of rat bone marrow cells by fibroblast growth factor or osteogenic differentiation factor. Regen Ther 2016; 5:17-24. [PMID: 31245496 PMCID: PMC6581843 DOI: 10.1016/j.reth.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 11/30/2022] Open
Abstract
Dynamic cultivation using a radial flow bioreactor (RFB) has gained increasing interest as a method of achieving bone regeneration. In order to enhance bone generation in large bone defects, it is necessary to use an RFB to expand the primary cells such as bone marrow cells derived from biotissue. The present study aimed to evaluate the cell expansion and osteogenic differentiation of rat bone marrow cells (rBMC) when added to basic fibroblast growth factor containing medium (bFGFM) or osteogenic differentiation factor containing medium (ODM) under dynamic cultivation using an RFB. Cell proliferation was evaluated with a DNA-based cell count method and histological analysis. An alkaline phosphatase (ALP) activity assay and immunohistochemistry staining of osteogenic markers including BMP-2 and osteopontin were used to assess osteogenic differentiation ability. After culture for one week, rBMC cell numbers increased significantly under dynamic cultivation compared with that under static cultivation in all culture media. For different culture media in dynamic cultivation, bFGFM had the highest increase in cell numbers. ALP activity was facilitated by dynamic cultivation with ODM. Furthermore, both BMP-2 and osteopontin were detected in the dynamic cultivation with ODM. These results suggested that bFGFM promotes cell proliferation and ODM promotes osteogenic differentiation of rBMC under dynamic cultivation using an RFB.
Collapse
Affiliation(s)
- Yuuhei Kanda
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Itsurou Nishimura
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toru Sato
- Department of Fixed Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Aiko Katayama
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Taichi Arano
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yoshito Ikada
- Division of Life Science, Nara Medical University, Kashihara, Japan
| | - Masao Yoshinari
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
7
|
Donato D, Falvo D’Urso Labate G, Debbaut C, Segers P, Catapano G. Optimization of construct perfusion in radial-flow packed-bed bioreactors for tissue engineering with a 2D stationary fluid dynamic model. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Nishimura I, Hisanaga R, Sato T, Arano T, Nomoto S, Ikada Y, Yoshinari M. Effect of osteogenic differentiation medium on proliferation and differentiation of human mesenchymal stem cells in three-dimensional culture with radial flow bioreactor. Regen Ther 2015; 2:24-31. [PMID: 31245456 PMCID: PMC6581791 DOI: 10.1016/j.reth.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells, and have been expanded and differentiated into several kinds of mesodermal tissue in vitro. In order to promote bone repair, enhancement of the proliferation and differentiation of hMSCs into osteoblasts in vitro is recommended prior to therapeutic delivery. However, for clinical applications, it is still unclear which method is more advanced for tissue engineering: to transplant undifferentiated cells or partially differentiated stem cells. Therefore, the present study aimed to investigate how osteogenic differentiation medium (ODM) affects hMSCs cultured in a 3D scaffold using a radial-flow bioreactor (RFB) besides cell growth medium (GM). To produce precultured sheets, the hMSCs were first seeded onto type 1 collagen sheets and incubated for 12 h, after which they were placed in the RFB for scaffold fabrication. The culture medium was circulated at 3 mL/min and the cells dynamically cultured for 1 week at 37 °C. Static cultivation in a culture dish was also carried out. Cell proliferations were evaluated by histological analysis and DNA-based cell count. Alkaline phosphatase (ALP) activity, immunocytochemical analysis with BMP-2, and osteopontin on the hMSCs in the collagen scaffold were performed. After 14 days of ODM culture, a significant increase in cell number and a higher density of cell distribution in the scaffold were observed after both static and dynamic cultivation compared to GM culture. A significant increase in ALP activity after 14 days of ODM was recognized in dynamic cultivation compared with that of static cultivation. Cells that BMP-2 expressed were frequently observed after 14 days in dynamic culture compared with other conditions, and the expression of osteopontin was confirmed in dynamic cultivation after both 7 days and 14 days. The results of this study revealed that both the proliferation and bone differentiation of hMSCs in 3D culture by RFB were accelerated by culture in osteogenic differentiation medium, suggesting an advantageous future clinical applications for RFB cell culture and cell transplantation for tissue engineering.
Collapse
Affiliation(s)
- Itsurou Nishimura
- Department of Crown and Bridge Prosthodontics, Division of Oral Implant Research, Oral Health Science Center, Tokyo Dental College, Chiba, Japan
| | - Ryuichi Hisanaga
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, Chiba, Japan
| | - Toru Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, Chiba, Japan
| | - Taichi Arano
- Department of Crown and Bridge Prosthodontics, Division of Oral Implant Research, Oral Health Science Center, Tokyo Dental College, Chiba, Japan
| | - Syuntaro Nomoto
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, Chiba, Japan
| | - Yoshito Ikada
- Division of Life Science, Nara Medical University, Kashihara, Japan
| | - Masao Yoshinari
- Division of Oral Implant Research, Oral Health Science Center, Tokyo Dental College, Chiba, Japan
| |
Collapse
|
9
|
Leferink AM, Chng YC, van Blitterswijk CA, Moroni L. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Front Bioeng Biotechnol 2015; 3:169. [PMID: 26557644 PMCID: PMC4617101 DOI: 10.3389/fbioe.2015.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022] Open
Abstract
One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.
Collapse
Affiliation(s)
- Anne M Leferink
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | | | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| |
Collapse
|
10
|
Syva SH, Ampon K, Lasimbang H, Fatimah SS. Microenvironmental factors involved in human amnion mesenchymal stem cells fate decisions. J Tissue Eng Regen Med 2015; 11:311-320. [PMID: 26073746 DOI: 10.1002/term.2043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/12/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
Human amnion mesenchymal stem cells (HAMCs) show great differentiation and proliferation potential and also other remarkable features that could serve as an outstanding alternative source of stem cells in regenerative medicine. Recent reports have demonstrated various kinds of effective artificial niche that mimic the microenvironment of different types of stem cell to maintain and control their fate and function. The components of the stem cell microenvironment consist mainly of soluble and insoluble factors responsible for regulating stem cell differentiation and self-renewal. Extensive studies have been made on regulating HAMCs differentiation into specific phenotypes; however, the understanding of relevant factors in directing stem cell fate decisions in HAMCs remain underexplored. In this review, we have therefore identified soluble and insoluble factors, including mechanical stimuli and cues from the other supporting cells that are involved in directing HAMCs fate decisions. In order to strengthen the significance of understanding on the relevant factors involved in stem cell fate decisions, recent technologies developed to specifically mimic the microenvironments of specific cell lineages are also reviewed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Kamaruzaman Ampon
- Biotechnology Research Institute, Universiti Malaysia Sabah, Malaysia
| | - Helen Lasimbang
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Malaysia
| | | |
Collapse
|
11
|
Li J, Baker BA, Mou X, Ren N, Qiu J, Boughton RI, Liu H. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering. Adv Healthc Mater 2014; 3:469-84. [PMID: 24339420 DOI: 10.1002/adhm.201300562] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/15/2013] [Indexed: 11/08/2022]
Abstract
With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Jianhua Li
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Bryan. A. Baker
- Biosystems and Biomaterials Division, The National Institute of Standards and Technology; MD 20899-8300 USA
| | - Xiaoning Mou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| | - Na Ren
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Jichuan Qiu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Robert I. Boughton
- Department of Physics and Astronomy; Bowling Green State University; Bowling Green OH 43403 USA
| | - Hong Liu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
12
|
Liu M, Liu N, Zang R, Li Y, Yang ST. Engineering stem cell niches in bioreactors. World J Stem Cells 2013; 5:124-35. [PMID: 24179601 PMCID: PMC3812517 DOI: 10.4252/wjsc.v5.i4.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/05/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as "niches", to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering.
Collapse
Affiliation(s)
- Meimei Liu
- Meimei Liu, Ning Liu, Ru Zang, Shang-Tian Yang, William G Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States
| | | | | | | | | |
Collapse
|