1
|
Wagner J, Bayer L, Loger K, Acil Y, Kurz S, Spille J, Ahlhelm M, Ingwersen LC, Jonitz-Heincke A, Sedaghat S, Wiltfang J, Naujokat H. In vivo endocultivation of CAD/CAM hybrid scaffolds in the omentum majus in miniature pigs. J Craniomaxillofac Surg 2024; 52:1259-1266. [PMID: 39198129 DOI: 10.1016/j.jcms.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE Correction of bony mandibular defects is a challenge in oral and maxillofacial surgery due to aesthetic and functional requirements. This study investigated the potential of a novel hybrid scaffold for bone regeneration and degradation assessment of the ceramic within the omentum majus over 6 months and the extent to which rhBMP-2 as a growth factor, alone or combined with a hydrogel, affects regeneration. MATERIALS AND METHODS In this animal study, 10 Göttingen minipigs each had one scaffold implanted in the greater omentum. Five animals had scaffolds loaded with a collagen hydrogel and rhBMP-2, and the other five animals (control group) had scaffolds loaded with rhBMP-2 only. Fluorochrome injections and computed tomography (CT) were performed regularly. After 6 months, the animals were euthanized, and samples were collected for microCT and histological evaluations. RESULTS Fluorescent and light microscopic and a CT morphological density evaluation showed continuous bone growth until week 16 in both groups. Regarding the ratio of bone attachment to the Zr02 support struts, the rhBMP-2 loaded collagen hydrogel group showed with 63% a significantly higher attachment (p > 0.001) than the rhBMP-2 control group (49%). CONCLUSION In this study, bone growth was induced in all omentum majus specimens until post-operative week 16. Furthermore, hydrogel and rhBMP-2 together resulted in better bone-scaffold integration than rhBMP-2 alone. Further studies should investigate whether implantation of the scaffolds in the jaw after an appropriate period of bone regeneration leads to a stable situation and the desired results.
Collapse
Affiliation(s)
- Juliane Wagner
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Cluster of Excellence, Precision Medicine in Inflammation, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Lennart Bayer
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Yahya Acil
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Kurz
- ZESBO - Center for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany
| | - Johannes Spille
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Dresden, Germany
| | - Lena-Christin Ingwersen
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
2
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
3
|
Wang J, Wang X, Zhen P, Fan B. [Research progress of in vivo bioreactor for bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:627-635. [PMID: 33998218 DOI: 10.7507/1002-1892.202012083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress of in vivo bioreactor (IVB) for bone tissue engineering in order to provide reference for its future research direction. Methods The literature related to IVB used in bone tissue engineering in recent years was reviewed, and the principles of IVB construction, tissue types, sites, and methods of IVB construction, as well as the advantages of IVB used in bone tissue engineering were summarized. Results IVB takes advantage of the body's ability to regenerate itself, using the body as a bioreactor to regenerate new tissues or organs at injured sites or at ectopic sites that can support the regeneration of new tissues. IVB can be constructed by tissue flap (subcutaneous pocket, muscle flap/pocket, fascia flap, periosteum flap, omentum flap/abdominal cavity) and axial vascular pedicle (axial vascular bundle, arteriovenous loop) alone or jointly. IVB is used to prefabricate vascularized tissue engineered bone that matched the shape and size of the defect. The prefabricated vascularized tissue engineered bone can be used as bone graft, pedicled bone flap, or free bone flap to repair bone defect. IVB solves the problem of insufficient vascularization in traditional bone tissue engineering to a certain extent. Conclusion IVB is a promising method for vascularized tissue engineered bone prefabrication and subsequent bone defect reconstruction, with unique advantages in the repair of large complex bone defects. However, the complexity of IVB construction and surgical complications hinder the clinical application of IVB. Researchers should aim to develop a simple, safe, and efficient IVB.
Collapse
Affiliation(s)
- Jian Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P.R.China.,Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Xiao Wang
- School of Design and Art, Lanzhou University of Technology, Lanzhou Gansu, 730000, P.R.China
| | - Ping Zhen
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Bo Fan
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| |
Collapse
|
4
|
Naujokat H, Loger K, Schulz J, Açil Y, Wiltfang J. Bone tissue engineering in the greater omentum with computer-aided design/computer-aided manufacturing scaffolds is enhanced by a periosteum transplant. Regen Med 2020; 15:2297-2309. [PMID: 33355523 DOI: 10.2217/rme-2020-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: This study aimed to evaluate two different vascularized bone flap scaffolds and the impact of two barrier membranes for the reconstruction of critical-size bone defects. Materials & methods: 3D-printed scaffolds of biodegradable calcium phosphate and bioinert titanium were loaded with rhBMP-2 bone marrow aspirate, wrapped by a collagen membrane or a periosteum transplant and implanted into the greater omentum of miniature pigs. Results: Histological evaluation demonstrated significant bone formation within the first 8 weeks in both scaffolds. The periosteum transplant led to enhanced bone formation and a homogenous distribution in the scaffolds. The omentum tissue grew out a robust vascular supply. Conclusion: Endocultivation using 3D-printed scaffolds in the greater omentum is a very promising approach in defect-specific bone tissue regeneration.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Klaas Loger
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Juliane Schulz
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
5
|
Naujokat H, Açil Y, Harder S, Lipp M, Böhrnsen F, Wiltfang J. Osseointegration of dental implants in ectopic engineered bone in three different scaffold materials. Int J Oral Maxillofac Surg 2019; 49:135-142. [PMID: 31053519 DOI: 10.1016/j.ijom.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
The in vivo regeneration of bone flaps might be an alternative to autogenous bone grafting. The first human case of mandibular reconstruction using the greater omentum as a bioreactor was reported in 2016. However, whether engineered bone will support the osseointegration of dental implants has not yet been investigated. In this study, bone tissue engineering was performed in the greater omentum of nine miniature pigs using bone morphogenetic protein 2, bone marrow aspirate, and three different scaffolds: hydroxyapatite, biphasic calcium phosphate (BCP), and titanium. After 8 weeks, two implants were placed in each scaffold; after another 8 weeks, the bone blocks were harvested for radiographic, histological, and histomorphometric analysis. All implants exhibited sufficient primary stability, and the success rate was 100%. The bone-to-implant contact ratios (BICs) were 38.2%, 68.5%, and 42.9%; the inter-thread bone densities were 29.4%, 64.9%, and 33.5%; and the peri-implant bone-scaffold densities were 56.4%, 87.6%, and 68.6% in the hydroxyapatite, BCP, and titanium groups, respectively. The BIC showed a strong correlation (r = 0.76) with the peri-implant bone-scaffold density. This study shows that de novo engineered bone leads to successful osseointegration and therefore may allow implant-based prosthodontic rehabilitation.
Collapse
Affiliation(s)
- H Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | - Y Açil
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - S Harder
- Department of Prosthodontics, Propaedeutics and Dental Materials, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - M Lipp
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - F Böhrnsen
- Department of Oral and Maxillofacial Surgery, University Hospital of Göttingen, Göttingen, Germany
| | - J Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
6
|
Naujokat H, Lipp M, Açil Y, Wieker H, Birkenfeld F, Sengebusch A, Böhrnsen F, Wiltfang J. Bone tissue engineering in the greater omentum is enhanced by a periosteal transplant in a miniature pig model. Regen Med 2019; 14:127-138. [DOI: 10.2217/rme-2018-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: Reconstruction of bone defects with autologous grafts has certain disadvantages. The aim of this study is to introduce a new type of living bioreactor for engineering of bone flaps and to evaluate the effect of different barrier membranes. Materials & methods: Scaffolds loaded with bone morphogenetic proteins and bone marrow aspirate wrapped with either a collagen membrane or a periosteal flap were implanted in the greater omentum of miniature pigs. Results: Both histological and radiographic evaluation showed proven bone formation and increased density after 8 and 16 weeks, with an enhanced effect of the periosteal transplant. Conclusion: The greater omentum is a suitable bioreactor for bone tissue engineering. Endocultivation is both an innovative and promising approach in regenerative medicine.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Maximilian Lipp
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Henning Wieker
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Falk Birkenfeld
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Andre Sengebusch
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Florian Böhrnsen
- Department of Oral & Maxillofacial Surgery, University Hospital of Göttingen, Robert-Koch-Straße 40, 37099 Göttingen, Germany
| | - Jörg Wiltfang
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|