1
|
Mommaerts K, Okawa S, Schmitt M, Kofanova O, Turner TR, Ben RN, Del Sol A, Mathieson W, Schwamborn JC, Acker JP, Betsou F. Ice recrystallization inhibitors enable efficient cryopreservation of induced pluripotent stem cells: A functional and transcriptomic analysis. Stem Cell Res 2024; 81:103583. [PMID: 39467374 DOI: 10.1016/j.scr.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The successful use of human induced pluripotent stem cells (iPSCs) for research or clinical applications requires the development of robust, efficient, and reproducible cryopreservation protocols. After cryopreservation, the survival rate of iPSCs is suboptimal and cell line-dependent. We assessed the use of ice recrystallization inhibitors (IRIs) for cryopreservation of human iPSCs. A toxicity screening study was performed to assess specific small-molecule carbohydrate-based IRIs and concentrations for further evaluation. Then, a cryopreservation study compared the cryoprotective efficiency of 15 mM IRIs in 5 % or 10 % DMSO-containing solutions and with CryoStor® CS10. Three iPSC lines were cryopreserved as single-cell suspensions in the cryopreservation solutions and post-thaw characteristics, including pluripotency and differential gene expression were assessed. We demonstrate the fitness-for-purpose of 15 mM IRI in 5 % DMSO as an efficient cryoprotective solution for iPSCs in terms of post-thaw recovery, viability, pluripotency, and transcriptomic changes. This mRNA sequencing dataset has the potential to be used for molecular mechanism analysis relating to cryopreservation. Use of IRIs can reduce DMSO concentrations and its associated toxicities, thereby improving the utility, effectiveness, and efficiency of cryopreservation.
Collapse
Affiliation(s)
- Kathleen Mommaerts
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Margaux Schmitt
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Olga Kofanova
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | | | - Robert N Ben
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - William Mathieson
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jason P Acker
- PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada; Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Fay Betsou
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| |
Collapse
|
2
|
Song HW, Solomon JN, Masri F, Mack A, Durand N, Cameau E, Dianat N, Hunter A, Oh S, Schoen B, Marsh M, Bravery C, Sumen C, Clarke D, Bharti K, Allickson JG, Lakshmipathy U. Bioprocessing considerations for generation of iPSCs intended for clinical application: perspectives from the ISCT Emerging Regenerative Medicine Technology working group. Cytotherapy 2024; 26:1275-1284. [PMID: 38970614 DOI: 10.1016/j.jcyt.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Approval of induced pluripotent stem cells (iPSCs) for the manufacture of cell therapies to support clinical trials is now becoming realized after 20 years of research and development. In 2022 the International Society for Cell and Gene Therapy (ISCT) established a Working Group on Emerging Regenerative Medicine Technologies, an area in which iPSCs-derived technologies are expected to play a key role. In this article, the Working Group surveys the steps that an end user should consider when generating iPSCs that are stable, well-characterised, pluripotent, and suitable for making differentiated cell types for allogeneic or autologous cell therapies. The objective is to provide the reader with a holistic view of how to achieve high-quality iPSCs from selection of the starting material through to cell banking. Key considerations include: (i) intellectual property licenses; (ii) selection of the raw materials and cell sources for creating iPSC intermediates and master cell banks; (iii) regulatory considerations for reprogramming methods; (iv) options for expansion in 2D vs. 3D cultures; and (v) available technologies and equipment for harvesting, washing, concentration, filling, cryopreservation, and storage. Some key process limitations are highlighted to help drive further improvement and innovation, and includes recommendations to close and automate current open and manual processes.
Collapse
Affiliation(s)
- Hannah W Song
- Center for Cellular Engineering, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Emmanuelle Cameau
- Cytiva, Pall Life Sciences 24-26 avenue de Winchester, CS5005, 78100 St. Germain-en-Laye, France
| | | | | | - Steve Oh
- Cellvec Pte. Ltd. 100 Pasir Panjang, #04-01/02, Singapore 118518 Singapore
| | - Brianna Schoen
- Charles River Laboratories Cell Solutions, Inc. 8500 Balboa Blvd. Suite 230 Northridge, CA 91320, USA
| | | | | | | | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethsda, MD, USA
| | - Julie G Allickson
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
3
|
Dobruskin M, Toner G, Kander R. Optimizing cryopreservation strategies for scalable cell therapies: A comprehensive review with insights from iPSC-derived therapies. Biotechnol Prog 2024; 40:e3504. [PMID: 39268839 DOI: 10.1002/btpr.3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Off-the-shelf cell therapies hold significant curative potential for conditions, such as Parkinson's disease and heart failure. However, these therapies face unique cryopreservation challenges, especially when novel routes of administration, such as intracerebral or epicardial injection, require cryopreservation media that are safe for direct post-thaw administration. Current practices often involve post-thaw washing to remove dimethyl sulfoxide (Me2SO), a cytotoxic cryoprotective agent, which complicates the development and clinical translation of off-the-shelf therapies. To overcome these obstacles, there is a critical need to explore Me2SO-free cryopreservation methods. While such methods typically yield suboptimal post-thaw viability with conventional slow-freeze protocols, optimizing freezing profiles offers a promising strategy to enhance their performance. This comprehensive review examines the latest advancements in cryopreservation techniques across various cell therapy platforms, with a specific case study of iPSC-derived therapies used to illustrate the scalability challenges. By identifying key thermodynamic and biochemical phenomena that occur during freezing, this review aims to identify cell-type independent approaches to improve the efficiency and efficacy of cryopreservation strategies, thereby supporting the widespread adoption and clinical success of off-the-shelf cell therapies.
Collapse
Affiliation(s)
- Michael Dobruskin
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| | - Geoffrey Toner
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| | - Ronald Kander
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| |
Collapse
|
4
|
Okuda J, Watanabe N, Nakamura T, Mizushima K, Xi H, Kumamoto Y, Fujita K, Kino-Oka M. The impact of repeated temperature cycling on cryopreserved human iPSC viability stems from cytochrome redox state changes. Front Bioeng Biotechnol 2024; 12:1443795. [PMID: 39139293 PMCID: PMC11319289 DOI: 10.3389/fbioe.2024.1443795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are an attractive cell source for regenerative medicine. For its widespread use as a starting material, a robust storage and distribution system in the frozen state is necessary. For this system, managing transient warming during storage and transport is essential, but how transient warming affects cells and the mechanisms involved are not yet fully understood. This study examined the influence of temperature cyclings (from -80°C to -150°C) on cryopreserved hiPSCs using a custom-made cryo Raman microscope, flow cytometry, and performance indices to assess viability. Raman spectroscopy indicated the disappearance of mitochondrial cytochrome signals after thawing. A reduction in the mitochondrial membrane potential was detected using flow cytometry. The performance indices indicated a decrease in attachment efficiency with an increase in the number of temperature cycles. This decrease was observed in the temperature cycle range above the glass transition temperature of the cryoprotectant. Raman observations captured an increase in the signal intensity of intracellular dimethyl sulfoxide (DMSO) during temperature cycles. Based on these results, we proposed a schematic illustration for cellular responses to temperature fluctuations, suggesting that temperature fluctuations above the glass-transition temperature trigger the movement of DMSO, leading to cytochrome c oxidation, mitochondrial damage, and caspase-mediated cell death. This enhances our understanding of the key events during cryopreservation and informs the development of quality control strategies for hiPSC storage and transport.
Collapse
Affiliation(s)
- Jun Okuda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
- R&D Center, Iwatani Corporation, Amagasaki, Japan
| | - Namiko Watanabe
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
- R&D Center, Iwatani Corporation, Amagasaki, Japan
| | - Tetsuji Nakamura
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
- R&D Center, Iwatani Corporation, Amagasaki, Japan
| | - Kenta Mizushima
- Department of Applied Physics, Osaka University, Suita, Japan
| | - Heqi Xi
- Department of Applied Physics, Osaka University, Suita, Japan
| | | | | | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Mahmoudi A, Meidany P, Almahmeed W, Jamialahmadi T, Sahebkar A. Stem Cell Therapy as a Potential Treatment of Non-Alcoholic Steatohepatitis-Related End-Stage Liver Disease: A Narrative Review. CURRENT STEM CELL REPORTS 2024; 10:85-107. [DOI: 10.1007/s40778-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 01/04/2025]
|
6
|
Hayashi Y, Uno Y, Kino-Oka M, Sugiyama H. Computer-aided exploration of multiobjective optimal temperature profiles in slow freezing for human induced pluripotent stem cells. Cryobiology 2024; 115:104885. [PMID: 38513997 DOI: 10.1016/j.cryobiol.2024.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Human induced pluripotent stem (hiPS) cells have demonstrated promising potential in regenerative medical therapeutics. After successful clinical trials, the demand for hiPS cells has steadily increased. Therefore, the optimization of hiPS cell freezing processes for storage and transportation is essential. Here, we presented a computer-aided exploration of multiobjective optimal temperature profiles in slow freezing for hiPS cells. This study was based on a model that calculates cell survival rates after thawing, and the model was extended to evaluate cell potentials until 24 h after seeding. To estimate parameter values for this extension, freezing experiments were performed using constant cooling rates. Using quality and productivity indicators, we evaluated 16,206 temperature profiles using our model, and a promising profile was obtained. Finally, an experimental investigation of the profile was undertaken, and the contribution of the temperature profile to both quality and productivity was confirmed.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Yuki Uno
- Department of Biotechnology, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan.
| |
Collapse
|
7
|
Gordiyenko OI, Kovalenko IF, Rogulska OY, Trufanova NA, Gurina TM, Trufanov OV, Petrenko OY. Theory-based cryopreservation mode of mesenchymal stromal cell spheroids. Cryobiology 2024; 115:104906. [PMID: 38762155 DOI: 10.1016/j.cryobiol.2024.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Cryopreservation of spheroids requires development of new improved methods. The plasma membranes permeability coefficients for water and cryoprotectants determine time characteristics of mass transfer through the cell membranes, and therefore the optimal modes of cells cryopreservation. Here we proposed an approach to cryopreservation of multicellular spheroids which considers their generalized characteristics as analogues of the membranes' permeability coefficients of the individual cells. We have determined such integral characteristics of spheroids from mesenchymal stromal cells (MSCs) as osmotically inactive volume; permeability coefficients for water and Me2SO molecules and the activation energy of their penetration. Based on these characteristics, we calculated the osmotic behavior of multicellular spheroids under cooling conditions to select the optimal cooling rate. We also determined the optimal cooling rate of spheroids using the probabilistic model developed based on the two-factor theory of cryodamage. From the calculation it follows that the optimal cooling rate of the MSC-based spheroids is 0.75°С/min. To verify the obtained theoretical estimates, we conducted experiments on freezing MSC-based spheroids under different modes. The obtained results of primary viability screening indicate that freezing at a constant linear cooling rate of 0.75-1.0°С/min gives a good result. Theoretical prediction of the spheroid osmotic behavior during cooling provided the basis for experimental verification of varying the temperature to which slow cooling should be carried out before immersion in liquid nitrogen. Slow freezing of spheroids to -40 °C followed by immersion in liquid nitrogen was shown to preserve cells better than slow freezing to -80 °C. Obtained data allow more effective use of MSC-based spheroids in drug screening and regenerative medicine.
Collapse
Affiliation(s)
- O I Gordiyenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - I F Kovalenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Rogulska
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Institute of Physiology, Czech Academy of Science, Prague, Czech Republic; Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.
| | - N A Trufanova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - T M Gurina
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O V Trufanov
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| |
Collapse
|
8
|
Han H, Zhan T, Guo N, Cui M, Xu Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J 2024; 19:e2300543. [PMID: 38403430 DOI: 10.1002/biot.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Organoid technology has demonstrated unique advantages in multidisciplinary fields such as disease research, tumor drug sensitivity, clinical immunity, drug toxicology, and regenerative medicine. It will become the most promising research tool in translational research. However, the long preparation time of organoids and the lack of high-quality cryopreservation methods limit the further application of organoids. Although the high-quality cryopreservation of small-volume biological samples such as cells and embryos has been successfully achieved, the existing cryopreservation methods for organoids still face many bottlenecks. In recent years, with the development of materials science, cryobiology, and interdisciplinary research, many new materials and methods have been applied to cryopreservation. Several new cryopreservation methods have emerged, such as cryoprotectants (CPAs) of natural origin, ice-controlled biomaterials, and rapid rewarming methods. The introduction of these technologies has expanded the research scope of cryopreservation of organoids, provided new approaches and methods for cryopreservation of organoids, and is expected to break through the current technical bottleneck of cryopreservation of organoids. This paper reviews the progress of cryopreservation of organoids in recent years from three aspects: damage factors of cryopreservation of organoids, new protective agents and loading methods, and new technologies of cryopreservation and rewarming.
Collapse
Affiliation(s)
- Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Ning Guo
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
9
|
Alasmar S, Huang J, Chopra K, Baumann E, Aylsworth A, Hewitt M, Sandhu JK, Tauskela JS, Ben RN, Jezierski A. Improved Cryopreservation of Human Induced Pluripotent Stem Cell (iPSC) and iPSC-derived Neurons Using Ice-Recrystallization Inhibitors. Stem Cells 2023; 41:1006-1021. [PMID: 37622655 PMCID: PMC10631806 DOI: 10.1093/stmcls/sxad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.
Collapse
Affiliation(s)
- Salma Alasmar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Karishma Chopra
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| | - Joseph S Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
10
|
Zhan T, Niu W, Cui M, Han H, Dang H, Guo N, Wang D, Hao Y, Zang C, Xu Y, Guo H. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy. Analyst 2023. [PMID: 37337775 DOI: 10.1039/d3an00652b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cryopreservation method of microdroplets has steadily become widely employed in the cryopreservation of microscale biological samples such as various types of cells due to its fast cooling rate, significant reduction of the concentration of cryoprotectants, and practical liquid handling method. However, it is still necessary to consider the corresponding relationship between droplet size and concentration and the impact of crystallization during the cooling process on cell viability. The key may be a misunderstanding of the influencing factors of crystallization and vitrification behavior with concentration during cooling on the ultimate cell viability, which may be attributable to the inability to analyze the freezing state inside the microdroplets. Therefore, in this work, an in situ Raman observation system for droplet quenching was assembled to obtain Raman spectra in the frozen state, and the spectral characteristics of the crystallization and vitrification processes of microdroplets with varied concentrations and volumes were investigated. Furthermore, the degree of crystallization inside the droplets was quantitatively analyzed, and it was found that the ratio of the crystalline peak to hydrogen bond shoulder could clearly distinguish the degree of crystallization and the vitrified state, and the Raman crystallization characteristic parameters gradually increased with the decrease of concentrations. By obtaining the cooling curve and the overall cooling rate of quenching droplets, the vitrification state of the microdroplets was confirmed by theoretical analysis of the cooling characteristics of a DMSO solution system. In addition, the effect of cell cryopreservation was investigated using the microdroplet quenching device, and it was found that the key to cell survival during the quenching process of low-concentration microdroplets was dominated by the cooling rate and the internal crystallization degree, while the main influencing factor on high concentration was the toxic effect of a protective agent. In general, this work introduces a new nondestructive evaluation and analysis method for the cryopreservation of quenching microdroplets.
Collapse
Affiliation(s)
- Taijie Zhan
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenya Niu
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Mengdong Cui
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hengxin Han
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hangyu Dang
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ning Guo
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Hao
- Yinfeng Cryomedicine Technology Co. Ltd, Jinan, China
| | - Chuanbao Zang
- Yinfeng Cryomedicine Technology Co. Ltd, Jinan, China
| | - Yi Xu
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hanming Guo
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Louwagie T, Wagner M, Li R, Yu G, Petersen A, Hubel A. Characterizing cellular membrane partitioning of DMSO using low-temperature Raman spectroscopy. Front Mol Biosci 2023; 10:1144059. [PMID: 36911529 PMCID: PMC9994731 DOI: 10.3389/fmolb.2023.1144059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Additives that help cells survive the stresses of freezing and thawing are known as cryoprotective agents (CPAs). Two different types of CPAs have been identified: penetrating and non-penetrating. Common penetrating CPAs include dimethylsulfoxide (DMSO) and glycerol. The location of a CPA (intracelluar or extracellular) is important for understanding the molecular mechanisms of action for the agent. Low-temperature Raman spectroscopy is a label-free method of detecting the location of CPAs at low temperature with high spatial resolution and chemical specificity. To this end, cells cryopreserved in DMSO using a variety of cooling rates and DMSO concentrations and imaged using Raman spectroscopy were analyzed using automated image analysis to determine the partitioning ratio (concentration of DMSO outside/concentration of DMSO inside the cell). The partitioning ratio was roughly 1 for Jurkat cells frozen at 1°C/min in varying concentrations of DMSO with the exception of 1% DMSO which had a partitioning ratio of 0.2. The partitioning ratio increased from 1 to 1.3 as the cooling rate increased from 1°C to 5°C/min. Different cell types, specifically sensory neurons cells and human induced pluripotent stem cells, exhibited differences in partitioning ratio when frozen in 10% DMSO and 1°C/min suggesting that differences in freezing response may result from differences in solute partitioning. The presence of intracellular ice changed the distribution of DMSO inside the cell and also the partitioning ratio.
Collapse
Affiliation(s)
- Troy Louwagie
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Madeline Wagner
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Rui Li
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Ashley Petersen
- Division of Biostatistics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, United States
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
12
|
Particulates are everywhere, but are they harmful in cell and gene therapies? Cytotherapy 2022; 24:1195-1200. [PMID: 36175323 DOI: 10.1016/j.jcyt.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
|
13
|
Sun JD, Sun Y, Qiao T, Zhang SE, Dyce PW, Geng YW, Wang P, Ge W, Shen W, Cheng SF. Cryopreservation of porcine skin-derived stem cells using melatonin or trehalose maintains their ability to self-renew and differentiate. Cryobiology 2022; 107:23-34. [PMID: 35716769 DOI: 10.1016/j.cryobiol.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Porcine skin-derived stem cells (pSDSCs) are a type of adult stem cells (ASCs) that retain the ability to self-renew and differentiate. Currently, pSDSCs research has entered an intense period of development; however there has been no research regarding methods of cryopreservation. In this paper, we explored an efficient cryopreservation method for pSDSCs. Our results demonstrated that cryopreserving 50 μm diameter pSDSCs aggregates resulted in a lower apoptosis rate and a greater ability to proliferate to form larger spherical cell aggregates than during single-cell cryopreservation. To further optimize the cryopreservation method, we added different concentrations of melatonin (N-acetyl-5-methoxytryptamine, MLT) and trehalose (d-trehalose anhydrous, TRE) to act as cryoprotectants (CPAs) for the pSDSCs. After comparative experiments, we found that the cryopreservation efficiency of 50 mM TRE was superior. Further experiments demonstrated that the reason why 50 mM TRE improved cryopreservation efficiency was that it reduced the intracellular oxidative stress and mitochondrial damage caused by cryopreservation. Taken together, our results suggest that cryopreserving 50 μm diameter pSDSCs aggregates in F12 medium with 10% dimethyl sulfoxide (DMSO) and 50 mM TRE promotes the long-term storage of pSDSCs.
Collapse
Affiliation(s)
- Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yuan-Wei Geng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Impact of Cryopreservation and Freeze-Thawing on Therapeutic Properties of Mesenchymal Stromal/Stem Cells and Other Common Cellular Therapeutics. CURRENT STEM CELL REPORTS 2022; 8:72-92. [PMID: 35502223 PMCID: PMC9045030 DOI: 10.1007/s40778-022-00212-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Purpose of Review Cryopreservation and its associated freezing and thawing procedures–short “freeze-thawing”–are among the final steps in economically viable manufacturing and clinical application of diverse cellular therapeutics. Translation from preclinical proof-of-concept studies to larger clinical trials has indicated that these processes may potentially present an Achilles heel to optimal cell product safety and particularly efficacy in clinical trials and routine use. Recent Findings We review the current state of the literature on how cryopreservation of cellular therapies has evolved and how the application of this technique to different cell types is interlinked with their ability to engraft and function upon transfer in vivo, in particular for hematopoietic stem and progenitor cells (HSPCs), their progeny, and therapeutic cell products derived thereof. We also discuss pros and cons how this may differ for non-hematopoietic mesenchymal stromal/stem cell (MSC) therapeutics. We present different avenues that may be crucial for cell therapy optimization, both, for hematopoietic (e.g., effector, regulatory, and chimeric antigen receptor (CAR)-modified T and NK cell based products) and for non-hematopoietic products, such as MSCs and induced pluripotent stem cells (iPSCs), to achieve optimal viability, recovery, effective cell dose, and functionality of the cryorecovered cells. Summary Targeted research into optimizing the cryopreservation and freeze-thawing routines and the adjunct manufacturing process design may provide crucial advantages to increase both the safety and efficacy of cellular therapeutics in clinical use and to enable effective market deployment strategies to become economically viable and sustainable medicines.
Collapse
|
15
|
Hiramatsu S, Morizane A, Kikuchi T, Doi D, Yoshida K, Takahashi J. Cryopreservation of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurospheres for Clinical Application. JOURNAL OF PARKINSON'S DISEASE 2022; 12:871-884. [PMID: 34958047 PMCID: PMC9108593 DOI: 10.3233/jpd-212934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pluripotent stem cell (PSC)-derived dopaminergic (DA) neurons are an expected source of cell therapy for Parkinson's disease. The transplantation of cell aggregates or neurospheres, instead of a single cell suspension has several advantages, such as keeping the 3D structure of the donor cells and ease of handling. For this PSC-based therapy to become a widely available treatment, cryopreservation of the final product is critical in the manufacturing process. However, cryopreserving cell aggregates is more complicated than cryopreserving single cell suspensions. Previous studies showed poor survival of the DA neurons after the transplantation of cryopreserved fetal ventral-mesencephalic tissues. OBJECTIVE To achieve the cryopreservation of induced pluripotent stem cell (iPSC)-derived DA neurospheres toward clinical application. METHODS We cryopreserved iPSC-derived DA neurospheres in various clinically applicable cryopreservation media and freezing protocols and assessed viability and neurite extension. We evaluated the population and neuronal function of cryopreserved cells by the selected method in vitro. We also injected the cells into 6-hydroxydopamine (6-OHDA) lesioned rats, and assessed their survival, maturation and function in vivo. RESULTS The iPSC-derived DA neurospheres cryopreserved by Proton Freezer in the cryopreservation medium Bambanker hRM (BBK) showed favorable viability after thawing and had equivalent expression of DA-specific markers, dopamine secretion, and electrophysiological activity as fresh spheres. When transplanted into 6-OHDA-lesioned rats, the cryopreserved cells survived and differentiated into mature DA neurons, resulting in improved abnormal rotational behavior. CONCLUSION These results show that the combination of BBK and Proton Freezer is suitable for the cryopreservation of iPSC-derived DA neurospheres.
Collapse
Affiliation(s)
- Satoe Hiramatsu
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Regenerative and Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd, Kobe, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kenji Yoshida
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Regenerative and Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd, Kobe, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Uhrig M, Ezquer F, Ezquer M. Improving Cell Recovery: Freezing and Thawing Optimization of Induced Pluripotent Stem Cells. Cells 2022; 11:799. [PMID: 35269421 PMCID: PMC8909336 DOI: 10.3390/cells11050799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Achieving good cell recovery after cryopreservation is an essential process when working with induced pluripotent stem cells (iPSC). Optimized freezing and thawing methods are required for good cell attachment and survival. In this review, we concentrate on these two aspects, freezing and thawing, but also discuss further factors influencing cell recovery such as cell storage and transport. Whenever a problem occurs during the thawing process of iPSC, it is initially not clear what it is caused by, because there are many factors involved that can contribute to insufficient cell recovery. Thawing problems can usually be solved more quickly when a certain order of steps to be taken is followed. Under optimized conditions, iPSC should be ready for further experiments approximately 4-7 days after thawing and seeding. However, if the freezing and thawing protocols are not optimized, this time can increase up to 2-3 weeks, complicating any further experiments. Here, we suggest optimization steps and troubleshooting options for the freezing, thawing, and seeding of iPSC on feeder-free, Matrigel™-coated, cell culture plates whenever iPSC cannot be recovered in sufficient quality. This review applies to two-dimensional (2D) monolayer cell culture and to iPSC, passaged, frozen, and thawed as cell aggregates (clumps). Furthermore, we discuss usually less well-described factors such as the cell growth phase before freezing and the prevention of osmotic shock during thawing.
Collapse
Affiliation(s)
- Markus Uhrig
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| | | | - Marcelo Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| |
Collapse
|
17
|
Baust JM, Snyder KK, Van Buskirk RG, Baust JG. Assessment of the Impact of Post-Thaw Stress Pathway Modulation on Cell Recovery following Cryopreservation in a Hematopoietic Progenitor Cell Model. Cells 2022; 11:cells11020278. [PMID: 35053394 PMCID: PMC8773610 DOI: 10.3390/cells11020278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The development and use of complex cell-based products in clinical and discovery science continues to grow at an unprecedented pace. To this end, cryopreservation plays a critical role, serving as an enabling process, providing on-demand access to biological material, facilitating large scale production, storage, and distribution of living materials. Despite serving a critical role and substantial improvements over the last several decades, cryopreservation often remains a bottleneck impacting numerous areas including cell therapy, tissue engineering, and tissue banking. Studies have illustrated the impact and benefit of controlling cryopreservation-induced delayed-onset cell death (CIDOCD) through various “front end” strategies, such as specialized media, new cryoprotective agents, and molecular control during cryopreservation. While proving highly successful, a substantial level of cell death and loss of cell function remains associated with cryopreservation. Recently, we focused on developing technologies (RevitalICE™) designed to reduce the impact of CIDOCD through buffering the cell stress response during the post-thaw recovery phase in an effort to improve the recovery of previously cryopreserved samples. In this study, we investigated the impact of modulating apoptotic caspase activation, oxidative stress, unfolded protein response, and free radical damage in the initial 24 h post-thaw on overall cell survival. Human hematopoietic progenitor cells in vitro cryopreserved in both traditional extracellular-type and intracellular-type cryopreservation freeze media were utilized as a model cell system to assess impact on survival. Our findings demonstrated that through the modulation of several of these pathways, improvements in cell recovery were obtained, regardless of the freeze media and dimethyl sulfoxide concentration utilized. Specifically, through the use of oxidative stress inhibitors, an average increase of 20% in overall viability was observed. Furthermore, the results demonstrated that by using the post-thaw recovery reagent on samples cryopreserved in intracellular-type media (Unisol™), improvements in overall cell survival approaching 80% of non-frozen controls were attained. While improvements in overall survival were obtained, an assessment on the impact of specific cell subpopulations and functionality remains to be completed. While work remains, these results represent an important step forward in the development of improved cryopreservation processes for use in discovery science, and commercial and clinical settings.
Collapse
Affiliation(s)
- John M. Baust
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Correspondence: ; Tel.: +1-(607)-687-8701
| | - Kristi K. Snyder
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
| | - Robert G. Van Buskirk
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - John G. Baust
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| |
Collapse
|
18
|
Hayashi Y, Kino-oka M, Sugiyama H. Hybrid-model-based design of fill-freeze-thaw processes for human induced pluripotent stem cells considering productivity and quality. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Li R, Walsh P, Truong V, Petersen A, Dutton JR, Hubel A. Differentiation of Human iPS Cells Into Sensory Neurons Exhibits Developmental Stage-Specific Cryopreservation Challenges. Front Cell Dev Biol 2021; 9:796960. [PMID: 34970550 PMCID: PMC8712858 DOI: 10.3389/fcell.2021.796960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Differentiation of human induced pluripotent stem cells (hiPSCs) generates cell phenotypes valuable for cell therapy and personalized medicine. Successful translation of these hiPSC-derived therapeutic products will rely upon effective cryopreservation at multiple stages of the manufacturing cycle. From the perspective of cryobiology, we attempted to understand how the challenge of cryopreservation evolves between cell phenotypes along an hiPSC-to-sensory neuron differentiation trajectory. Cells were cultivated at three different stages to represent intermediate, differentiated, and matured cell products. All cell stages remained ≥90% viable in a dimethyl sulfoxide (DMSO)-free formulation but suffered ≥50% loss in DMSO before freezing. Raman spectroscopy revealed higher sensitivity to undercooling in hiPSC-derived neuronal cells with lower membrane fluidity and higher sensitivity to suboptimal cooling rates in stem cell developmental stages with larger cell bodies. Highly viable and functional sensory neurons were obtained following DMSO-free cryopreservation. Our study also demonstrated that dissociating adherent cultures plays an important role in the ability of cells to survive and function after cryopreservation.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Patrick Walsh
- Anatomic Incorporated, Minneapolis, MN, United States
| | | | - Ashley Petersen
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - James R. Dutton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Allison Hubel
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Erol OD, Pervin B, Seker ME, Aerts-Kaya F. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells 2021; 13:1197-1214. [PMID: 34630858 PMCID: PMC8474714 DOI: 10.4252/wjsc.v13.i9.1197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ozgur Dogus Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Mehmet Emin Seker
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
21
|
Pennington BO, Bailey JK, Faynus MA, Hinman C, Hee MN, Ritts R, Nadar V, Zhu D, Mitra D, Martinez-Camarillo JC, Lin TC, Thomas BB, Hinton DR, Humayun MS, Lebkowski J, Johnson LV, Clegg DO. Xeno-free cryopreservation of adherent retinal pigmented epithelium yields viable and functional cells in vitro and in vivo. Sci Rep 2021; 11:6286. [PMID: 33737600 PMCID: PMC7973769 DOI: 10.1038/s41598-021-85631-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.
Collapse
Affiliation(s)
- Britney O. Pennington
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Jeffrey K. Bailey
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Mohamed A. Faynus
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Cassidy Hinman
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Mitchell N. Hee
- grid.133342.40000 0004 1936 9676College of Creative Studies, Biology, University of California, Santa Barbara, CA USA
| | - Rory Ritts
- grid.133342.40000 0004 1936 9676Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, CA USA
| | - Vignesh Nadar
- Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Danhong Zhu
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Debbie Mitra
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Juan Carlos Martinez-Camarillo
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - Tai-Chi Lin
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Biju B. Thomas
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - David R. Hinton
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - Mark S. Humayun
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853Department of Biomedical Engineering, Denney Research Center (DRB) of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | | | - Dennis O. Clegg
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA ,grid.133342.40000 0004 1936 9676Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, CA USA
| |
Collapse
|
22
|
Interaction of solute and water molecules in cryoprotectant mixture during vitrification and crystallization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Model-based assessment of temperature profiles in slow freezing for human induced pluripotent stem cells. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2020.107150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Qin K, Eschenbrenner C, Ginot F, Dedovets D, Coradin T, Deville S, Fernandes FM. Unveiling Cells' Local Environment during Cryopreservation by Correlative In Situ Spatial and Thermal Analyses. J Phys Chem Lett 2020; 11:7730-7738. [PMID: 32841035 DOI: 10.1021/acs.jpclett.0c01729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cryopreservation is the only fully established procedure to extend the lifespan of living cells and tissues, a key to activities spanning from fundamental biology to clinical practice. Despite its prevalence and impact, the central aspects of cryopreservation, such as the cell's physicochemical environment during freezing, remain elusive. Here we address that question by coupling in situ microscopic directional freezing to visualize cells and their surroundings during freezing with the freezing-medium phase diagram. We extract the freezing-medium spatial distribution in cryopreservation, providing a tool to describe the cell vicinity at any point during freezing. We show that two major events define the cells' local environment over time: the interaction with the moving ice front and the interaction with the vitreous moving front, a term we introduce here. Our correlative strategy may be applied to cells relevant to clinical research and practice and may help in the design of new cryoprotective media based on local physicochemical cues.
Collapse
Affiliation(s)
- Kankan Qin
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Corentin Eschenbrenner
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Felix Ginot
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 84300 Cavaillon, France
| | - Dmytro Dedovets
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 84300 Cavaillon, France
| | - Thibaud Coradin
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Sylvain Deville
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 84300 Cavaillon, France
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| |
Collapse
|
25
|
Yu G, Li R, Hubel A. Raman Cryomicroscopic Imaging and Sample Holder for Spectroscopic Subzero Temperature Measurements. Methods Mol Biol 2020; 2180:351-361. [PMID: 32797420 DOI: 10.1007/978-1-0716-0783-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Raman spectroscopy has been gaining in popularity for noninvasive analysis of single cells. Raman spectra and images deliver meaningful information regarding the biochemical, biophysical, and structural properties of cells in various states. Low-temperature Raman spectroscopy has been applied to verify the presence of ice inside a frozen cell and to illustrate the distribution of both penetrating and non-penetrating cryoprotectants. This chapter delineates Raman cryomicroscopic imaging of single cells as well as sample handling for spectroscopic measurements at subzero temperature. The experimental setup is depicted with a special emphasis on a custom-built temperature-controlled cooling stage. The use of Raman cryomicroscopic imaging is demonstrated using Jurkat cells cryopreserved in a sucrose solution. Moreover, strategies for determining intracellular ice formation (IIF) and analysis of sucrose partitioning across the cell membrane are presented.
Collapse
Affiliation(s)
- Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. Biomaterials 2020; 230:119628. [DOI: 10.1016/j.biomaterials.2019.119628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|
27
|
Li R, Hornberger K, Dutton JR, Hubel A. Cryopreservation of Human iPS Cell Aggregates in a DMSO-Free Solution-An Optimization and Comparative Study. Front Bioeng Biotechnol 2020; 8:1. [PMID: 32039188 PMCID: PMC6987262 DOI: 10.3389/fbioe.2020.00001] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/03/2020] [Indexed: 01/28/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are an important cell source for regenerative medicine products. Effective methods of preservation are critical to their clinical and commercial applications. The use of a dimethyl sulfoxide (DMSO)-free solution containing all non-toxic molecules offers an effective alternative to the conventional DMSO and alleviates pain points associated with the use of DMSO in the cryopreservation of hiPSCs. Both hiPSCs and cells differentiated from them are commonly multicellular systems, which are more sensitive to stresses of freezing and thawing than single cells. In this investigation, low-temperature Raman spectroscopy visualized freezing behaviors of hiPSC aggregates in different solutions. These aggregates exhibited sensitivity to undercooling in DMSO-containing solutions. We demonstrated the ability to replace DMSO with non-toxic molecules, improve post-thaw cell survival, and reduce sensitivity to undercooling. An accelerated optimization process capitalized on the positive synergy among multiple DMSO-free molecules, which acted in concert to influence ice formation and protect cells during freezing and thawing. A differential evolution algorithm was used to optimize the multi-variable, DMSO-free preservation protocol in 8 experiments. hiPSC aggregates frozen in the optimized solution did not exhibit the same sensitivity to undercooling as those frozen in non-optimized solutions or DMSO, indicating superior adaptability of the optimized solution to different freezing modalities and unplanned deviations. This investigation shows the importance of optimization, explains the mechanisms and advantages of a DMSO-free solution, and enables not only improved cryopreservation of hiPSCs but potentially other cell types for translational regenerative medicine.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kathlyn Hornberger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - James R. Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Allison Hubel
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
28
|
Slow freezing process design for human induced pluripotent stem cells by modeling intracontainer variation. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Sun Y, Dos Santos A, Balayan A, Deng SX. Evaluation of Cryopreservation Media for the Preservation of Human Corneal Stromal Stem Cells. Tissue Eng Part C Methods 2019; 26:37-43. [PMID: 31686624 DOI: 10.1089/ten.tec.2019.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Human corneal stromal stem cells (CSSCs) have gained increasing attention in the treatment of corneal stromal scars. In view of this, the preparation and storage of CSSCs are critical to maintaining the regenerative potential of CSSCs. The goal of the study was to investigate the human serum (HS) concentration in the cryomedia that could best preserve CSSCs. Materials and Methods: Three different cryopreservation media, varying in HS concentration were evaluated in their ability to preserve the viability and phenotype of CSSCs: 2% HS (FS1), 4% HS (FS2), and 90% HS (FS3). After thawing, CSSCs morphology, recovery rate, cell proliferation, relative gene expression of CSSC markers (ABCG2, SOX2, NANOG, PAX6, and SIX3), and their anti-inflammatory response (level of TNFAIP6) were compared with those of unfrozen CSSCs (control). Results: Cryopreserved CSSCs had similar cell morphology as the control. Cell viability was significantly higher using FS2 (92.7 ± 1.3%) compared with FS1 (88 ± 0.8%, p = 0.018). Doubling times of CSSCs were maintained in all cryopreserved conditions, as in the control (p > 0.05), which were 0.9 ± 0.1 days and 1.8 ± 0.0 days at passages 3 and 4, then increased to 18.2 ± 1.9 days at passage 6 (p > 0.05). The expression level of stem cell/progenitor cell markers investigated was not affected by the cryopreservation with any of the three media. In addition, cryopreserved CSSCs have a similar expression level of TNFAIP6 after stimulation with proinflammatory cytokines as the control (p > 0.05). Conclusion: Our results indicated that all three cryopreservation media maintained CSSCs phenotype after undergoing one freezing/thawing cycle. Impact Statement Corneal stromal stem cells (CSSCs) offer an alternative for the treatment of corneal stromal scars. Cryopreservation of CSSCs is necessary as it enables feasibility of using CSSCs as a cell therapy candidate. The current study shows that media used to cryopreserve CSSCs could be optimized to maintain cell viability, phenotype, and potency of CSSCs after thawing.
Collapse
Affiliation(s)
- Yuzhao Sun
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California.,Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Aurelie Dos Santos
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California
| | - Alis Balayan
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California
| | - Sophie X Deng
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
30
|
Fernandes S, Khan N, Kale V, Limaye L. Catalase incorporation in freezing mixture leads to improved recovery of cryopreserved iPSC lines. Cryobiology 2019; 90:21-29. [PMID: 31494090 DOI: 10.1016/j.cryobiol.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Among the various types of stem cells, induced pluripotent stem cells (iPSCs) have gained much attention due to their pluripotent nature. iPSCs help us to understand the processes that regulate pluripotency and specialization. However, in order to use them in various applications in regenerative medicine, their efficient cryopreservation and recovery after the freezing injury is critical. Here we have used an antioxidant catalase, as an additive to the conventional freezing mixture containing 50% FBS and 10% DMSO. The hiPSCs were frozen as aggregates by using a programmable freezer and then stored in liquid nitrogen at -196 °C. It was seen that catalase improved the revival efficiency by reducing the late apoptotic populations and increasing the live cell fraction. Catalase also retained the pluripotent nature of iPSCs in a better way post revival. This improvement could be attributed to reduction of total ROS and apoptosis, which are the two main factors that cause damage during freezing. Our data suggest that catalase could be a useful additive while freezing hiPSCs.
Collapse
Affiliation(s)
- Sophia Fernandes
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Nikhat Khan
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Vaijayanti Kale
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Lalita Limaye
- Stem Cell Laboratory, National Centre for Cell Science, NCCS Complex, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
31
|
Kratochvílová I, Kopečná O, Bačíková A, Pagáčová E, Falková I, Follett SE, Elliott KW, Varga K, Golan M, Falk M. Changes in Cryopreserved Cell Nuclei Serve as Indicators of Processes during Freezing and Thawing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7496-7508. [PMID: 30339402 DOI: 10.1021/acs.langmuir.8b02742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanisms underlying cell protection from cryoinjury are not yet fully understood. Recent biological studies have addressed cryopreserved cell survival but have not correlated the cryoprotection effectiveness with the impact of cryoprotectants on the most important cell structure, the nucleus, and the freeze/thaw process. We identified changes of cell nuclei states caused by different types of cryoprotectants and associate them with alterations of the freeze/thaw process in cells. Namely, we investigated both higher-order chromatin structure and nuclear envelope integrity as possible markers of freezing and thawing processes. Moreover, we analyzed in detail the relationship between nuclear envelope integrity, chromatin condensation, freeze/thaw processes in cells, and cryopreservation efficiency for dimethyl sulfoxide, glycerol, trehalose, and antifreeze protein. Our interdisciplinary study reveals how changes in cell nuclei induced by cryoprotectants affect the ability of cells to withstand freezing and thawing and how nuclei changes correlate with processes during freezing and thawing. Our results contribute to the deeper fundamental understanding of the freezing processes, notably in the cell nucleus, which will expand the applications and lead to the rational design of cryoprotective materials and protocols.
Collapse
Affiliation(s)
- Irena Kratochvílová
- Institute of Physics, v.v.i. , Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 Prague 8 , Czech Republic
| | - Olga Kopečná
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Alena Bačíková
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Eva Pagáčová
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Iva Falková
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| | - Shelby E Follett
- Department of Chemistry , University of Wyoming , 1000 E. University Avenue , Laramie , Wyoming 82071 , United States
| | - K Wade Elliott
- Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , 46 College Road , Durham , New Hampshire 03824 , United States
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , 46 College Road , Durham , New Hampshire 03824 , United States
| | - Martin Golan
- Institute of Physics, v.v.i. , Czech Academy of Sciences , Na Slovance 2 , CZ-182 21 Prague 8 , Czech Republic
| | - Martin Falk
- Institute of Biophysics, v.v.i. , Czech Academy of Sciences , Královopolská 135 , CZ-612 65 Brno , Czech Republic
| |
Collapse
|
32
|
Yu G, Li R, Hubel A. Interfacial Interactions of Sucrose during Cryopreservation Detected by Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7388-7395. [PMID: 30398347 PMCID: PMC8023323 DOI: 10.1021/acs.langmuir.8b01616] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is considerable interest in the use of sugars to preserve cells. In this study, low temperature Raman spectroscopy was used to characterize the behaviors of sucrose during freezing. The hydrogen bond network between sucrose and water was investigated at -10 °C and -50 °C, and the Raman spectra showed strengthened sucrose-water and sucrose-sucrose hydrogen bonds in more concentrated sucrose solution at -50 °C. The concentration of sucrose at the ice interface increased as the ice density decreased, and it plateaued across a narrow channel of nonfrozen sucrose solution before it decreased toward the next ice interface. The biophysical environment at interfaces between the cell and nonfrozen sucrose solution and between the cell and extracellular ice was also studied. A thin layer of nonfrozen sucrose solution was observed at the interface between the cell and extracellular ice. The extracellular concentration of sucrose at this interface was generally lower than that of bulk nonfrozen sucrose solution. The variation of sucrose concentration outside different regions of the cell membrane suggests that the chemical environment around the cell during freezing may be more heterogeneous than previously thought. Raman spectra and images also showed colocalization of nonfrozen sucrose solution and the cell, which implied that direct interaction between sucrose and cell membrane might be responsible for protective properties of sucrose. Sucrose was predominantly distributed outside the cell, and the observation of strong partitioning of sucrose across the cell membrane is consistent with substantial cell dehydration detected by the Raman spectra. This work enhances our understanding of the behaviors of sucrose solution and its interactions with cells at low temperature and can improve cryopreservation protocols of cells frozen in a sucrose-based media.
Collapse
Affiliation(s)
- Guanglin Yu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Allison Hubel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Yu G, Hubel A. The role of preservation in the variability of regenerative medicine products. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:323-331. [PMID: 33225043 PMCID: PMC7677879 DOI: 10.1007/s40883-019-00110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
Regenerative medicine (RM) has the potential to restore or establish normal function of cells, tissues and organs that have been lost due to age, disease or injury. It is common for the site of raw material collection, site of manufacture and site of clinical use to be different for RM products, and at the same time cells must remain viable and functional during transportation among different sites. Freezing products down to cryogenic temperatures along with cold chain transportation has become an effective method of preserving RM products. The quality of RM products along this supply chain represents the cumulative effects of all of the processing steps and all of the reagents used in the process. A variety of sources of variability in the preservation of RM products can result in both cell losses and greater variability in the quality of RM products. The purpose of this article is to review the sources of variability in the preservation process as well as the methods by which variability can be controlled or avoided.
Collapse
Affiliation(s)
- Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|