1
|
Zoelch N, Heimer J, Richter H, Luechinger R, Archibald J, Thali MJ, Gascho D. In situ temperature determination using magnetic resonance spectroscopy thermometry for noninvasive postmortem examinations. NMR IN BIOMEDICINE 2024; 37:e5171. [PMID: 38757603 DOI: 10.1002/nbm.5171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Magnetic resonance spectroscopy (MRS) thermometry offers a noninvasive, localized method for estimating temperature by leveraging the temperature-dependent chemical shift of water relative to a temperature-stable reference metabolite under suitable calibration. Consequentially, this technique has significant potential as a tool for postmortem MR examinations in forensic medicine and pathology. In these examinations, the deceased are examined at a wide range of body temperatures, and MRS thermometry may be used for the temperature adjustment of magnetic resonance imaging (MRI) protocols or for corrections in the analysis of MRI or MRS data. However, it is not yet clear to what extent postmortem changes may influence temperature estimation with MRS thermometry. In addition, N-acetylaspartate, which is commonly used as an in vivo reference metabolite, is known to decrease with increasing postmortem interval (PMI). This study shows that lactate, which is not only present in significant amounts postmortem but also has a temperature-stable chemical shift, can serve as a suitable reference metabolite for postmortem MRS thermometry. Using lactate, temperature estimation in postmortem brain tissue of severed sheep heads was accurate up to 60 h after death, with a mean absolute error of less than 0.5°C. For this purpose, published calibrations intended for in vivo measurements were used. Although postmortem decomposition resulted in severe metabolic changes, no consistent deviations were observed between measurements with an MR-compatible temperature probe and MRS thermometry with lactate as a reference metabolite. In addition, MRS thermometry was applied to 84 deceased who underwent a MR examination as part of the legal examination. MRS thermometry provided plausible results of brain temperature in comparison with rectal temperature. Even for deceased with a PMI well above 60 h, MRS thermometry still provided reliable readings. The results show a good suitability of MRS thermometry for postmortem examinations in forensic medicine.
Collapse
Affiliation(s)
- Niklaus Zoelch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jakob Heimer
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Henning Richter
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Jessica Archibald
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Michael J Thali
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Dominic Gascho
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Rogala J, Dreszer J, Sińczuk M, Miciuk Ł, Piątkowska-Janko E, Bogorodzki P, Wolak T, Wróbel A, Konarzewski M. Local variation in brain temperature explains gender-specificity of working memory performance. Front Hum Neurosci 2024; 18:1398034. [PMID: 39132677 PMCID: PMC11310161 DOI: 10.3389/fnhum.2024.1398034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Exploring gender differences in cognitive abilities offers vital insights into human brain functioning. Methods Our study utilized advanced techniques like magnetic resonance thermometry, standard working memory n-back tasks, and functional MRI to investigate if gender-based variations in brain temperature correlate with distinct neuronal responses and working memory capabilities. Results We observed a significant decrease in average brain temperature in males during working memory tasks, a phenomenon not seen in females. Although changes in female brain temperature were significantly lower than in males, we found an inverse relationship between the absolute temperature change (ATC) and cognitive performance, alongside a correlation with blood oxygen level dependent (BOLD) signal change induced by neural activity. This suggests that in females, ATC is a crucial determinant for the link between cognitive performance and BOLD responses, a linkage not evident in males. However, we also observed additional female specific BOLD responses aligned with comparable task performance to that of males. Discussion Our results suggest that females compensate for their brain's heightened temperature sensitivity by activating additional neuronal networks to support working memory. This study not only underscores the complexity of gender differences in cognitive processing but also opens new avenues for understanding how temperature fluctuations influence brain functionality.
Collapse
Affiliation(s)
- Jacek Rogala
- Centre for Research on Culture, Language, and Mind, University of Warsaw, Warsaw, Poland
- The Centre for Systemic Risk Analysis, University of Warsaw, Warsaw, Poland
| | - Joanna Dreszer
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marcin Sińczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Miciuk
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Piątkowska-Janko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bogorodzki
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany, Poland
| | - Andrzej Wróbel
- Nencki Institute of Experimental Biology, Warsaw, Poland
- Faculty of Philosophy, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
3
|
Dong Z, Kantrowitz JT, Mann JJ. Improving the reproducibility of proton magnetic resonance spectroscopy brain thermometry: Theoretical and empirical approaches. NMR IN BIOMEDICINE 2022; 35:e4749. [PMID: 35475306 DOI: 10.1002/nbm.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In proton magnetic resonance spectroscopy (1 H MRS)-based thermometry of brain, averaging temperatures measured from more than one reference peak offers several advantages, including improving the reproducibility (i.e., precision) of the measurement. This paper proposes theoretically and empirically optimal weighting factors to improve the weighted average of temperatures measured from three references. We first proposed concepts of equivalent noise and equivalent signal-to-noise ratio in terms of frequency measurement and a concept of relative frequency that allows the combination of different peaks in a spectrum for improving the precision of frequency measurement. Based on these, we then derived a theoretically optimal weighting factor and proposed an empirical weighting factor, both involving equivalent noise levels, for a weighted average of temperatures measured from three references (i.e., the singlets of NAA, Cr, and Ch in the 1 H MR spectrum). We assessed these two weighting factors by comparing their errors in measurement of temperatures with the errors of temperatures measured from individual references; we also compared these two new weighting factors with two previously proposed weighting factors. These errors were defined as the standard deviations in repeated measurements or in Monte Carlo studies. Both the proposed theoretical and empirical weighting factors outperformed the two previously proposed weighting factors as well as the three individual references in all phantom and in vivo experiments. In phantom experiments with 4- or 10-Hz line broadening, the theoretical weighting factor outperformed the empirical one, but the latter was superior in all other repeated and Monte Carlo tests performed on phantom and in vivo data. The proposed weighting factors are superior to the two previously proposed weighting factors and can improve the reproducibility of temperature measurement using 1 H MRS-based thermometry.
Collapse
Affiliation(s)
- Zhengchao Dong
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
4
|
Dong Z, Milak MS, Mann JJ. Proton magnetic resonance spectroscopy thermometry: Impact of separately acquired full water or partially suppressed water data on quantification and measurement error. NMR IN BIOMEDICINE 2022; 35:e4681. [PMID: 34961997 DOI: 10.1002/nbm.4681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In proton magnetic resonance spectroscopy (1 H MRS) thermometry, separately acquired full water and partially suppressed water are commonly used for measuring temperature. This paper compares these two approaches. Single-voxel 1 H MRS data were collected on a 3-T GE scanner from 26 human subjects. Every subject underwent five continuous MRS sessions, each separated by a 2-min phase. Each MRS session lasted 13 min and consisted of two free induction decays (FIDs) without water suppression (with full water [FW or w]) and 64 FIDs with partial water suppression (with partially suppressed water [PW or w']). Frequency differences between the two FWs, the first two PWs, the second FW and the first PW (FW2 , PW1 ), or between averaged water ( wav' ) and N-acetylaspartate (NAA), were measured. Intrasubject and intersubject variations of the frequency differences were used as a metric for the error in temperature measurement. The intrasubject variations of frequency differences between FW2 and PW1fw2-fw1' , calculated from the five MRS sessions for each subject, were larger than those between the two FWs or between the first two PWs (p = 1.54 x 10-4 and p = 1.72 x 10-4 , respectively). The mean values of intrasubject variations of fw2-fw1' for all subjects were 4.7 and 4.5 times those of fw2-fw1 and fw2'-fw1' , respectively. The intrasubject variations of the temperatures based on frequency differences, fw2-fNAA or ( fw1'-fNAA ), were about 2.5 times greater than those based on averaged water and NAA frequencies (fwav'-fNAA ). The mean temperature measured from (fwav'-fNAA ) (n = 26) was 0.29°C lower than that measured from fw2-fNAA and was 0.83°C higher than that from ( fw1'-fNAA ). It was concluded that the use of separately acquired unsuppressed or partially suppressed water signals may result in large errors in frequency and, consequently, temperature measurement.
Collapse
Affiliation(s)
- Zhengchao Dong
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA
- Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York, USA
| | - Matthew S Milak
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA
- Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA
- Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York, USA
- Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
5
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
6
|
Shibukawa S, Niwa T, Miyati T, Ogino T, Yoshimaru D, Kuroda K. Temperature measurement of intracranial cerebrospinal fluid using second-order motion compensation diffusion tensor imaging. Phys Med Biol 2021; 66. [PMID: 34874287 DOI: 10.1088/1361-6560/ac3fff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022]
Abstract
To reduce the determination errors of CSF pulsation in diffusion-weighted image (DWI) thermometry, we investigated whether applying second-order motion compensation diffusion tensor imaging (2nd-MC DTI) and fractional anisotropy (FA) processing improves the measurement of intracranial cerebrospinal fluid (CSF) temperature. In a phantom study, we investigated the relationship between temperature and FA in artificial CSF (ACSF) to determine the threshold for FA processing. The calculated temperatures of ACSF were compared with those of water. In a human study, 18 healthy volunteers were scanned using conventional DTI (c-DTI) and 2nd-MC DTI on a 3.0 T magnetic resonance imaging (MRI) system. A temperature map was created using diffusion coefficients from each DWI with/without FA processing. The temperatures of intracranial CSF were compared between each DTI image using Welch's analysis of variance and Games-Howell's multiple comparisons. In the phantom study, FA did not exceed 0.1 at any temperature. Consequently, pixels exceeding the threshold of 0.1 were removed from the temperature map. Intracranial CSF temperatures significantly differed between the four methods (p < 0.0001). The lowest temperature was 2nd-MC DTI with FA processing (mean, 35.62 °C), followed in order by c-DTI with FA processing (mean, 36.16 °C), 2nd-MC DTI (mean, 37.08 °C), and c-DTI (mean, 39.08 °C;p < 0.01 for each). Because the calculated temperature of ACSF was estimated to be lower than that of water, the temperature of 2nd-DTI with FA processing was considered reasonable. The method of 2nd-MC DTI with FA processing enabled determining intracranial CSF temperature with a reduction in CSF pulsation.
Collapse
Affiliation(s)
- Shuhei Shibukawa
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Bunkyo-Ku, Tokyo, Japan.,Department of Radiology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Department of Radiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tetsu Niwa
- Department of Radiology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuo Ogino
- Philips Japan, Healthcare, Shinagawa, Tokyo, Japan
| | - Daisuke Yoshimaru
- Department of Radiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan.,Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kagayaki Kuroda
- Course of Electrical and Electronic Engineering, Graduate School of Engineering, Tokai University, Kanagawa, Japan
| |
Collapse
|
7
|
Addis A, Gaasch M, Schiefecker AJ, Kofler M, Ianosi B, Rass V, Lindner A, Broessner G, Beer R, Pfausler B, Thomé C, Schmutzhard E, Helbok R. Brain temperature regulation in poor-grade subarachnoid hemorrhage patients - A multimodal neuromonitoring study. J Cereb Blood Flow Metab 2021; 41:359-368. [PMID: 32151225 PMCID: PMC7812508 DOI: 10.1177/0271678x20910405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elevated body temperature (Tcore) is associated with poor outcome after subarachnoid hemorrhage (SAH). Brain temperature (Tbrain) is usually higher than Tcore. However, the implication of this difference (Tdelta) remains unclear. We aimed to study factors associated with higher Tdelta and its association with outcome. We included 46 SAH patients undergoing multimodal neuromonitoring, for a total of 7879 h of averaged data of Tcore, Tbrain, cerebral blood flow, cerebral perfusion pressure, intracranial pressure and cerebral metabolism (CMD). Three-months good functional outcome was defined as modified Rankin Scale ≤2. Tbrain was tightly correlated with Tcore (r = 0.948, p < 0.01), and was higher in 73.7% of neuromonitoring time (Tdelta +0.18°C, IQR -0.01 - 0.37°C). A higher Tdelta was associated with better metabolic state, indicated by lower CMD-glutamate (p = 0.003) and CMD-lactate (p < 0.001), and lower risk of mitochondrial dysfunction (MD) (OR = 0.2, p < 0.001). During MD, Tdelta was significantly lower (0°C, IQR -0.2 - 0.1; p < 0.001). A higher Tdelta was associated with improved outcome (OR = 7.7, p = 0.002). Our study suggests that Tbrain is associated with brain metabolic activity and exceeds Tcore when mitochondrial function is preserved. Further studies are needed to understand how Tdelta may serve as a surrogate marker for brain function and predict clinical course and outcome after SAH.
Collapse
Affiliation(s)
- Alberto Addis
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Neurology, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,School of Medicine, University of Milan-Bicocca, Milano, Italy
| | - Maxime Gaasch
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois J Schiefecker
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Kofler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bogdan Ianosi
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Rass
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Lindner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Broessner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Beer
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Brain Temperature Measured by Magnetic Resonance Spectroscopy to Predict Clinical Outcome in Patients with Infarction. SENSORS 2021; 21:s21020490. [PMID: 33445603 PMCID: PMC7827727 DOI: 10.3390/s21020490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/01/2023]
Abstract
Acute ischemic stroke is characterized by dynamic changes in metabolism and hemodynamics, which can affect brain temperature. We used proton magnetic resonance (MR) spectroscopy under everyday clinical settings to measure brain temperature in seven patients with internal carotid artery occlusion to explore the relationship between lesion temperature and clinical course. Regions of interest were selected in the infarct area and the corresponding contralateral region. Single-voxel MR spectroscopy was performed using the following parameters: 2000-ms repetition time, 144-ms echo time, and 128 excitations. Brain temperature was calculated from the chemical shift between water and N-acetyl aspartate, choline-containing compounds, or creatine phosphate. Within 48 h of onset, compared with the contralateral region temperature, brain temperature in the ischemic lesion was lower in five patients and higher in two patients. Severe brain swelling occurred subsequently in three of the five patients with lower lesion temperatures, but in neither of the two patients with higher lesion temperatures. The use of proton MR spectroscopy to measure brain temperature in patients with internal carotid artery occlusion may predict brain swelling and subsequent motor deficits, allowing for more effective early surgical intervention. Moreover, our methodology allows for MR spectroscopy to be used in everyday clinical settings.
Collapse
|
9
|
Sharma AA, Nenert R, Mueller C, Maudsley AA, Younger JW, Szaflarski JP. Repeatability and Reproducibility of in-vivo Brain Temperature Measurements. Front Hum Neurosci 2020; 14:598435. [PMID: 33424566 PMCID: PMC7785722 DOI: 10.3389/fnhum.2020.598435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Magnetic resonance spectroscopic imaging (MRSI) is a neuroimaging technique that may be useful for non-invasive mapping of brain temperature (i.e., thermometry) over a large brain volume. To date, intra-subject reproducibility of MRSI-based brain temperature (MRSI-t) has not been investigated. The objective of this repeated measures MRSI-t study was to establish intra-subject reproducibility and repeatability of brain temperature, as well as typical brain temperature range. Methods: Healthy participants aged 23-46 years (N = 18; 7 females) were scanned at two time points ~12-weeks apart. Volumetric MRSI data were processed by reconstructing metabolite and water images using parametric spectral analysis. Brain temperature was derived using the frequency difference between water and creatine (TCRE) for 47 regions of interest (ROIs) delineated by the modified Automated Anatomical Labeling (AAL) atlas. Reproducibility was measured using the coefficient of variation for repeated measures (COVrep), and repeatability was determined using the standard error of measurement (SEM). For each region, the upper and lower bounds of Minimal Detectable Change (MDC) were established to characterize the typical range of TCRE values. Results: The mean global brain temperature over all subjects was 37.2°C with spatial variations across ROIs. There was a significant main effect for time [F (1, 1,591) = 37.0, p < 0.0001] and for brain region [F (46, 1,591) = 2.66, p < 0.0001]. The time*brain region interaction was not significant [F (46, 1,591) = 0.80, p = 0.83]. Participants' TCRE was stable for each ROI across both time points, with ROIs' COVrep ranging from 0.81 to 3.08% (mean COVrep = 1.92%); majority of ROIs had a COVrep <2.0%. Conclusions: Brain temperature measurements were highly consistent between both time points, indicating high reproducibility and repeatability of MRSI-t. MRSI-t may be a promising diagnostic, prognostic, and therapeutic tool for non-invasively monitoring brain temperature changes in health and disease. However, further studies of healthy participants with larger sample size(s) and numerous repeated acquisitions are imperative for establishing a reference range of typical brain TCRE, as well as the threshold above which TCRE is likely pathological.
Collapse
Affiliation(s)
- Ayushe A. Sharma
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
| | - Rodolphe Nenert
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Christina Mueller
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Andrew A. Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jarred W. Younger
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Jerzy P. Szaflarski
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
10
|
Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020; 23:101561. [PMID: 32954229 PMCID: PMC7489251 DOI: 10.1016/j.isci.2020.101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of temperature variation is of primordial importance in particular areas of biomedicine. In this context, medical treatments such as hyperthermia and cryotherapy, and also the development and use of hydrogel-based biomaterials, are of particular concern. To enable accurate temperature measurement without perturbing or even destroying the biological tissue or material to be monitored, contactless thermometry methods are preferred. Among these, the most suitable are based on magnetic resonance imaging and spectroscopy (MRI, MRS). Here, we address the latest developments in this field as well as their current and anticipated practical applications. We highlight recent progress aimed at rendering MR thermometry faster and more reproducible, versatile, and sophisticated and provide our perspective on how these new techniques broaden the range of applications in medical treatments and biomaterial development by enabling insight into finer details of thermal behavior. Thus, these methods facilitate optimization of clinical and industrial heating and cooling protocols.
Collapse
Affiliation(s)
- Norbert W. Lutz
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Monique Bernard
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
11
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|