1
|
Kalampounias G, Varemmenou A, Aronis C, Mamali I, Shaukat AN, Chartoumpekis DV, Katsoris P, Michalaki M. Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines. Cancers (Basel) 2024; 16:2604. [PMID: 39061242 PMCID: PMC11275150 DOI: 10.3390/cancers16142604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Thyrotropin (TSH) suppression is required in the management of patients with papillary thyroid carcinoma (PTC) to improve their outcomes, inevitably causing iatrogenic thyrotoxicosis. Nevertheless, the evidence supporting this practice remains limited and weak, and in vitro studies examining the mitogenic effects of TSH in cancerous cells used supraphysiological doses of bovine TSH, which produced conflicting results. Our study explores, for the first time, the impact of human recombinant thyrotropin (rh-TSH) on human PTC cell lines (K1 and TPC-1) that were transformed to overexpress the thyrotropin receptor (TSHR). The cells were treated with escalating doses of rh-TSH under various conditions, such as the presence or absence of insulin. The expression levels of TSHR and thyroglobulin (Tg) were determined, and subsequently, the proliferation and migration of both transformed and non-transformed cells were assessed. Under the conditions employed, rh-TSH was not adequate to induce either the proliferation or the migration rate of the cells, while Tg expression was increased. Our experiments indicate that clinically relevant concentrations of rh-TSH cannot induce proliferation and migration in PTC cell lines, even after the overexpression of TSHR. Further research is warranted to dissect the underlying molecular mechanisms, and these results could translate into better management of treatment for PTC patients.
Collapse
Affiliation(s)
- Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Athina Varemmenou
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Christos Aronis
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Irene Mamali
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | | | - Dionysios V. Chartoumpekis
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Marina Michalaki
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| |
Collapse
|
2
|
Kiriya M, Kawashima A, Fujiwara Y, Tanimura Y, Yoshihara A, Nakamura Y, Tanigawa K, Kondo T, Suzuki K. Thyroglobulin regulates the expression and localization of the novel iodide transporter solute carrier family 26 member 7 (SLC26A7) in thyrocytes. Endocr J 2022; 69:1217-1225. [PMID: 35644541 DOI: 10.1507/endocrj.ej22-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Solute carrier family 26 member 7 (SLC26A7), identified as a causative gene for congenital hypothyroidism, was found to be a novel iodide transporter expressed on the apical side of the follicular epithelium of the thyroid. We recently showed that TSH suppressed the expression of SLC26A7 and induces its localization to the plasma membrane, where it functions. We also showed that the ability of TSH to induce thyroid hormone synthesis is completely reversed by an autocrine negative-feedback action of thyroglobulin (Tg) stored in the follicular lumen. In the present study, we investigated the potential effect of follicular Tg on SLC26A7 expression and found that follicular Tg significantly suppressed the promoter activity, mRNA level, and protein level of SLC26A7 in rat thyroid FRTL-5 cells. In addition, follicular Tg inhibited the ability of TSH to induce the membrane localization of SLC26A7. In rat thyroid sections, the expression of SLC26A7 was weaker in follicles with a higher concentration of Tg, as evidenced by immunofluorescence staining. These results indicate that Tg stored in the follicular lumen is a feedback suppressor of the expression and membrane localization of SLC26A7, thereby downregulating the transport of iodide into the follicular lumen.
Collapse
Affiliation(s)
- Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Yuta Tanimura
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Aya Yoshihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
- Center for Medical Education, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Yasuhiro Nakamura
- Center for Promotion of Pharmaceutical Education & Research, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
3
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Sox9 is involved in the thyroid differentiation program and is regulated by crosstalk between TSH, TGFβ and thyroid transcription factors. Sci Rep 2022; 12:2144. [PMID: 35140269 PMCID: PMC8828901 DOI: 10.1038/s41598-022-06004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
While the signaling pathways and transcription factors involved in the differentiation of thyroid follicular cells, both in embryonic and adult life, are increasingly well understood, the underlying mechanisms and potential crosstalk between the thyroid transcription factors Nkx2.1, Foxe1 and Pax8 and inductive signals remain unclear. Here, we focused on the transcription factor Sox9, which is expressed in Nkx2.1-positive embryonic thyroid precursor cells and is maintained from embryonic development to adulthood, but its function and control are unknown. We show that two of the main signals regulating thyroid differentiation, TSH and TGFβ, modulate Sox9 expression. Specifically, TSH stimulates the cAMP/PKA pathway to transcriptionally upregulate Sox9 mRNA and protein expression, a mechanism that is mediated by the binding of CREB to a CRE site within the Sox9 promoter. Contrastingly, TGFβ signals through Smad proteins to inhibit TSH-induced Sox9 transcription. Our data also reveal that Sox9 transcription is regulated by the thyroid transcription factors, particularly Pax8. Interestingly, Sox9 significantly increased the transcriptional activation of Pax8 and Foxe1 promoters and, consequently, their expression, but had no effect on Nkx2.1. Our study establishes the involvement of Sox9 in thyroid follicular cell differentiation and broadens our understanding of transcription factor regulation of thyroid function.
Collapse
|
5
|
Tanimura Y, Kiriya M, Kawashima A, Mori H, Luo Y, Kondo T, Suzuki K. Regulation of solute carrier family 26 member 7 (Slc26a7) by thyroid stimulating hormone in thyrocytes. Endocr J 2021; 68:691-699. [PMID: 33583874 DOI: 10.1507/endocrj.ej20-0502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Iodine transportation is an important step in thyroid hormone biosynthesis. Uptake of iodine into the thyroid follicle is mediated mainly by the basolateral sodium-iodide symporter (NIS or solute carrier family 5 member 5: SLC5A5), and iodine efflux across the apical membrane into the follicular lumen is mediated by pendrin (SLC26A4). In addition to these transporters, SLC26A7, which has recently been identified as a causative gene for congenital hypothyroidism, was found to encode a novel apical iodine transporter in the thyroid. Although SLC5A5 and SLC26A4 have been well-characterized, little is known about SLC26A7, including its regulation by TSH, the central hormone regulator of thyroid function. Using rat thyroid FRTL-5 cells, we showed that the mRNA levels of Slc26a7 and Slc26a4, two apical iodine transporters responsible for iodine efflux, were suppressed by TSH, whereas the mRNA level of Slc5a5 was induced. Forskolin and dibutyryl cAMP (dbcAMP) had the same effect as that of TSH on the mRNA levels of these transporters. TSH, forskolin and dbcAMP also had suppressive effects on SLC26A7 promoter activity, as assessed by luciferase reporter gene assays, and protein levels, as determined by Western blot analysis. TSH, forskolin and dbcAMP also induced strong localization of Slc26a7 to the cell membrane according to immunofluorescence staining and confocal laser scanning microscopy. Together, these results suggest that TSH suppresses the expression level of Slc26a7 but induces its accumulation at the cell membrane, where it functions as an iodine transporter.
Collapse
Affiliation(s)
- Yuta Tanimura
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Hitomi Mori
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
6
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1086. [PMID: 30917615 PMCID: PMC6466022 DOI: 10.3390/ijerph16061086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
The sodium iodide symporter (NIS) is the plasma membrane glycoprotein that mediates active iodide transport in the thyroid and other tissues, such as the salivary, gastric mucosa, rectal mucosa, bronchial mucosa, placenta and mammary glands. In the thyroid, NIS mediates the uptake and accumulation of iodine and its activity is crucial for the development of the central nervous system and disease prevention. Since the discovery of NIS in 1996, research has further shown that NIS functionality and iodine transport is dependent on the activity of the sodium potassium activated adenosine 5'-triphosphatase pump (Na+, K+-ATPase). In this article, I review the molecular mechanisms by which F inhibits NIS expression and functionality which in turn contributes to impaired iodide absorption, diminished iodide-concentrating ability and iodine deficiency disorders. I discuss how NIS expression and activity is inhibited by thyroglobulin (Tg), tumour necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β), interferon-γ (IFN-γ), insulin like growth factor 1 (IGF-1) and phosphoinositide 3-kinase (PI3K) and how fluoride upregulates expression and activity of these biomarkers. I further describe the crucial role of prolactin and megalin in regulation of NIS expression and iodine homeostasis and the effect of fluoride in down regulating prolactin and megalin expression. Among many other issues, I discuss the potential conflict between public health policies such as water fluoridation and its contribution to iodine deficiency, neurodevelopmental and pathological disorders. Further studies are warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, Co. Cork, P72 YF10, Ireland.
| |
Collapse
|
7
|
Jinlida Granules Improve Dysfunction of Hypothalamic-Pituitary-Thyroid Axis in Diabetic Rats Induced by STZ. BIOMED RESEARCH INTERNATIONAL 2019; 2018:4764030. [PMID: 29984235 PMCID: PMC6011157 DOI: 10.1155/2018/4764030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Objective We aim to explore the effects and mechanisms of Jinlida granules on the dysfunction of hypothalamic-pituitary-thyroid (HPT) axis in diabetic rats induced by streptozotocin. Methods A total of 48 SD rats were randomized into normal control group (NC, n = 6) and diabetic group (n = 42). Rats in diabetic group were randomly divided into diabetes mellitus (DM) control group, low, medium, and high doses of Jinlida group (JL, JM, and JH), medium dose of Jinlida plus Tongxinluo group (JM + T), metformin group (Met), and Saxagliptin group (Sax) (n = 6 in each group). Diabetic rats were obtained by intraperitoneal injection of streptozotocin and sacrificed at 8 weeks to examine the function of HPT axis. Results Levels of fasting blood glucose (P < 0.05), pIκB, TNFα (P < 0.05), pNF-κB, and IL-6 (P < 0.01) in liver tissue and TSHR mRNA expression (P < 0.01) in diabetic group were significantly increased, while levels of serum T3 and T4, thyroid hormone receptor (TR) mRNA and Dio1 mRNA in liver tissue, and sodium iodide symporter (NIS) mRNA in thyroid tissue in diabetic group were significantly decreased compared with those in NC group (P < 0.01). Among diabetic groups, level of fasting blood glucose in JH, JM + T and Met group was lower (P < 0.05) compared with DM group. However, levels of serum T3 and T4, TR mRNA in liver tissue, TSHR, and NIS mRNA in thyroid tissue in JH, JM + T, Met, and Sax group were significantly increased (P < 0.01) compared to DM group. In contrast, levels of Dio1 mRNA, pI-κB in Met and JM + T groups, pNF-κB in JH, JM + T, and Met group, and TNFα and IL-6 in JM, JH, JM + T, and Met group were significantly decreased (P < 0.05). HE staining showed reduced thyroid follicular epithelium and follicular area, as well as increased colloid area in DM group, indicating impaired synthesis, reabsorption, and secretory of TH in diabetes, which was significantly improved in JH, JM + T, and Met groups. Conclusion HPT axis dysfunction in DM could be significantly improved by Jinlida granules. The mechanism might be associated with the anti-inflammatory effects involving NF-κB pathway. Our findings suggested the potential benefit of Jinlida granules for patients with HPT axis dysfunction and DM, which was to be verified by more experimental and clinical studies.
Collapse
|
8
|
The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int J Mol Sci 2018; 19:ijms19123814. [PMID: 30513575 PMCID: PMC6321330 DOI: 10.3390/ijms19123814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine tumor. Although the majority of TCs show good prognoses, a minor proportion are aggressive and refractory to conventional therapies. So far, the molecular mechanisms underlying TC pathogenesis are incompletely understood. Evidence suggests that TC cells and their precursors are responsive to insulin and insulin-like growth factors (IGFs), and often overexpress receptors for insulin (IR) and IGF-1 (IGF-1R). IR exists in two isoforms, namely IR-A and IR-B. The first binds insulin and IGF-2, unlike IR-B, which only binds insulin. IR-A is preferentially expressed in prenatal life and contributes to development through IGF-2 action. Aggressive TC overexpresses IR-A, IGF-2, and IGF-1R. The over-activation of IR-A/IGF-2 loop in TC is associated with stem-like features and refractoriness to some targeted therapies. Importantly, both IR isoforms crosstalk with IGF-1R, giving rise to the formation of hybrids receptors (HR-A or HR-B). Other interactions have been demonstrated with other molecules such as the non-integrin collagen receptor, discoidin domain receptor 1 (DDR1), and the receptor for the hepatocyte growth factor (HGF), Met. These functional networks provide mechanisms for IR signaling diversification, which may also exert a role in TC stem cell biology, thereby contributing to TC initiation and progression. This review focuses on the molecular mechanisms by which deregulated IR isoforms and their crosstalk with other molecules and signaling pathways in TC cells and their precursors may contribute to thyroid carcinogenesis, progression, and resistance to conventional treatments. We also highlight how targeting these alterations starting from TC progenitors cells may represent new therapeutic strategies to improve the clinical management of advanced TCs.
Collapse
|
9
|
Huang H, Shi Y, Liang B, Cai H, Cai Q. Iodinated TG in Thyroid Follicular Lumen Regulates TTF‐1 and PAX8 Expression via TSH/TSHR Signaling Pathway. J Cell Biochem 2017; 118:3444-3451. [PMID: 28322461 DOI: 10.1002/jcb.26001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Huibin Huang
- Department of EndocrinologyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhou, Fujian 362000P.R. China
| | - Yaxiong Shi
- Department of EndocrinologyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhou, Fujian 362000P.R. China
| | - Bo Liang
- Department of EndocrinologyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhou, Fujian 362000P.R. China
| | - Huiyao Cai
- Department of EndocrinologyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhou, Fujian 362000P.R. China
| | - Qingyan Cai
- Department of EndocrinologyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhou, Fujian 362000P.R. China
| |
Collapse
|
10
|
Malaguarnera R, Vella V, Nicolosi ML, Belfiore A. Insulin Resistance: Any Role in the Changing Epidemiology of Thyroid Cancer? Front Endocrinol (Lausanne) 2017; 8:314. [PMID: 29184536 PMCID: PMC5694441 DOI: 10.3389/fendo.2017.00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, the incidence of thyroid cancer (TC), namely of its papillary hystotype (PTC), has shown a steady increase worldwide, which has been attributed at least in part to the increasing diagnosis of early stage tumors. However, some evidence suggests that environmental and lifestyle factors can also play a role. Among the potential risk factors involved in the changing epidemiology of TC, particular attention has been drawn to insulin-resistance and related metabolic disorders, such as obesity, type 2 diabetes, and metabolic syndrome, which have been also rapidly increasing worldwide due to widespread dietary and lifestyle changes. In accordance with this possibility, various epidemiological studies have indeed gathered substantial evidence that insulin resistance-related metabolic disorders might be associated with an increased TC risk either through hyperinsulinemia or by affecting other TC risk factors including iodine deficiency, elevated thyroid stimulating hormone, estrogen-dependent signaling, chronic autoimmune thyroiditis, and others. This review summarizes the current literature evaluating the relationship between metabolic disorders characterized by insulin resistance and the risk for TC as well as the possible underlying mechanisms. The potential implications of such association in TC prevention and therapy are discussed.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, “Kore” University of Enna, Enna, Italy
- *Correspondence: Veronica Vella, ; Antonino Belfiore,
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Veronica Vella, ; Antonino Belfiore,
| |
Collapse
|
11
|
Wen G, Eder K, Ringseis R. Sterol regulatory element-binding proteins are transcriptional regulators of the thyroglobulin gene in thyroid cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:994-1003. [PMID: 27321819 DOI: 10.1016/j.bbagrm.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
Abstract
The genes encoding sodium/iodide symporter (NIS) and thyroid peroxidase (TPO), both of which are essential for thyroid hormone (TH) synthesis, were shown to be regulated by sterol regulatory element-binding proteins (SREBP)-1c and -2. In the present study we tested the hypothesis that transcription of a further gene essential for TH synthesis, the thyroglobulin (TG) gene, is under the control of SREBP. To test this hypothesis, we studied the influence of inhibition of SREBP maturation and SREBP knockdown on TG expression in FRTL-5 thyrocytes and explored transcriptional regulation of the TG promoter by reporter gene experiments in FRTL-5 and HepG2 cells, gel shift assays and chromatin immunoprecipitation. Inhibition of SREBP maturation by 25-hydroxycholesterol and siRNA-mediated knockdown of either SREBP-1c or SREBP-2 decreased mRNA and protein levels of TG in FRTL-5 thyrocytes. Reporter gene assays with wild-type and mutated TG promoter reporter truncation constructs revealed that the rat TG promoter is transcriptionally activated by nSREBP-1c and nSREBP-2. DNA-binding assays and chromatin immunoprecipitation assays showed that both nSREBP-1c and nSREBP-2 bind to a SREBP binding motif with characteristics of an E-box SRE at position -63 in the rat TG promoter. In connection with recent findings that NIS and TPO are regulated by SREBP in thyrocytes the present findings support the view that SREBP are regulators of essential steps of TH synthesis in the thyroid gland such as iodide uptake, iodide oxidation and iodination of tyrosyl residues of TG. This moreover suggests that SREBP may be molecular targets for pharmacological modulation of TH synthesis.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany.
| |
Collapse
|
12
|
Serrano-Nascimento C, Nicola JP, Teixeira SDS, Poyares LL, Lellis-Santos C, Bordin S, Masini-Repiso AM, Nunes MT. Excess iodide downregulates Na(+)/I(-) symporter gene transcription through activation of PI3K/Akt pathway. Mol Cell Endocrinol 2016; 426:73-90. [PMID: 26872612 DOI: 10.1016/j.mce.2016.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
Transcriptional mechanisms associated with iodide-induced downregulation of NIS expression remain uncertain. Here, we further analyzed the transcriptional regulation of NIS gene expression by excess iodide using PCCl3 cells. NIS promoter activity was reduced in cells treated for 12-24 h with 10(-5) to 10(-3) M NaI. Site-directed mutagenesis of Pax8 and NF-κB cis-acting elements abrogated the iodide-induced NIS transcription repression. Indeed, excess iodide (10(-3) M) excluded Pax8 from the nucleus, decreased p65 total expression and reduced their transcriptional activity. Importantly, p65-Pax8 physical interaction and binding to NIS upstream enhancer were reduced upon iodide treatment. PI3K/Akt pathway activation by iodide-induced ROS production is involved in the transcriptional repression of NIS expression. In conclusion, the results indicated that excess iodide transcriptionally represses NIS gene expression through the impairment of Pax8 and p65 transcriptional activity. Furthermore, the data presented herein described novel roles for PI3K/Akt signaling pathway and oxidative status in the thyroid autoregulatory phenomenon.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Silvania da Silva Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Leonice Lourenço Poyares
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Camilo Lellis-Santos
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Ana Maria Masini-Repiso
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
|
14
|
García-Jiménez C, Santisteban P. TSH signalling and cancer. ACTA ACUST UNITED AC 2008; 51:654-71. [PMID: 17891229 DOI: 10.1590/s0004-27302007000500003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/11/2007] [Indexed: 12/20/2022]
Abstract
Thyroid cancers are the most frequent endocrine neoplasms and mutations in the thyrotropin receptor (TSHR) are unusually frequent. Here we present the state-of-the-art concerning the role of TSHR in thyroid cancer and discuss it in light of the cancer stem cell theory or the classical view. We briefly review the gene and protein structure updating the cancer related TSHR mutations database. Intriguingly, hyperfunctioning TSHR mutants characterise differentiated cancers in contrast to undifferentiated thyroid cancers which very often bear silenced TSHR. It remains unclear whether TSHR alterations in thyroid cancers play a role in the onset or they appear as a consequence of genetic instability during evolution, but the presence of functional TSHR is exploited in therapy. We outline the signalling network build up in the thyrocyte between TSHR/PKA and other proliferative pathways such as Wnt, PI3K and MAPK. This networks integrity surely plays a role in the onset/evolution of thyroid cancer and needs further research. Lastly, future investigation of epigenetic events occurring at the TSHR and other loci may give better clues for molecular based therapy of undifferentiated thyroid carcinomas. Targeted demethylating agents, histone deacetylase inhibitors combined with retinoids and specific RNAis may help treatment in the future.
Collapse
|
15
|
García-Jiménez C, Santisteban P. Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes. Expert Rev Endocrinol Metab 2008; 3:473-491. [PMID: 30290436 DOI: 10.1586/17446651.3.4.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- a Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Pilar Santisteban
- b Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC, C/Arturo Duperier, 4, 28932 Madrid, Spain.
| |
Collapse
|
16
|
De Felice M, Postiglione MP, Di Lauro R. Minireview: thyrotropin receptor signaling in development and differentiation of the thyroid gland: insights from mouse models and human diseases. Endocrinology 2004; 145:4062-7. [PMID: 15231702 DOI: 10.1210/en.2004-0501] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Chun JT, Di Dato V, D'Andrea B, Zannini M, Di Lauro R. The CRE-like element inside the 5'-upstream region of the rat sodium/iodide symporter gene interacts with diverse classes of b-Zip molecules that regulate transcriptional activities through strong synergy with Pax-8. Mol Endocrinol 2004; 18:2817-29. [PMID: 15319451 DOI: 10.1210/me.2004-0020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously demonstrated that transcription of the rat sodium/iodide symporter (NIS) gene is regulated by NUE, an upstream enhancer located between nucleotides -2264 and -2495 of the 5'-flanking region. To elucidate the mechanism of TSH/cAMP-mediated regulation of NIS gene expression, we have characterized the putative cAMP response element (CRE)/activator protein (AP)-1 site (termed NUC) that is closely located between the two Pax-8 (paired box domain transcription factor-8) binding sites within NUE. In two different approaches using either gel supershift analyses or dominant-negative inhibitors of b-Zip molecules, we have shown that NUC can be recognized by several members of the AP-1 and CREB family transcription factors that modulate the transcriptional activity of NUE. Using tethered dimers of b-Zip molecules, we have also demonstrated that specific homo- or heterodimers of AP-1 can synergistically stimulate NUE activity in concert with Pax-8. To demonstrate further that NUC is a bona fide CRE, we made an artificial promoter with the five-time tandem repeat of this sequence (5xNUC). In comparison to the canonical CRE (5xCRE), 5xNUC manifested greater transcriptional activity and broader response to cAMP signaling. Hence, we postulate that the significance of this evolutionally conserved CRE-like site may lie in its broader cell type specificity.
Collapse
Affiliation(s)
- J T Chun
- Department of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | | | | | | |
Collapse
|
18
|
Maino K, Skelton H, Yeager J, Smith KJ. Benign ectopic thyroid tissue in a cutaneous location: a case report and review. J Cutan Pathol 2003; 31:195-8. [PMID: 14690467 DOI: 10.1111/j.0303-6987.2004.00160.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND For many years, lateral, aberrant thyroid tissue in adults was a term used almost exclusively for metastatic thyroid carcinoma. However, aberrant, benign ectopic thyroid tissue does occur, and it is most commonly found as a part of the evaluation of endocrine dysfunction. Rarely, aberrant, benign ectopic thyroid presents as a primary mass. CASE REPORT We present a 35-year-old female who presented for removal of a lifelong posterior lateral neck nodule. RESULTS Histologic examination and immunohistochemical studies confirmed the presence of aberrant, benign ectopic thyroid tissue. The patient had no endocrine problems, and she had a normally located and functioning thyroid gland. CONCLUSIONS This case illustrates that not all aberrant thyroid tissues in adults are malignant or associated with endocrine disorders. This case also illustrates the rare association of ectopic thyroid and a normally located and functioning thyroid gland. In this patient, a somatic mutation in a transcription factor important in thyroid migration could explain these findings.
Collapse
Affiliation(s)
- Kim Maino
- Department of Dermatology, National Naval Medical Center, Bethesda, MD, USA
| | | | | | | |
Collapse
|
19
|
Knauf JA, Kuroda H, Basu S, Fagin JA. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 2003; 22:4406-12. [PMID: 12853977 DOI: 10.1038/sj.onc.1206602] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Constitutive activation of the RET proto-oncogene in papillary thyroid carcinomas results from rearrangements linking the promoter(s) and N-terminal domains of unrelated genes to the C-terminus of RET tyrosine kinase (RET/PTC). RET/PTC expression has been demonstrated to inhibit transcription of thyroid-specific genes. To study the signal transduction pathways responsible for this, we generated PCCL3 thyroid cells with doxycycline-inducible expression of RET/PTC3, RET/PTC3(Y541F), or PTC2/PDZ. Acute expression of RET/PTC(Y541F) appropriately interacted with Shc, an intermediate in the activation of the Ras pathway, but failed to activate PLCgamma. By contrast, PTC2/PDZ failed to bind Shc, but interacted normally with PLCgamma. Acute expression of RET/PTC3 or RET/PTC3(Y541F), but not PTC2/PDZ, inhibited TSH-induced Tg and NIS expression, suggesting that activation of Shc-Ras, but not PLCgamma, is required for RET/PTC-induced dedifferentiation. Accordingly, acute expression of H-Ras(V12) or of a constitutively active MEK1 also blocked TSH-induced expression of Tg and NIS. Moreover, MEK inhibitors restored Tg and NIS levels. In conclusion, activation of the Ras/Raf/MEK/MAPK pathway through Shc mediates RET/PTC-induced thyroid cell dedifferentiation. This suggests that inhibition of this pathway may promote redifferentiation in poorly differentiated thyroid carcinomas with constitutive activation of either Ras or RET/PTC.
Collapse
Affiliation(s)
- Jeffrey A Knauf
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | |
Collapse
|
20
|
Napolitano G, Bucci I, Giuliani C, Massafra C, Di Petta C, Devangelio E, Singer DS, Monaco F, Kohn LD. High glucose levels increase major histocompatibility complex class I gene expression in thyroid cells and amplify interferon-gamma action. Endocrinology 2002; 143:1008-17. [PMID: 11861526 DOI: 10.1210/endo.143.3.8674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased major histocompatibility complex (MHC) class I gene expression in target tissues may be relevant to the pathogenesis of autoimmune diseases. In this study, we questioned whether high glucose levels might increase MHC class I levels and thereby contribute to autoimmune complications. We used thyrocytes in continuous culture, because there is an increased incidence of autoimmune thyroiditis in type 2 diabetics and because transcriptional regulation of MHC class I is well studied in these cells. Northern analysis and flow cytometry showed that 20 and 30 mM D-glucose up-regulated MHC class I expression and that the glucose effect was additive to and independent of interferon-gamma. The effect was specific, because L-glucose did not modify class I expression. The glucose acted transcriptionally, requiring both enhancer A and a cAMP-response element-like element located in the hormone-sensitive region of the MHC class I 5'flanking region. These elements are different from those activated by interferon-gamma. High glucose levels increase formation of the MOD-1 complex with enhancer A; MOD-1 is a heterodimer of fra-2 and the p50 subunit of NF-kappaB. Both TSH and insulin are required for full expression of the glucose activity in thyrocytes. The glucose effect is partially blocked by wortmannin, suggesting involvement of the PI3K signal system. The data support the possibility that high serum glucose levels in type 2 diabetic patients may increase MHC class I levels in target tissues and contribute to autoimmune complications of the disease.
Collapse
Affiliation(s)
- Giorgio Napolitano
- Department of Medicine and Sciences of Aging, University G. D'Annunzio, Chieti 66100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kohn LD, Suzuki K, Nakazato M, Royaux I, Green ED. Effects of thyroglobulin and pendrin on iodide flux through the thyrocyte. Trends Endocrinol Metab 2001; 12:10-6. [PMID: 11137035 DOI: 10.1016/s1043-2760(00)00337-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iodide transport by thyrocytes involves porters on the apical and basal surfaces of the cell facing the follicular lumen and bloodstream, respectively. Recent work identifies pendrin as an apical porter and shows that follicular thyroglobulin is a transcriptional regulator of the gene encoding pendrin and other thyroid-restricted genes. For example, whereas follicular thyroglobulin suppresses the gene expression and activity of the sodium iodide symporter (NIS), it increases pendrin gene expression. A potential new dynamic for iodide flux and thyroid hormone formation in thyrocytes has thus emerged and is supported by in vivo data.
Collapse
Affiliation(s)
- L D Kohn
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
22
|
Kang HC, Ohmori M, Harii N, Endo T, Onaya T. Pax-8 is essential for regulation of the thyroglobulin gene by transforming growth factor-beta1. Endocrinology 2001; 142:267-75. [PMID: 11145590 DOI: 10.1210/endo.142.1.7918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that is thought to play a major role in the regulation of growth and differentiation of thyroid cells. However, little is known of its detailed mechanisms of action in thyrocytes. We have therefore studied the molecular mechanisms of TGF-beta1 action on thyroglobulin (TG) gene expression by focusing our attention on TGF-beta1 regulation of thyroid-specific transcription factors. TGF-beta1 decreased TG messenger RNA (mRNA) expression both in the presence and in the absence of TSH in rat thyroid FRTL-5 cells. Transfected into FRTL-5 cells, the activity of reporter plasmids containing the rat TG promoter ligated to a luciferase gene was significantly suppressed by the addition of TGF-beta1. When the nuclear extracts prepared from TGF-beta1-treated FRTL-5 cells were used in gel mobility shift assays, the amount of protein-DNA complex formed by Pax-8 was reduced, both in the presence and in the absence of TSH, but protein-DNA complexes formed by thyroid transcription factor-1 (TTF-1) and TTF-2 were not. The suppressive effect of TGF-beta1 on Pax-8/DNA complex formation is in part due to the suppression of Pax-8 mRNA and protein levels by TGF-beta1. Expressions of Pax-8 mRNA and protein, which were assessed by Northern blot and Western blot analyses, respectively, were decreased by TGF-beta1 treatment of FRTL-5 cells in a concentration-dependent manner. In a transfection experiment, mutation of the Pax-8-binding site caused a loss of both TGF-beta1- and TSH-responsiveness in TG promoter activity. Overexpression of Pax-8 abolished the TGF-beta1 suppression of TG promoter activity. These results indicate that TGF-beta1 decreases Pax-8 mRNA levels as well as Pax-8 DNA-binding activity, which, at least in part, seems to be involved in the TGF-beta1-induced suppression of TG gene expression.
Collapse
Affiliation(s)
- H C Kang
- Third Department of Internal Medicine, Yamanashi Medical University, Tamaho, Yamanashi 409-3898, Japan
| | | | | | | | | |
Collapse
|