1
|
Du Q, Shen W. Research progress of plant-derived natural products in thyroid carcinoma. Front Chem 2024; 11:1279384. [PMID: 38268761 PMCID: PMC10806030 DOI: 10.3389/fchem.2023.1279384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Thyroid carcinoma (TC) is a prevalent malignancy of the endocrine system, with a notable rise in its detection rate in recent decades. The primary therapeutic approaches for TC now encompass thyroidectomy and radioactive iodine therapy, yielding favorable prognoses for the majority of patients. TC survivors may necessitate ongoing surveillance, remedial treatment, and thyroid hormone supplementation, while also enduring the adverse consequences of thyroid hormone fluctuations, surgical complications, or side effects linked to radioactive iodine administration, and encountering enduring physical, psychosocial, and economic hardships. In vitro and in vivo studies of natural products against TC are demonstrating the potential of these natural products as alternatives to the treatment of thyroid cancer. This therapy may offer greater convenience, affordability, and acceptability than traditional therapies. In the early screening of natural products, we mainly use a combination of database prediction and literature search. The pharmacological effects on TC of selected natural products (quercetin, genistein, apigenin, luteolin, chrysin, myricetin, resveratrol, curcumin and nobiletin), which hold promise for therapeutic applications in TC, are reviewed in detail in this article through most of the cell-level evidence, animal-level evidence, and a small amount of human-level evidence. In addition, this article explores possible issues, such as bioavailability, drug safety.
Collapse
Affiliation(s)
- Qiujing Du
- The Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Weidong Shen
- The Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, China
| |
Collapse
|
2
|
Elisei R, Agate L, Mazzarri S, Bottici V, Guidoccio F, Molinaro E, Boni G, Ferdeghini M, Mariani G. Radionuclide Therapy of Thyroid Tumors. NUCLEAR ONCOLOGY 2022:1381-1429. [DOI: 10.1007/978-3-031-05494-5_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021; 11:6251-6277. [PMID: 33995657 PMCID: PMC8120202 DOI: 10.7150/thno.57689] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
The advanced, metastatic differentiated thyroid cancers (DTCs) have a poor prognosis mainly owing to radioactive iodine (RAI) refractoriness caused by decreased expression of sodium iodide symporter (NIS), diminished targeting of NIS to the cell membrane, or both, thereby decreasing the efficacy of RAI therapy. Genetic aberrations (such as BRAF, RAS, and RET/PTC rearrangements) have been reported to be prominently responsible for the onset, progression, and dedifferentiation of DTCs, mainly through the activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Eventually, these alterations result in a lack of NIS and disabling of RAI uptake, leading to the development of resistance to RAI therapy. Over the past decade, promising approaches with various targets have been reported to restore NIS expression and RAI uptake in preclinical studies. In this review, we summarized comprehensive molecular mechanisms underlying the dedifferentiation in RAI-refractory DTCs and reviews strategies for restoring RAI avidity by tackling the mechanisms.
Collapse
|
4
|
Xiong L, Nie JH, Lin XM, Wu JB, Chen Z, Xu B, Liu J. Biological implications of PTEN upregulation and altered sodium/iodide symporter intracellular distribution in resveratrol-suppressed anaplastic thyroid cancer cells. J Cancer 2020; 11:6883-6891. [PMID: 33123279 PMCID: PMC7592015 DOI: 10.7150/jca.48180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Objective: Anaplastic thyroid cancer/ATC is a highly aggressive malignancy with extremely poor prognosis. Resveratrol/Res promotes re-differentiation of cancer cells and exerts inhibitory effects on ATC cells. Sodium/iodide symporter/NIS and phosphate and tension homology deleted on chromsome ten/PTEN levels are positively correlated with the grade of thyroid cancer differentiation, while the impact of Res on them remain unknown. Materials and Methods: The patterns of NIS and PTEN expression and intracellular distribution in THJ-16T and THJ-21T ATC and Nthy-ori 3-1 normal thyroid cells and their relevance with Res-caused ATC suppression were investigated via multiple experimental methods. E-cadherin was cited as a re-differentiation biomarker of ATC cells. Results: MTT and EdU cell proliferation assays showed distinct growth suppression in ATC cells after Res treatment. TUNEL staining revealed extensive apoptosis of Res-treated THJ-16T and THJ-21T rather than Nthy-ori 3-1 cells. Western blotting, immunocytochemical/ICC and double-labeled immunofluorescent/IF staining showed increased PTEN levels accompanied with distinct NIS and PTEN nuclear co-translocation in Res-treated THJ-16T and THJ-21T cells. E-cadherin but not NIS appeared on the outer membrane. Conclusion: PTEN upregulation and the concurrent NIS and PTEN nuclear translocation in Res-suppressed ATC cells may indicate the better therapeutic outcome and would be a group of beneficial prognostic factors of ATCs.
Collapse
Affiliation(s)
- Le Xiong
- South China University of Technology School of Medicine, Guangzhou 510006, China
| | - Jun-Hua Nie
- South China University of Technology School of Medicine, Guangzhou 510006, China
| | - Xiao-Min Lin
- South China University of Technology School of Medicine, Guangzhou 510006, China
| | - Jian-Bin Wu
- Department of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Zhen Chen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou 510180, China
| | - Bo Xu
- Department of Thyroid Surgery, Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou 510180, China
| | - Jia Liu
- South China University of Technology School of Medicine, Guangzhou 510006, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou 510180, China
| |
Collapse
|
5
|
Bauriaud-Mallet M, Vija-Racaru L, Brillouet S, Mallinger A, de Medina P, Rives A, Payre B, Poirot M, Courbon F, Silvente-Poirot S. The cholesterol-derived metabolite dendrogenin A functionally reprograms breast adenocarcinoma and undifferentiated thyroid cancer cells. J Steroid Biochem Mol Biol 2019; 192:105390. [PMID: 31170473 DOI: 10.1016/j.jsbmb.2019.105390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 01/05/2023]
Abstract
Dendrogenin A (DDA) is a tumor suppressor mammalian cholesterol-derived metabolite and a new class of ligand of the Liver X receptor (LXR), which displays tumor cell differentiation. In human MCF7 breast adenocarcinoma cells, DDA-induced cell differentiation was associated with an increased accumulation of neutral lipids and proteins found in milk indicating that DDA re-activates some functions of lactating cells. Active iodide transport occurs in the normal lactating mammary cells through the sodium/iodide symporter (NIS) and iodide (I) is secreted into milk to be used by the nursing newborn for thyroid hormones biosynthesis. In the present study, we assessed whether DDA may induce other characteristic of lactating cells such as NIS expression and iodine uptake in MCF7 breast cancer cells and extended this study to the papillary B-CPAP and undifferentiated anaplastic 8505c thyroid cancer cells. Moreover, we evaluated DDA impact on the expression of thyroid specific proteins involved in thyroid hormone biogenesis. We report here that DDA induces NIS expression in MCF7 cells and significantly increases the uptake of 131-I by acting through the LXR. In addition, DDA induces phenotypic, molecular and functional characteristics of redifferentiation in the two human thyroid carcinoma cell lines and the uptake of 131-I in the undifferentiated 8505c cells was associated with a strong expression of all the specific proteins involved in thyroid hormone biosynthesis, TSH receptor, thyroperoxidase and thyroglobulin. 131-I incorporation in the 8505c cells was stimulated by DDA as well as by the synthetic LXR ligand, GW3965. Together these data show that the re-differentiation of breast and thyroid cancer cells by DDA, is associated with the recovery of functional NIS expression and involves an LXR-dependent mechanism. These results open new avenues of research for the diagnosis of thyroid cancers as well as the development of new therapeutic approaches for radioiodine refractory thyroid cancers.
Collapse
Affiliation(s)
- Mathilde Bauriaud-Mallet
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Lavinia Vija-Racaru
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Séverine Brillouet
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Arnaud Mallinger
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France
| | | | | | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine de Rangueil, Université de Toulouse, Toulouse, France
| | - Marc Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France.
| | - Fréderic Courbon
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Sandrine Silvente-Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France.
| |
Collapse
|
6
|
Liu J, Liu Y, Lin Y, Liang J. Radioactive Iodine-Refractory Differentiated Thyroid Cancer and Redifferentiation Therapy. Endocrinol Metab (Seoul) 2019; 34:215-225. [PMID: 31565873 PMCID: PMC6769341 DOI: 10.3803/enm.2019.34.3.215] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
Abstract
The retained functionality of the sodium iodide symporter (NIS) expressed in differentiated thyroid cancer (DTC) cells allows the further utilization of post-surgical radioactive iodine (RAI) therapy, which is an effective treatment for reducing the risk of recurrence, and even the mortality, of DTC. Whereas, the dedifferentiation of DTC could influence the expression of functional NIS, thereby reducing the efficacy of RAI therapy in advanced DTC. Genetic alternations (such as BRAF and the rearranged during transfection [RET]/papillary thyroid cancer [PTC] rearrangement) have been widely reported to be prominently responsible for the onset, progression, and dedifferentiation of PTC, mainly through activating the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling cascades. These genetic alternations have been suggested to associate with the reduced expression of iodide-handling genes in thyroid cancer, especially the NIS gene, disabling iodine uptake and causing resistance to RAI therapy. Recently, novel and promising approaches aiming at various targets have been attempted to restore the expression of these iodine-metabolizing genes and enhance iodine uptake through in vitro studies and studies of RAI-refractory (RAIR)-DTC patients. In this review, we discuss the regulation of NIS, known mechanisms of dedifferentiation including the MAPK and PI3K pathways, and the current status of redifferentiation therapy for RAIR-DTC patients.
Collapse
Affiliation(s)
- Jierui Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanqing Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Yansong Lin
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, China.
| |
Collapse
|
7
|
Liu X, Li H, Wu ML, Wu J, Sun Y, Zhang KL, Liu J. Resveratrol Reverses Retinoic Acid Resistance of Anaplastic Thyroid Cancer Cells via Demethylating CRABP2 Gene. Front Endocrinol (Lausanne) 2019; 10:734. [PMID: 31736873 PMCID: PMC6828648 DOI: 10.3389/fendo.2019.00734] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Cellular retinoic acid binding protein 2 (CRABP2) mediates retinoic acid/RA anti-cancer pathways. Resveratrol effectively reverses RA tolerance and upregulates CRABP2 expression of anaplastic thyroid cancer cell line THJ-11T. As DNA methylation is responsible for CRABP2 silencing, the CRABP2 methylation status of THJ-11T cells and the demethylating effect of resveratrol on this gene are elucidated. Materials and methods: The statuses of CRABP2 expression and methylation and the levels of DNA methyltransferases (DNMTs) DNMT1, DNMT3A, and DNMT3B of THJ-11T cells were examined before and after resveratrol treatment via multiple experimental methods. The human medulloblastoma UW228-2 cell line was cited as the control of CRABP2 methylation and gemcitabine as the demethylator control. Results: RT-PCR, immunocytochemical staining and Western blotting showed that resveratrol significantly increased the CRABP2 expression and RA sensitivity of THJ-11T and UW228-2 cells. Bisulfite sequencing showed five CpG methylation sites at the CRABP2 promoter region of both cell lines, which were partially (3/5) demethylated by resveratrol and totally (5/5) by gemcitabine. DNMT1, DNMT3A, and DNMT3B were reduced in UW228-2 cells and DNMT1 and DNMT3A were reduced in THJ-11T cells after resveratrol treatment in a time-related fashion. Conclusion: Resveratrol is able to erase CRABP2 methylation and can thereby increase the RA sensitivity of THJ-11T and UW228-2 cells. This study demonstrates the additional value of the natural polyphenolic compound resveratrol as a demethylator in cancer treatments.
Collapse
Affiliation(s)
- Xin Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiao Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Kai-Li Zhang
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Kai-Li Zhang
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Research Center, South China University School of Medicine, Guangzhou, China
- Jia Liu
| |
Collapse
|
8
|
Resveratrol Suppresses the Growth and Enhances Retinoic Acid Sensitivity of Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2018; 19:ijms19041030. [PMID: 29596381 PMCID: PMC5979404 DOI: 10.3390/ijms19041030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a highly lethal undifferentiated malignancy without reliable therapies. Retinoic acid (RA) has been employed to promote redifferentiation of thyroid cancers by increasing their I131 uptake and radio-sensitivity, but its effect(s) on ATCs has not yet been ascertained. Likewise, resveratrol induces cancer redifferentiation but, also in this case, its effects on ATCs remain unknown. These issues have been addresses in the current study using three human ATC cell lines (THJ-11T, THJ-16T, and THJ-21T) through multiple experimental approaches. The results reveal that RA exerts a small inhibitory effect on these cell lines. In comparison with normally cultured cells, the total cell number in resveratrol-treated THJ-16T and THJ-21T cultures significantly decreased (p < 0.05), and this effect was accompanied by reduced Cyclin D1 immuno-labeling, increased apoptotic fractions, and distinct caspase-3 activation. Resveratrol failed to inhibit growth but enhanced RA sensitivity of THJ-11T cells, suppressed peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ), and upregulated cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor beta (RAR-β) expression. Increased thyroglobulin (Tg) and E-cadherin levels and appearance of membranous E-cadherin were evidenced in resveratrol-treated THJ-11T cells. Our results demonstrate for the first time: (1) the therapeutic value of resveratrol by itself or in combination with RA in the management of ATCs, (2) the capacity of resveratrol to overcome RA resistance in ATC cells by reprogramming CRABP2/RAR- and fatty acid-binding protein 5 (FABP5)/PPAR-β/δ-mediated RA signaling, and (3) the redifferentiating potential of resveratrol in ATC cells.
Collapse
|
9
|
Elisei R, Agate L, Mazzarri S, Bottici V, Guidoccio F, Molinaro E, Boni G, Ferdeghini M, Mariani G. Radionuclide Therapy of Thyroid Tumors. NUCLEAR ONCOLOGY 2017:1197-1241. [DOI: 10.1007/978-3-319-26236-9_49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Nilubol N, Merkel R, Yang L, Patel D, Reynolds JC, Sadowski SM, Neychev V, Kebebew E. A phase II trial of valproic acid in patients with advanced, radioiodine-resistant thyroid cancers of follicular cell origin. Clin Endocrinol (Oxf) 2017; 86:128-133. [PMID: 27392538 PMCID: PMC5581405 DOI: 10.1111/cen.13154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/19/2016] [Accepted: 07/02/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that has antiproliferative effects on several types of cancer, including thyroid cancer. In addition, VA has been reported to upregulate the sodium-iodine symporter in thyroid cancer cells and increases radioiodine uptake in preclinical studies. The aim of this study was to assess the antiproliferative effects of VA and to evaluate if VA can increase the radioiodine uptake in patients with advanced, radioiodine-negative thyroid cancer. DESIGN An open-label Simon two-stage phase II trial. PATIENTS AND MEASUREMENTS Valproic acid was administered orally, and doses were adjusted to maintain serum trough levels between 50 and 100 mg/l for 10 weeks, followed by injections of recombinant human thyroid-stimulating hormone and a radioiodine uptake scan. Anatomical imaging studies were performed at week 16 to assess tumour response and radioiodine therapy in patients with increased radioiodine uptake. RESULTS Thirteen patients with a median age of 66 years (50-78 years) were enrolled and evaluated. Seven patients had papillary thyroid cancer (PTC), two had follicular variant PTC, two had follicular thyroid cancer, and two had Hürthle cell carcinoma. None of the 10 patients who completed the 10-week treatment had increased radioiodine uptake at their tumour sites. Three patients were taken off the study prior to the 10-week radioiodine uptake scan: one with grade-3 hepatic toxicity, one with disease progression and one for noncompliance. Four of 13 patients had decreased stimulated serum thyroglobulin with VA treatment. None of the patients had complete or partial responses based on Response Evaluation Criteria in Solid Tumors (RECIST), and six patients had disease progression. CONCLUSIONS Valproic acid does not increase radioiodine uptake and does not have anticancer activity in patients with advanced, radioiodine-negative thyroid cancer of follicular cell origin.
Collapse
Affiliation(s)
- Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Roxanne Merkel
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lily Yang
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dhaval Patel
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Samira M. Sadowski
- Thoracic and Endocrine Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Vladimir Neychev
- Department of Surgery, University Multiprofile Hospital for Active Treatment “Alexandrovska”, Medical University, Sofia, Bulgaria
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Hong CM, Ahn BC. Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer for Reapplication of I-131 Therapy. Front Endocrinol (Lausanne) 2017; 8:260. [PMID: 29085335 PMCID: PMC5649198 DOI: 10.3389/fendo.2017.00260] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/20/2017] [Indexed: 01/29/2023] Open
Abstract
Although most differentiated thyroid cancers show excellent prognosis, treating radioiodine refractory differentiated thyroid cancer (RR-DTC) is challenging. Various therapies, including chemotherapy, radiotherapy, and targeted therapy, have been applied for RR-DTC but show limited effectiveness. Redifferentiation followed by radioiodine therapy is a promising alternative therapy for RR-DTC. Retinoic acids, histone deacetylase inhibitors, and peroxisome proliferator-activated receptor-gamma agonists are classically used as redifferentiation agents, and recent targeted molecules are also used for this purpose. Appropriate selection of redifferentiation agents for each patient, using current knowledge about genetic and biological characteristics of thyroid cancer, might increase the efficacy of redifferentiation treatment. In this review, we will discuss the mechanisms of these redifferentiation agents, results of recent clinical trials, and promising preclinical results.
Collapse
Affiliation(s)
- Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
- *Correspondence: Byeong-Cheol Ahn,
| |
Collapse
|
12
|
Sacks W, Braunstein GD. Evolving approaches in managing radioactive iodine-refractory differentiated thyroid cancer. Endocr Pract 2016; 20:263-75. [PMID: 24126232 DOI: 10.4158/ep13305.ra] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To discuss the approach to care of patients with advanced differentiated thyroid cancer (DTC), in particular those with radioactive iodine (RAI)-refractory disease, and the transition to systemic treatment. METHODS A PubMed search was conducted using the search terms "radioactive iodine-refractory, differentiated thyroid cancer and treatment" restricted to a 2000-2012 timeframe, English language, and humans. Relevant articles were identified from the bibliographies of selected references. Four patient cases are presented to illustrate the clinical course of RAI-refractory DTC. RESULTS The current standard of care for early stage DTC could include surgery, RAI in some cases, and thyroid hormone suppression. For advanced RAI-refractory DTC, clinical practice guidelines established by the National Comprehensive Cancer Network and the American Thyroid Association recommend, as one option, the use of systemic therapy, including kinase inhibitors. Numerous trials are underway to evaluate the clinical benefit of these targeted therapies. CONCLUSION Preliminary results are encouraging with respect to the clinical benefit of targeted systemic therapies. However, at present there is no consensus on the criteria that define RAI-refractory disease and the optimal timing for transition to systemic therapy. There remains a need to establish common criteria to enhance patient care and enable better comparison across clinical studies.
Collapse
Affiliation(s)
- Wendy Sacks
- Cedars-Sinai Medical Center, Los Angeles, California
| | | |
Collapse
|
13
|
Fröhlich E, Wahl R. The current role of targeted therapies to induce radioiodine uptake in thyroid cancer. Cancer Treat Rev 2014; 40:665-74. [DOI: 10.1016/j.ctrv.2014.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/18/2022]
|
14
|
Cho SW, Choi HS, Yeom GJ, Lim JA, Moon JH, Park DJ, Chung JK, Cho BY, Yi KH, Park YJ. Long-term prognosis of differentiated thyroid cancer with lung metastasis in Korea and its prognostic factors. Thyroid 2014; 24:277-86. [PMID: 23758653 PMCID: PMC3926138 DOI: 10.1089/thy.2012.0654] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Distant metastasis, generally to lung and bone, is rare in differentiated thyroid carcinoma (DTC) and the prognosis is still elusive. We investigated long-term outcomes of lung metastasis in DTC patients and its prognostic factors. METHODS A retrospective review was performed of 4572 patients who underwent surgery for DTC from 1962 to 2009 at Seoul National University Hospital. Among them, 164 patients were identified with lung metastasis and 152 patients were enrolled in the final analysis. Poor prognosis was defined as progressive disease or death. RESULTS Of these 152 patients, 10- and 20-year survival rates were 85.0% and 71.0%, respectively. No evidence of disease, stable disease, progressive disease, and death was identified in 22.4%, 28.3%, 35.5%, and 13.8%, respectively, after 11 years of median follow-up (range 2-41 years). Older age at diagnosis (≥45 years), primary tumor size ≥2 cm, follicular thyroid cancer, metastasis diagnosed after initial evaluation or (131)I remnant ablation (late metastasis), multiple metastases other than lung, (131)I nonavidity, and the presence of macronodules (≥1 cm) were more frequent in poor prognoses. Cox proportional hazard ratio for progression-free survival showed that (131)I nonavidity was the only independent predictive factor for poor prognosis. CONCLUSIONS The prognosis of lung metastasis from DTC in Korea within this study was favorable. (131)I nonavidity, observed more frequently in late metastasis, was the only independent factor predicting poor prognosis.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Hoon Sung Choi
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Gye Jeong Yeom
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Jung Ah Lim
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Jae Hoon Moon
- Department of Internal Medicine, Bundang Hospital, Seoul National University, Seoul, Korea
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo Youn Cho
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Ka Hee Yi
- Department of Internal Medicine, Boramae Medical Center; Seoul National University, Seoul, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
|
16
|
Damle N, Patnecha M, Kumar P, Maharjan S, Bal C. Retinoic acid therapy in patients with radioiodine negative differentiated thyroid cancer and clinical or biochemical evidence of disease: An initial experience. Indian J Nucl Med 2013; 26:144-8. [PMID: 23326066 PMCID: PMC3543580 DOI: 10.4103/0972-3919.103997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Dedifferentiation of thyroid follicular cells renders radioiodine therapy ineffective in patients of differentiated thyroid cancer (DTC). An alternative therapy to treat the disease or reinduce radioiodine uptake is necessary. MATERIALS AND METHODS We evaluated the role of retinoic acid therapy in 13 cases of DTC with raised thyroglobulin and/or clinically evident disease. Retinoic acid was given in a dose of 1.5 mg/kg for a period ranging between 1.5 and 18 months. RESULTS Age of the patients was between 18 and 65 years with a median of 49 years. Ten patients had papillary while two had follicular and one patient had mixed papillary and follicular thyroid cancer. Mean radioiodine given before starting retinoic acid was 164 mCi. Mean duration of therapy was 6.4 months. Thyroglobulin decreased in 2 patients and increased in 11 patients at the end of therapy. Radioiodine uptake was demonstrable in six patients, though faintly, while 7 cases showed no uptake. Based on the clinical and biochemical parameters, four patients had progressive disease, eight had stable disease and one patient showed partial response. Of the six patients with reinduction of radioiodine uptake, three had biochemical progression and the other three had stable disease. CONCLUSION Our findings suggest that retinoic acid therapy may induce radioiodine uptake and reduce serum thyroglobulin levels in some patients with DTC, but whether this results in clinically significant response can only be ascertained on long-term follow-up.
Collapse
Affiliation(s)
- Nishikant Damle
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
17
|
Bonnema SJ, Hegedüs L. Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev 2012; 33:920-80. [PMID: 22961916 DOI: 10.1210/er.2012-1030] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Radioiodine ((131)I) therapy of benign thyroid diseases was introduced 70 yr ago, and the patients treated since then are probably numbered in the millions. Fifty to 90% of hyperthyroid patients are cured within 1 yr after (131)I therapy. With longer follow-up, permanent hypothyroidism seems inevitable in Graves' disease, whereas this risk is much lower when treating toxic nodular goiter. The side effect causing most concern is the potential induction of ophthalmopathy in predisposed individuals. The response to (131)I therapy is to some extent related to the radiation dose. However, calculation of an exact thyroid dose is error-prone due to imprecise measurement of the (131)I biokinetics, and the importance of internal dosimetric factors, such as the thyroid follicle size, is probably underestimated. Besides these obstacles, several potential confounders interfere with the efficacy of (131)I therapy, and they may even interact mutually and counteract each other. Numerous studies have evaluated the effect of (131)I therapy, but results have been conflicting due to differences in design, sample size, patient selection, and dose calculation. It seems clear that no single factor reliably predicts the outcome from (131)I therapy. The individual radiosensitivity, still poorly defined and impossible to quantify, may be a major determinant of the outcome from (131)I therapy. Above all, the impact of (131)I therapy relies on the iodine-concentrating ability of the thyroid gland. The thyroid (131)I uptake (or retention) can be stimulated in several ways, including dietary iodine restriction and use of lithium. In particular, recombinant human thyrotropin has gained interest because this compound significantly amplifies the effect of (131)I therapy in patients with nontoxic nodular goiter.
Collapse
Affiliation(s)
- Steen Joop Bonnema
- Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark.
| | | |
Collapse
|
18
|
Choi HJ, Kim TY, Ruiz-Llorente S, Jeon MJ, Han JM, Kim WG, Shong YK, Kim WB. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line. Nucl Med Biol 2012; 39:1275-80. [DOI: 10.1016/j.nucmedbio.2012.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/31/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
19
|
Paeng JC, Kang KW, Park DJ, Oh SW, Chung JK. Alternative medical treatment for radioiodine-refractory thyroid cancers. Nucl Med Mol Imaging 2011; 45:241-7. [PMID: 24900013 DOI: 10.1007/s13139-011-0107-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/26/2022] Open
Abstract
Thyroid cancer is one of the most rapidly increasing cancers in many countries. Although most thyroid cancers are differentiated cancers and easily treated with radioiodine (RI), a portion of differentiated and undifferentiated cancers is refractory not only to RI therapy, but also to radiotherapy and chemotherapy. Thus, various alternative therapies have been tested in RI-refractory thyroid cancers. These alternative therapies include two major categories: redifferentiation therapy and recent molecular target therapy. Several clinical trials have investigated these therapies. They demonstrated potential effects of the therapies, although the results have been somewhat limited so far. Thus, the future strategy for undifferentiated thyroid cancers will involve individualized, lesion-specific, and combined therapy. In this review, the basic mechanism of each redifferentiation and molecular target therapy is discussed, and results of recent clinical trials using these therapeutic agents are summarized.
Collapse
Affiliation(s)
- Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Do Joon Park
- Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea ; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - So Won Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro 101, Jongno-gu Seoul, 110-744 Korea ; Thyroid Center, Seoul National University Cancer Hospital, Seoul, Korea
| |
Collapse
|
20
|
Oh SW, Moon SH, Park DJ, Cho BY, Jung KC, Lee DS, Chung JK. Combined therapy with 131I and retinoic acid in Korean patients with radioiodine-refractory papillary thyroid cancer. Eur J Nucl Med Mol Imaging 2011; 38:1798-805. [PMID: 21698415 DOI: 10.1007/s00259-011-1849-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The aim of this study was to assess the clinical outcome of redifferentiation therapy using retinoic acid (RA) in combination with 131I therapy, and to identify biological parameters that predict therapeutic response in Korean patients with radioiodine-refractory papillary thyroid carcinoma (PTC). MATERIALS AND METHODS A total of 47 patients (13 men, 34 women; age 54.2±13.6 years) with radioiodine-refractory PTC underwent therapy consisting of consecutive treatment with 131I and RA. Each 131I/RA treatment cycle involved the administration of oral isotretinoin for 6 weeks at 1-1.5 mg/kg daily followed by a single oral dose of 131I (range 5.5-16.7 GBq). Therapeutic responses were determined using serum thyroglobulin (Tg) levels and the change in tumour size 6 months after completing the 131I/RA therapy. Biological parameters and pathological parameters before and after combined therapy were compared. RESULTS After completing 131I/RA therapy, 1 patient showed a complete response, 9 partial response, 9 stable disease, and 28 progressive disease, representing an overall response rate of 21.3%. Univariate analysis revealed that an age of <45 years and a persistently high serum Tg level were related to a good response. No clinical response was achieved when metastases showing no iodine uptake were present. Multivariate regression analysis showed that an age of <45 years was significantly associated with a good response. Of the 24 patients with well-differentiated carcinoma, 5 (20.8%) responded to 131I/RA therapy, whereas all 6 patients with poorly differentiated carcinoma failed to respond. CONCLUSION 131I/RA therapy was found to elicit a response rate of 21.3% among patients with radioiodine-refractory PTC, and an age of <45 years was found to be significantly associated with a good response.
Collapse
Affiliation(s)
- So Won Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Middendorp M, Grünwald F. Update on recent developments in the therapy of differentiated thyroid cancer. Semin Nucl Med 2010; 40:145-52. [PMID: 20113682 DOI: 10.1053/j.semnuclmed.2009.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the past decade, the management of differentiated thyroid carcinoma changed significantly and thus contributed to the improvement of the already favorable prognosis of this malignant disease. Surgical treatment techniques improved and the extent of initial surgery is more individualized. Radioiodine therapy is an essential part of therapeutic regimens in almost all cases, and the use of recombinant human thyroid-stimulating hormone has established for ablation of remnant tissue, treatment of iodine-positive cancer, and sensitive thyroglobulin measurement during follow-up. Risk stratification has become more important to plan treatment and follow-up individually, particularly to evaluate the need for thyroid-stimulating hormone suppression therapy. Especially for inoperable and radioiodine-negative thyroid carcinomas, novel treatment options such as tyrosine kinase inhibitor therapy have emerged. This article deals with the current options of optimal therapy regimens in differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Marcus Middendorp
- Department of Nuclear Medicine, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | | |
Collapse
|
22
|
O'Neill CJ, Oucharek J, Learoyd D, Sidhu SB. Standard and emerging therapies for metastatic differentiated thyroid cancer. Oncologist 2010; 15:146-56. [PMID: 20142332 DOI: 10.1634/theoncologist.2009-0190] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Differentiated thyroid cancer accounts for >90% of cases of thyroid cancer, with most patients having an excellent prognosis. Distant metastases occur in 10%-15% of patients, decreasing the overall 10-year survival rate in this group to 40%. Radioactive iodine has been the mainstay of treatment for distant metastases, with good results when lesions retain the ability to take up iodine. For patients with metastatic disease resistant to radioactive iodine, treatment options are few and survival is poor. Chemotherapy and external beam radiotherapy have been used in these patients, but with disappointing results. In recent years, our understanding of the molecular pathways involved in thyroid cancer has increased and a number of molecular targets have been identified. These targets include the proto-oncogenes BRAF and RET, known to be common mutations in thyroid cancer; vascular endothelial growth factor receptor and platelet-derived growth factor receptor, associated with angiogenesis; and the sodium-iodide symporter, with the aim of restoring its expression and hence radioactive iodine uptake. There are now multiple trials of tyrosine kinase inhibitors, angiogenesis inhibitors, and other novel agents available to patients with metastatic thyroid cancer. This review discusses both traditional and novel treatments for metastatic differentiated thyroid cancer with a particular focus on emerging treatments for patients with radioactive iodine-refractory disease.
Collapse
Affiliation(s)
- Christine J O'Neill
- University of Sydney Endocrine Surgical Unit, St. Leonards, New South Wales, Australia
| | | | | | | |
Collapse
|
23
|
Lan L, Cui D, Luo Y, Shi BY, Deng LL, Zhang GY, Wang H. Inhibitory effects of retinoic acid on invasiveness of human thyroid carcinoma cell lines in vitro. J Endocrinol Invest 2009; 32:731-8. [PMID: 19509478 DOI: 10.1007/bf03346528] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The prognosis of patients with metastasized thyroid carcinoma is not optimistic, necessitating the search for new treatment options. AIM Beneficial effects of retinoic acid (RA) have been suggested in thyroid cancer differentiation and the present study was performed to investigate the anti-metastatic potential of RA in respect of important determinants of metastatic behavior in thyroid carcinoma, focusing on the role of invasion-associated proteins. MATERIALS AND METHODS Differentiated thyroid carcinoma cell lines FTC- 133 and XTC.UC1, and anaplastic thyroid cancer cell lines C643 and HTH74 were studied. All cell lines were cultured with alltrans- RA (ATRA) or the solvent ethanol. Invasion and adhesion potency in vitro was studied by transwell experiment and short-term adhesion assay. The involvement of invasion-associated proteins, urokinase type plasminogen activator (uPA), uPA receptor (uPAR), matrix metalloproteinase-2 (MMP-2) and E-cadherin, were investigated by semi-quantitative RT-PCR and Western blot. RESULTS In vitro invasion assay revealed that ATRA treatment could reduce the invasive potency in all the thyroid cancer cell lines, with the most significant effect in anaplastic cancer cells. Short-term adhesion assay suggested that ATRA increases cancer cell adhesion to extracellular matrix (ECM) in C643, HTH74 and XTC.UC1, probably through a transcriptional and translational regulation of some attachment molecules. RT-PCR andWestern blot both revealed diminished expression of uPAR in all four carcinoma cell lines. In C643 and HTH74 cell lines, the expression of uPA was reduced and the expression of E-cadherin was increased, whereas the MMP-2 expression was not significantly down-regulated in ATRA-treated group. In ATRA-treated FTC-133 and XTC.UC1 cell lines, MMP-2 expression was decreased, but no significant changes in uPA and E-cadherin expression were observed. CONCLUSIONS The present study demonstrates the influence of ATRA on both important determinants of metastatic behavior ("de-adhesion" and proteolysis) in thyroid carcinoma cell lines, especially in anaplastic cancer cells. These findings may add to the explanations for beneficial effects of RA in the treatment of metastatic thyroid carcinomas.
Collapse
Affiliation(s)
- L Lan
- Department of Endocrinology, Beijing Ji Shui Tan Hospital, the 4th Medical College of Peking University, Xi Chen Qu Xin Jie Kou Dong Jie 31, 100035 Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Handkiewicz-Junak D, Roskosz J, Hasse-Lazar K, Szpak-Ulczok S, Puch Z, Kukulska A, Olczyk T, Piela A, Paliczka-Cieslik E, Jarzab B. 13-cis-retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-Functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res 2009; 2:8. [PMID: 19646277 PMCID: PMC2739165 DOI: 10.1186/1756-6614-2-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/01/2009] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED In 30-50% of patients with metastatic non-medullary thyroid cancer the metastases are not radioiodine-avid and so there is no effective treatment. Retinoids have demonstrated inhibition of thyroid tumor growth and induction of radioiodine uptake. The aim of our study was to assess benefits of the retinoic acid (RA) treatment to re-differentiate non-functional NMTC metastases. PATIENTS AND METHODS In this prospective study, 53 patients with radioiodine non avid metastatic disease (45) or hyperthyroglobulinemia (8) were treated with 13-cis-retinoic acid (13-CRA) [1.0 mg/kg/day over 1st week and then 1.5 mg/kg] for six weeks prior to I-131 treatment performed under rhTSH stimulation. The re-differentiating effect of RA was evaluated by serum thyroglobulin (Tg) monitoring before and after cessation of RA treatment and by qualitative analysis of iodine uptake on the post-therapeutic whole body scan (rxWBS). RESULTS 13-CRA induced radioiodine uptake in 9 (17%) of patients. In the univariate analysis neither the patient's gender, age, tumor histopathology, uptake in thyroid bed nor time since thyroid cancer diagnosis was associated with results of rxWBS.41 (77%) patients were evaluable for Tg response before and after to 13-CRA treatment. There was a statistically significant increase in median Tg level (60 v. 90 ng/ml, p < 0.05). There was no difference in Tg increase between scintigraphic responders and non-responders.13-CRA and RIT was repeated at least once in 8 of 9 scintigraphic responders. None of them showed tumor regression by radiological imaging within 12 months after the first treatment, 4/9 (44%) of them had disease progression.13-CRA treatment was well-tolerated. All but one patient complained of at least one side effect the most prevalent being lip dryness (98%). All side effects were transient and resolved within 2 weeks after 13-CRA cessation. CONCLUSION Our results show that in patients with non-functional metastases from NMTC, 13-CRA is able to exert some re-differentiation effect by induction of radioiodine uptake in <20% of patients and increase of Tg serum level in about 30% of them. Nevertheless, this does not transfer into clinical benefit as it neither induces measurable tumor response nor prevents disease progression.
Collapse
Affiliation(s)
- Daria Handkiewicz-Junak
- Department of Nuclear Medicine, Maria Sklodowska-Curie Memorial Institute, Gliwice Branch, Wybrzeza Armii Krajowej 14, 44-100 Gliwice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fernández CA, Puig-Domingo M, Lomeña F, Estorch M, Camacho Martí V, Bittini AL, Marazuela M, Santamaría J, Castro J, Martínez de Icaya P, Moraga I, Martín T, Megía A, Porta M, Mauricio D, Halperin I. Effectiveness of retinoic acid treatment for redifferentiation of thyroid cancer in relation to recovery of radioiodine uptake. J Endocrinol Invest 2009; 32:228-33. [PMID: 19542739 DOI: 10.1007/bf03346457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Retinoic acid (RA) treatment has been used for redifferentiation of metastatic thyroid neoplasia that have lost radioiodine (131I) uptake with heterogeneous results. AIM Retrospective analysis of the recovery rate of 131I uptake after RA treatment in patients from 11 Spanish hospitals. METHODS Twenty-seven patients (14 men, 13 women) with papillary [21], follicular [4], and oncocytic [2] thyroid cancer initially treated with total thyroidectomy plus 131I, and with 131I negative metastatic disease, were given 13-cis RA (0.66-1.5 mg/kg for 5-12 weeks) followed by a therapeutic 131I dose (3700-7400 MBq); 3 months later thyroglobulin levels and computed tomography imaging were performed. RESULTS In 9 out 27 cases (33%) (8 papillary, 1 follicular) optimal positive 131I scan was observed after RA treatment; in the remaining 18, 10 had a suboptimal uptake (7 papillary, 2 follicular, 1 oncocytic) and in the rest there was no 131I uptake recovery (6 papillary, 1 follicular, 1 oncocytic). In 17 positive responses to RA (either optimal or suboptimal) in which image follow-up was available, decrease or stabilization of metastatic growth was observed in 7, while tumor mass increased at short term in the remaining 10. No major side effects were detected. CONCLUSION Quite a high rate of 131I uptake recovery after RA treatment may be obtained in advanced differentiated thyroid cancer, but the potential modification of the natural course of the disease is uncertain. A better biological characterization of these tumors allowing the identification of potential responders to RA may improve the outcome of RA coadjuvant therapy.
Collapse
Affiliation(s)
- C A Fernández
- Endocrinology Service, Barcelona Clinical Hospital, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim WG, Kim EY, Kim TY, Ryu JS, Hong SJ, Kim WB, Shong YK. Redifferentiation therapy with 13-cis retinoic acids in radioiodine-resistant thyroid cancer. Endocr J 2009; 56:105-12. [PMID: 18854619 DOI: 10.1507/endocrj.k08e-254] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Radioiodine (I-131) therapy is of proven efficacy for treatment of differentiated thyroid carcinoma (DTC). However, loss of differentiation in recurrent or metastatic DTC which decrease I-131 uptake may decrease the efficacy of I-131 therapy. Therefore, strategies to improve I-131 uptake are mandatory. This study is an open label clinical study to evaluate the effectiveness of 13-cis retinoic acid (13-cis RA) for improving I-131 uptake in recurrent or metastatic of DTC with defective I-131 uptake. Eleven patients (Age 27-66 years, M : F=4 : 7) were given 13-cis RA (1.5 mg/kg daily for 5 weeks), followed by 200 mCi (7.4 GBq) I-131 treatment. The differences of serum thyroglobulin (Tg) level and I-131 uptake on the post-treatment whole body scan (RxWBS) were compared before and after 13-cis RA therapy. Six out of 11 patients showed significantly increased (above 50%) Tg levels just after RA therapy. However, Tg levels a year after I-131 therapy were increased, stable and decreased in 7, 2 and 1 patients, respectively. Iodine uptake on RxWBS showed marginal improvement in only 2 patients and their Tg levels after one year follow-up increased. Most frequent adverse events were dry skin and lips. 13-cis RA partially restores I-131 uptake in few patients with recurrent or metastatic DTC. The use of 13-cis RA in current protocol has only limited usefulness and is not routinely recommended as currently used protocol.
Collapse
Affiliation(s)
- Won Gu Kim
- Department of Endocrinology & Metabolism, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Tuncel M, Aydin D, Yaman E, Tazebay UH, Güç D, Doğan AL, Taşbasan B, Uğur O. The comparative effects of gene modulators on thyroid-specific genes and radioiodine uptake. Cancer Biother Radiopharm 2007; 22:281-8. [PMID: 17600477 DOI: 10.1089/cbr.2006.319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on mRNA expressions of Na/I symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and thyroid stimulating hormone receptor (TSH-R), and radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 microM of 5-Aza, and 1 microM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as the counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-Aza increased TPO mRNA levels 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels, and made no differences on other thyroid specific genes investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important differences in other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both cell lines. Furthermore, in short-term treatment, ATRA repressed NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any differences in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). We have shown an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent.
Collapse
Affiliation(s)
- Murat Tuncel
- Department of Nuclear Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tuncel M, Aydin D, Yaman E, Tazebay UH, Güç D, Doğan AL, Taşbasan B, Uğur O. The Comparative Effects of Gene Modulators on Thyroid-Specific Genes and Radioiodine Uptake. Cancer Biother Radiopharm 2007; 22:443-9. [PMID: 17679169 DOI: 10.1089/cbr.2006.319.a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on the mRNA expressions of the sodium and iodine (Na/I) symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and the thyroid-stimulating hormone receptor (TSH-R), as well as radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 microM of 5-AZA, and 1 microM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid-stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-AZA increased TPO mRNA levels by 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels and made no change on other thyroid-specific genes that were investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important difference in the other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both the cell lines. Furthermore, in short-term treatment, ATRA repressed the NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any changes in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). In our study, we showed an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent.
Collapse
Affiliation(s)
- Murat Tuncel
- Department of Nuclear Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|