1
|
Sánchez MB, Michel Lara MC, Neira FJ, Rodríguez-Camejo C, Ríos JM, Viruel LB, Moreno-Sosa MT, Pietrobon EO, Soaje M, Jahn GA, Hernández A, Valdez SR, Mackern-Oberti JP. Hyperthyroidism keeps immunoglobulin levels but reduces milk fat and CD11b/c + cells on early lactation. Mol Cell Endocrinol 2024; 594:112370. [PMID: 39276963 DOI: 10.1016/j.mce.2024.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Thyroid hormones influence mammary gland differentiation and lactation by binding to thyroid hormone receptors. Hyperthyroidism disrupts pregnancy and lactation, affecting offspring growth and milk production. Despite maternal milk is a vital source of bioactive compounds and nutrients for newborns, it is unclear whether hyperthyroidism alters its composition, mainly immune factors. Therefore, our work aimed to evaluate the influence of hyperthyroidism on milk quality and immunological parameters during early lactation. Twelve-week-old female Wistar rats received daily injections of 0,25 mg/kg T4 (HyperT, n = 20) or vehicle (control, n = 19) starting 8 days before mating and continuing throughout pregnancy. Rats were euthanized on day 2 of lactation for analyzing the impact of hyperthyroidism on mammary gland, serum and milk samples. HyperT pups exhibited reduced weight, length and head circumference with altered serum hormones, glucose and albumin levels. HyperT mammary gland analysis revealed structural changes, including decreased alveolar area, adipose tissue, increased connective tissue and reduced epithelial elongation, accompanied by decreased TRβ1 RNA expression. HyperT milk displayed lower caloric value and fat concentration. HyperT animals exhibited altered milk immune cell counts, displaying increased numbers of CD45+ and CD3+ cells and decreased CD11b/c+ cells without changes on milk and serum IgA, IgG and IgG2a levels. In summary, we have demonstrated that hyperthyroidism affects mammary gland morphology, disrupts pup development and alters biochemical and immunological parameters. Our findings highlight the impact of maternal hyperthyroidism on offspring early development and milk immune composition, underscoring the importance of thyroid function in maternal and neonatal immune health.
Collapse
Affiliation(s)
- María Belén Sánchez
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - María Cecilia Michel Lara
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Flavia Judith Neira
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Kinesiología y Fisioterapia, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Claudio Rodríguez-Camejo
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Juan Manuel Ríos
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luciana Belén Viruel
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Tamara Moreno-Sosa
- Instituto de Histología y Embriología de Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Elisa Olivia Pietrobon
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Cátedra de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marta Soaje
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela Alma Jahn
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ana Hernández
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Susana Ruth Valdez
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
2
|
Dogan S, Walseth TF, Guvenc Tuna B, Uçar E, Kannan MS, Deshpande DA. CD38/cADPR-mediated calcium signaling in a human myometrial smooth muscle cell line, PHM1. IUBMB Life 2024; 76:1223-1233. [PMID: 39135342 PMCID: PMC11580371 DOI: 10.1002/iub.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 11/22/2024]
Abstract
Cyclic ADP-ribose (cADPR) has emerged as a calcium-regulating second messenger in smooth muscle cells. CD38 protein possesses ADP-ribosyl cyclase and cADPR hydrolase activities and mediates cADPR synthesis and degradation. We have previously shown that CD38 expression is regulated by estrogen and progesterone in the myometrium. Considering hormonal regulation in gestation, the objective of the present study was to determine the role of CD38/cADPR signaling in the regulation of intracellular calcium upon contractile agonist stimulation using immortalized pregnant human myometrial (PHM1) cells. Western blot, immunofluorescence, and biochemical studies confirmed CD38 expression and the presence of ADP-ribosyl cyclase (2.6 ± 0.1 pmol/mg) and cADPR hydrolase (26.8 ± 6.8 nmoles/mg/h) activities on the PHM1 cell membrane. Oxytocin, PGF2α, and ET-1 elicited [Ca2+]i responses, and 8-Br-cADPR, a cADPR antagonist significantly attenuated agonist-induced [Ca2+]i responses between 20% and 46% in average. The findings suggest that uterine contractile agonists mediate their effects in part through CD38/cADPR signaling to increase [Ca2+]i and presumably uterine contraction. As studies in humans are limited by the availability of myometrium from healthy donors, PHM1 cells form an in vitro model to study human myometrium.
Collapse
Affiliation(s)
- Soner Dogan
- Department of Medical Biology, School of MedicineYeditepe UniversityIstanbulTurkey
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Timothy F. Walseth
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of MedicineYeditepe UniversityIstanbulTurkey
| | - Eda Uçar
- Department of Medical Biology, School of MedicineYeditepe UniversityIstanbulTurkey
| | - Mathur S. Kannan
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Deepak A. Deshpande
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Center for Translational Medicine, Jane and Leonard Korman Lung CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Zyla LE, Cano R, Gómez S, Escudero A, Rey L, Santiano FE, Bruna FA, Creydt VP, Carón RW, Fontana CL. Effects of thyroxine on apoptosis and proliferation of mammary tumors. Mol Cell Endocrinol 2021; 538:111454. [PMID: 34520813 DOI: 10.1016/j.mce.2021.111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
UNLABELLED Hypothyroidism is a protective factor against breast cancer but long-term exposure or overdoses of thyroid replacement therapy with thyroxine (T4) may increase breast cancer risk. OBJECTIVE to study, in vivo and in vitro, the effects of T4 on the proliferation and apoptosis of mammary tumors of hypo- and euthyroid rats, and the possible mechanisms involved in these effects. MATERIAL AND METHODS Female Sprague-Dawley rats were treated with a single dose of dimethylbenzathracene (15 mg/rat) at 55 days of age and were divided into three groups: hypothyroidism (HypoT; 0.01% 6-N-propyl-2-thiouracil -PTU- in drinking water, n = 20), hypothyroidism treated with T4 (HypoT + T4; 0.01% PTU in drinking water and 0.25 mg/kg/day T4 via sc; n = 20) and EUT (untreated control, n = 20). At sacrifice, tumor explants from HypoT and EUT rats were obtained and treated either with 10-10 M T4 in DMEM/F12 without phenol red with 1% Charcoalized Fetal Bovine Serum or DMEM/F12 only for 15 min to evaluate intracellular signaling pathways associated with T4, and 24 h to evaluate changes in the expression of hormone receptors and proteins related to apoptosis and proliferation by immunohistochemistry and Western Blot. RESULTS In vivo, hypothyroidism retards mammary carcinogenesis but its treatment with T4 reverted the protective effects. In vitro, the proliferative and anti-apoptosis mechanisms of T4 were different regarding the thyroid status. In EUT tumors, the main signaling pathway involved was the cross-talk with other receptors, such as ERα, PgR, and HER2. In HypoT tumors, the non-genomic signaling pathway of T4 was the chief mechanism involved since αvβ3 integrin, HER2, β-catenin and, downstream, PI3K/AKT and ERK signaling pathways were activated. CONCLUSION T4 can regulate mammary carcinogenesis by mainly activating its non-genomic signaling pathway and by interacting with other hormone or growth factor pathways endorsing that overdoses of thyroid replacement therapy with T4 can increase the risk of breast cancer.
Collapse
Affiliation(s)
- Leila E Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Rocio Cano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Silvina Gómez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Alexa Escudero
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Lara Rey
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Flavia E Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Flavia A Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Virginia Pistone Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Rubén W Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina
| | - Constanza López Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| |
Collapse
|
4
|
Rinaldini E, Verde Arboccó FC, Ezquer M, Gamarra-Luques C, Hapon MB. Effect of Thyromimetic GC-1 Selective Signaling on Reproductive and Lactational Performance in the Hypothyroid Rat. Eur Thyroid J 2021; 10:425-433. [PMID: 34540713 PMCID: PMC8406258 DOI: 10.1159/000516432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The potential of the thyroid hormone receptor β (TRβ1) selective analog GC-1 has been widely proven in animal models and humans. However, its effect on the reproductive stage of the female rat has not been evaluated. METHODS The effect of the administration of GC-1 or equimolar doses of triiodothyronine (T3) was evaluated on the reproductive performance of the hypothyroid female rat and the indirect effect on pup thyroid status, weight, and survival. RESULTS Hypothyroidism reduced the number of embryos implanted in the uterus, whereas T3 and GC-1 treatment in hypothyroid females reestablished the number of implanted embryos to normal. Initiation of labor was delayed by hypothyroidism, and T3 replacement treatment reinstated the normal timing of parturition. The administration of GC-1 alone to the lactating mother did not affect pup survival, weight, or thyroidal status. CONCLUSIONS Our findings show the differential effect of thyroid hormone selective signaling during gestation and the indirect exposure of the pups; we also emphasize the plausible use of GC-1 for treatment of hypothyroid mothers during the lactation period.
Collapse
Affiliation(s)
- Estefanía Rinaldini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fiorella Campo Verde Arboccó
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Carlos Gamarra-Luques
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Belén Hapon
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence to: María Belén Hapon,
| |
Collapse
|
5
|
Rao M, Zeng Z, Zhou F, Wang H, Liu J, Wang R, Wen Y, Yang Z, Su C, Su Z, Zhao S, Tang L. Effect of levothyroxine supplementation on pregnancy loss and preterm birth in women with subclinical hypothyroidism and thyroid autoimmunity: a systematic review and meta-analysis. Hum Reprod Update 2020; 25:344-361. [PMID: 30951172 DOI: 10.1093/humupd/dmz003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Subclinical hypothyroidism (SCH) and thyroid autoimmunity (TAI) are associated with adverse pregnancy outcomes such as pregnancy loss and preterm birth. However, the ability of levothyroxine (LT4) supplementation to attenuate the risks of these outcomes remains controversial. OBJECTIVE AND RATIONALE This systematic review and meta-analysis was conducted to determine the effect of LT4 supplementation on pregnancy loss rate (PLR) and preterm birth rate (PBR) among pregnant women with SCH and TAI. SEARCH METHODS A systematic literature search of the PubMed, EMBASE, Web of Science and Cochrane Controlled Trials Register databases and Clinicaltrials.gov was performed to identify all relevant English studies published up to April 2018. The following terms were used for the search: [subclinical hypothyroidism OR thyroid autoimmunity OR thyroperoxidase antibody (TPO-Ab) OR thyroglobulin antibodies (Tg-Ab)] AND (levothyroxine OR euthyrox) AND [pregnancy outcome OR miscarriage OR abortion OR pregnancy loss OR preterm birth OR premature delivery OR early labo(u)r]. The reference lists of the relevant publications were also manually searched for related studies. Published manuscripts were included if they reported data on pregnancy loss, preterm birth or both. We separately analysed the pooled effects of LT4 supplementation on PLR and PBR in women with SCH and TAI. OUTCOMES Overall, 13 eligible studies including 7970 women were included in the meta-analysis. Eight and five of these studies were randomized controlled trials (RCTs) and retrospective studies, respectively. The pooled results indicated that LT4 supplementation significantly decreased the PLR [relative risk (RR) = 0.56, 95% confidence interval (CI): 0.42-0.75, I2 = 1%, 12 studies] and PBR (RR = 0.68, 95% CI: 0.51-0.91, I2 = 21%, eight studies) in women with SCH and/or TAI. We further found that LT4 supplementation significantly decreased the risk of pregnancy loss (RR = 0.43, 95% CI: 0.26-0.72, P = 0.001, I2 = 0%) but not of preterm birth (RR = 0.67, 95% CI: 0.41-1.12, P = 0.13, I2 = 0%) in women with SCH. Furthermore, LT4 supplementation significantly decreased the risks of both pregnancy loss (RR = 0.63, 95% CI: 0.45-0.89, P = 0.009, I2 = 0%) and preterm birth (RR = 0.68 95% CI: 0.48-0.98, P = 0.04, I2 = 46%) in women with TAI. These results were consistent when only RCTs were included in the analysis. Further, in women with SCH, LT4 supplementation reduced the risk of pregnancy loss in pregnancies achieved by assisted reproduction (RR = 0.27, 95% CI: 0.14-0.52, P < 0.001, I2 = 14%) but not in naturally conceived pregnancies (RR = 0.60, 95% CI: 0.28-1.30, P = 0.13, I2 = 0%). By contrast, in women with TAI, LT4 supplementation reduced the risks of both pregnancy loss (RR = 0.61, 95% CI: 0.39-0.96, P = 0.03, I2 = 0%) and preterm birth (RR = 0.49, 95% CI: 0.30-0.79, P = 0.003, I2 = 0%) in naturally conceived pregnancies but not in pregnancies achieved by assisted reproduction (RR = 0.68, 95% CI: 0.40-1.15, P = 0.15, I2 = 0% for pregnancy loss and RR = 1.20, 95% CI: 0.68-2.13, P = 0.53, I2 not applicable for preterm birth). WIDER IMPLICATIONS This meta-analysis confirmed the beneficial effects of LT4 supplementation, namely the reduced risks of pregnancy loss and preterm birth, among pregnant women with SCH and/or TAI. The different effects of LT4 supplementation on naturally conceived pregnancies and pregnancies achieved by assisted reproduction in women with SCH and/or TAI suggest that these women should be managed separately. Due to the limited number of studies included in this meta-analysis, especially in the subgroup analysis, further large RCTs and fundamental studies are warranted to confirm the conclusions and better clarify the molecular mechanism underlying these associations.
Collapse
Affiliation(s)
- Meng Rao
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Zhengyan Zeng
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Fang Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong road, Wuhan, China
| | - Huawei Wang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Jiang Liu
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Rui Wang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Ya Wen
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Zexing Yang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Cunmei Su
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Zhenfang Su
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| | - Li Tang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, No. 295 Xi Chang road, Kunming, China
| |
Collapse
|
6
|
Differential expression and immunoreactivity of thyroid hormone transporters MCT8 and OATP1C1 in rat ovary. Acta Histochem 2019; 121:151440. [PMID: 31561916 DOI: 10.1016/j.acthis.2019.151440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) regulate several physiological processes in female mammals, many of which are related to reproduction such as steroidogenesis in the ovary, oocyte and granulosa cells maturation, follicular development and differentiation, and ovulation. THs actions require the presence of THs transporters to facilitate their cellular uptake and efflux. MCT8 and OATP1C1 are the principal THs transporters. The aim of the present study was to determine the gene expression and cellular localization of MCT8 and OATP1C1 in the rat ovary during the diestrus-II cycle phase. Ovaries of virgin adult rats were histologically processed. Reverse Transcription-PCR and immunohistochemistry analyses for MCT8 and OATP1C1 were done. MCT8 gene expression level was significantly higher (P ≤ 0.01) than that of OATP1C1 in the rat ovary. MCT8 and OATP1C1 were found in all types of ovarian cells but with different immunoreactivity. MCT8 showed stronger immunoreactivity in tertiary and Graafian follicles, corpus luteum and blood vessels, whereas OATP1C1's immunoreactivity was stronger in stroma cells, tunica albuginea, and blood vessels. Our results provide evidence that THs and their transporters are both necessary for ovarian function and that any alteration in these transporters could interfere with reproductive processes such as ovulation and steroidogenesis, compromising fertility.
Collapse
|
7
|
Carosa E, Lenzi A, Jannini EA. Thyroid hormone receptors and ligands, tissue distribution and sexual behavior. Mol Cell Endocrinol 2018; 467:49-59. [PMID: 29175529 DOI: 10.1016/j.mce.2017.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Eleonora Carosa
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Lenzi
- Chair of Endocrinology, Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology & Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
Rodríguez-Castelán J, Anaya-Hernández A, Méndez-Tepepa M, Martínez-Gómez M, Castelán F, Cuevas-Romero E. Distribution of thyroid hormone and thyrotropin receptors in reproductive tissues of adult female rabbits. Endocr Res 2017; 42:59-70. [PMID: 27268091 DOI: 10.1080/07435800.2016.1182185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Thyroid dysfunctions are related to anovulation, miscarriages, and infertility in women and laboratory animals. Mechanisms associated with these effects are unknown, although indirect or direct actions of thyroid hormones and thyrotropin could be assumed. The present study aimed to identify the distribution of thyroid hormones (TRs) and thyrotropin (TSHR) receptors in reproductive organs of female rabbits. MATERIAL AND METHODS Ovary of virgin and pregnant rabbits, as well as the oviduct, uterus, and vagina of virgin rabbits were excised, histologically processed, and cut. Slices from these organs were used for immunohistochemical studies for TRα1-2, TRß1, and TSHR. RESULTS The presence of TRs and TSHR was found in the primordial, primary, secondary, tertiary, and Graafian follicles of virgin rabbits, as well as in the corpora lutea, corpora albicans, and wall of hemorrhagic cysts of pregnant rabbits. Oviductal regions (fimbria-infundibulum, ampulla, isthmus, and utero-tubal junction), uterus (endometrium and myometrium), and vagina (abdominal, pelvic, and perineal portions) of virgin rabbits showed anti-TRs and anti-TSHR immunoreactivity. Additionally, the distal urethra, paravaginal ganglia, levator ani and iliococcygeus muscles, dorsal nerve and body of the clitoris, perigenital skin, and prostate had TRs and TSHR. CONCLUSIONS The wide presence of TRs and TSHR in female reproductive organs suggests varied effects of thyroid hormones and thyrotropin in reproduction.
Collapse
Affiliation(s)
| | | | - Maribel Méndez-Tepepa
- c Maestría en Ciencias Biológicas , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| | - Margarita Martínez-Gómez
- d Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , México-DF , México
- e Centro Tlaxcala de Biología de la Conducta , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| | - Francisco Castelán
- d Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , México-DF , México
- e Centro Tlaxcala de Biología de la Conducta , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| | - Estela Cuevas-Romero
- e Centro Tlaxcala de Biología de la Conducta , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| |
Collapse
|
9
|
Campo Verde Arboccó F, Sasso CV, Actis EA, Carón RW, Hapon MB, Jahn GA. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol 2016; 419:18-28. [PMID: 26472537 DOI: 10.1016/j.mce.2015.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 02/02/2023]
Abstract
Thyroid diseases have deleterious effects on lactation, litter growth and survival, and hinder the suckling-induced hormone release, leading in the case of hyperthyroidism, to premature mammary involution. To determine the effects of hypothyroidism (HypoT) on late lactation, we analyzed the effect of chronic 6-propyl-2-thiouracil (PTU)-induced HypoT on mammary histology and the expression of members of the JAK/STAT/SOCS signaling pathway, milk proteins, prolactin (PRLR), estrogen (ER), progesterone (PR) and thyroid hormone (TR) receptors, markers of involution (such as stat3, lif, bcl2, BAX and PARP) on lactation (L) day 21. HypoT mothers showed increased histological markers of involution compared with control rats, such as adipose/epithelial ratio, inactive alveoli, picnotic nuclei and numerous detached apoptotic cells within the alveolar lumina. We also found decreased PRLR, β-casein and α-lactoalbumin mRNAs, but increased SOCS1, SOCS3, STAT3 and LIF mRNAs, suggesting a decrease in PRL signaling and induction of involution markers. Furthermore, Caspase-3 and 8 and PARP labeled cells and the expression of structural proteins such as β-Actin, α-Tubulin and Lamin B were increased, indicating the activation of apoptotic pathways and tissue remodelation. HypoT also increased PRA (mRNA and protein) and erβ and decreased erα mRNAs, and increased strongly TRα1, TRβ1, PRA and ERα protein levels. These results show that lactating HypoT rats have premature mammary involution, most probably induced by the inhibition of prolactin signaling along with the activation of the LIF-STAT3 pathway.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arboccó
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina.
| | - Corina V Sasso
- Laboratorio de Hormonas y Biología del Cancer, IMBECU, Argentina
| | - Esteban A Actis
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina
| | - Rubén W Carón
- Laboratorio de Hormonas y Biología del Cancer, IMBECU, Argentina
| | - María Belén Hapon
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela A Jahn
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina.
| |
Collapse
|
10
|
The expression of thyroid hormone receptors (THR) is regulated by the progesterone receptor system in first trimester placental tissue and in BeWo cells in vitro. Eur J Obstet Gynecol Reprod Biol 2015; 195:31-39. [PMID: 26476797 DOI: 10.1016/j.ejogrb.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thyroid hormones are essential for the maintenance of pregnancy and a deficiency in maternal thyroid hormones has been associated with early pregnancy losses. The aim of this study was a systematic investigation of the influence of mifepristone (RU 486) on the expression of the thyroid hormone receptor (THR) isoforms THRα1, THRα2, THRβ1 and THRβ2 on protein and mRNA-level. METHODS Samples of placental tissue were obtained from patients with mifepristone induced termination of pregnancy (n=13) or mechanical induced termination of normal pregnancy (n=20), each from the 4th to 13th week of pregnancy. Expression of THRα1, THRα2, THRβ1 and THRβ2 was analysed on protein level by immunohistochemistry and on mRNA level by real time RT-PCR (TaqMan). The influence of progesterone on THR gene expression was analysed in the trophoblast tumour cell line BeWo by real time RT-PCR (TaqMan). RESULTS Nuclear expression of THRα1, THRα2 and THRβ1 is downregulated on protein level in mifepristone (RU 486) treated villous trophoblast tissue. In decidual tissue, we found a significant downregulation only for THRα1 in mifepristone treated tissue. On mRNA level, we also found a significantly reduced expression of THRA but no significant downregulation for THRB in placental tissue. The gene THRA encodes the isoform THRα and the gene THRB encodes the isoform THRβ. The majority of cells expressing the thyroid hormone receptors in the decidua are decidual stromal cells. In addition, in vitro experiments with trophoblast tumour cells showed that progesterone significantly induced THRA but not THRB expression. CONCLUSIONS Termination of pregnancy with mifepristone (RU 486) leads to a downregulation of THRα1, THRα2 and THRβ1 in villous trophoblasts and in addition to a decreased expression of THRA in placental tissue. Decreased expression of THRα1 induced by RU486 could also be found in the decidua. Therefore inhibition of the progesterone receptor may be responsible for this downregulation. This assumption is supported by the finding, that stimulation of the progesterone receptor by progesterone itself up-regulated THRA in trophoblast cells in vitro.
Collapse
|
11
|
Campo Verde Arboccó F, Sasso CV, Nasif DL, Hapon MB, Jahn GA. Effect of hypothyroidism on the expression of nuclear receptors and their co-regulators in mammary gland during lactation in the rat. Mol Cell Endocrinol 2015; 412:26-35. [PMID: 26027918 DOI: 10.1016/j.mce.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 05/05/2015] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (TH) regulate mammary function. Hypothyroidism (HypoT) has deleterious effects on lactation, litter growth and survival. We analyzed the effect of chronic 6-propyl-2-thiouracil (PTU)-induced HypoT in the expression of nuclear receptors, co-regulators and oxytocin receptor (OTR) on lactation (L) days 2, 7 and 14. TH receptors (TRs) were increased on L7 at mRNA and protein levels, except TRα protein, that fell on L14. HypoT decreased TRα2 mRNA on L7 and TRα1 protein on L2, while TRβ1 protein increased on L14. HypoT increased estrogen receptor β (ERβ) mRNA on L7 but decreased its protein levels on L14. Progesterone receptor A (PRA) mRNA decreased from L2 to L14 while PRB increased, and at protein levels PRA levels showed a nadir on L7, while PRB peaked. HypoT decreased PRA mRNA and protein and increased PRB mRNA at L14. Nuclear receptor co-activator (NCOA) 1 and RXRα mRNA showed an opposite pattern to the TRs, while NCOA2 increased at L14; HypoT blocked the variations in NCOA1 and NCOA2. HypoT increased NCOR1 on L2 and decreased OTR at L2 and circulating estradiol and NCOR2 at L14. In controls the most notable changes occurred on L7, suggesting it is a key inflection point in mammary metabolism. The low levels of TRα1, NCOA1 and OTR, and increased NCOR1 produced by HypoT on L2 may hinder the mammary ability to achieve normal milk synthesis and ejection, leading to defective lactation. Later on, altered ER and PR expression may impair further mammary function.
Collapse
MESH Headings
- Animals
- Female
- Gene Expression
- Hypothyroidism/chemically induced
- Hypothyroidism/metabolism
- Lactation
- Mammary Glands, Animal/metabolism
- Nuclear Receptor Co-Repressor 1/genetics
- Nuclear Receptor Co-Repressor 1/metabolism
- Nuclear Receptor Coactivator 1/genetics
- Nuclear Receptor Coactivator 1/metabolism
- Nuclear Receptor Coactivator 2/genetics
- Nuclear Receptor Coactivator 2/metabolism
- Propylthiouracil
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Rats, Wistar
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Retinoid X Receptor alpha/genetics
- Retinoid X Receptor alpha/metabolism
Collapse
Affiliation(s)
- Fiorella Campo Verde Arboccó
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina
| | - Corina V Sasso
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - Daniela L Nasif
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Belén Hapon
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela A Jahn
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina.
| |
Collapse
|