1
|
Dai S, Peng Y, Wang G, Chen C, Chen Q, Yin L, Yan H, Zhang K, Tu M, Lu Z, Wei J, Li Q, Wu J, Jiang K, Zhu Y, Miao Y. LIM domain only 7: a novel driver of immune evasion through regulatory T cell differentiation and chemotaxis in pancreatic ductal adenocarcinoma. Cell Death Differ 2025; 32:271-290. [PMID: 39143228 PMCID: PMC11803110 DOI: 10.1038/s41418-024-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
With advancements in genomics and immunology, immunotherapy has emerged as a revolutionary strategy for tumor treatment. However, pancreatic ductal adenocarcinoma (PDAC), an immunologically "cold" tumor, exhibits limited responsiveness to immunotherapy. This study aimed to address the urgent need to uncover PDAC's immune microenvironment heterogeneity and identify the molecular mechanisms driving immune evasion. Using single-cell RNA sequencing datasets and spatial proteomics, we discovered LIM domain only 7 (LMO7) in PDAC cells as a previously unrecognized driver of immune evasion through Treg cell enrichment. LMO7 was positively correlated with infiltrating regulatory T cells (Tregs) and dysfunctional CD8+ T cells. A series of in vitro and in vivo experiments demonstrated LMO7's significant role in promoting Treg cell differentiation and chemotaxis while inhibiting CD8+ T cells and natural killer cell cytotoxicity. Mechanistically, LMO7, through its LIM domain, directly bound and promoted the ubiquitination and degradation of Foxp1. Foxp1 negatively regulated transforming growth factor-beta (TGF-β) and C-C motif chemokine ligand 5 (CCL5) expression by binding to sites 2 and I/III, respectively. Elevated TGF-β and CCL5 levels contribute to Treg cell enrichment, inducing immune evasion in PDAC. Combined treatment with TGF-β/CCL5 antibodies, along with LMO7 inhibition, effectively reversed immune evasion in PDAC, activated the immune response, and prolonged mouse survival. Therefore, this study identified LMO7 as a novel facilitator in driving immune evasion by promoting Treg cell enrichment and inhibiting cytotoxic effector functions. Targeting the LMO7-Foxp1-TGF-β/CCL5 axis holds promise as a therapeutic strategy for PDAC. Graphical abstract revealing LMO7 as a novel facilitator in driving immune evasion by promoting Tregs differentiation and chemotaxis, inducing CD8+ T/natural killer cells inhibition.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yunpeng Peng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Guangfu Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chongfa Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Lingdi Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Han Yan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Qiang Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Junli Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
3
|
Abstract
Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.
Collapse
Affiliation(s)
- Qun Zeng
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Tingting Jiang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jing Wang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
4
|
Israelsson P, Oda H, Öfverman C, Stefansson K, Lindquist D. Immunoreactivity of LMO7 and other molecular markers as potential prognostic factors in oropharyngeal squamous cell carcinoma. BMC Oral Health 2024; 24:729. [PMID: 38918827 PMCID: PMC11197244 DOI: 10.1186/s12903-024-04510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Despite the better prognosis associated with human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC), some patients experience relapse and succumb to the disease; thus, there is a need for biomarkers identifying these patients for intensified treatment. Leucine-rich repeats and immunoglobulin-like domain (LRIG) protein 1 is a negative regulator of receptor tyrosine kinase signaling and a positive prognostic factor in OPSCC. Studies indicate that LRIG1 interacts with the LIM domain 7 protein (LMO7), a stabilizer of adherence junctions. Its role in OPSCC has not been studied before. METHODS A total of 145 patients diagnosed with OPSCC were enrolled. Immunohistochemical LMO7 expression and staining intensity were evaluated in the tumors and correlated with known clinical and pathological prognostic factors, such as HPV status and LRIG1, CD44, Ki67, and p53 expression. RESULTS Our results show that high LMO7 expression is associated with significantly longer overall survival (OS) (p = 0.044). LMO7 was a positive prognostic factor for OS in univariate analysis (HR 0.515, 95% CI: 0.267-0.994, p = 0.048) but not in multivariate analysis. The LMO7 expression correlated with LRIG1 expression (p = 0.048), consistent with previous findings. Interestingly, strong LRIG1 staining intensity was an independent negative prognostic factor in the HPV-driven group of tumors (HR 2.847, 95% Cl: 1.036-7.825, p = 0.043). CONCLUSIONS We show for the first time that high LMO7 expression is a positive prognostic factor in OPSCC, and we propose that LMO7 should be further explored as a biomarker. In contrast to previous reports, LRIG1 expression was shown to be an independent negative prognostic factor in HPV-driven OPSCC.
Collapse
Affiliation(s)
- Pernilla Israelsson
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, 90185, Sweden.
| | - Husam Oda
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, 90185, Sweden
| | - Charlotte Öfverman
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, 90185, Sweden
| | - Kristina Stefansson
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, 90185, Sweden
| | - David Lindquist
- Department of Clinical Sciences, Professional Development, Umeå University, Umeå, 90185, Sweden
| |
Collapse
|
5
|
Fugazzola L, Deandrea M, Borgato S, Dell’Acqua M, Retta F, Mormile A, Carzaniga C, Gazzano G, Pogliaghi G, Muzza M, Persani L. Radiofrequency ablation is an effective treatment for Bethesda III thyroid nodules without genetic alterations. Eur Thyroid J 2024; 13:e240020. [PMID: 38657647 PMCID: PMC11103758 DOI: 10.1530/etj-24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024] Open
Abstract
Background Radiofrequency ablation (RFA) is effective in the treatment of thyroid nodules, leading to a 50-90% reduction with respect to baseline. Current guidelines indicate the need for a benign cytology prior to RFA, though, on the other side, this procedure is also successfully used for the treatment of papillary microcarcinomas. No specific indications are available for nodules with an indeterminate cytology (Bethesda III/IV). Aim To evaluate the efficacy of RFA in Bethesda III nodules without genetic alterations as verified by means of a custom panel. Methods We have treated 33 patients (mean delivered energy 1069 ± 1201 J/mL of basal volume) with Bethesda III cytology, EU-TIRADS 3-4, and negative genetic panel. The mean basal nodular volume was 17.3 ± 10.7 mL. Results Considering the whole series, the mean volume reduction rate (VRR) was 36.8 ± 16.5% at 1 month, 59.9 ± 15.5% at 6 months, and 62 ± 15.7% at 1-year follow-up. The sub-analysis done in patients with 1 and 2 years follow-up data available (n = 20 and n = 5, respectively) confirmed a progressive nodular volume decrease. At all-time points, the rate of reduction was statistically significant (P < 0.0001), without significant correlation between the VRR and the basal volume. Neither cytological changes nor complications were observed after the procedure. Conclusion RFA is effective in Bethesda III, oncogene-negative nodules, with reduction rates similar to those obtained in confirmed benign lesions. This procedure represents a good alternative to surgery or active surveillance in this particular class of nodules, regardless of their initial volume. A longer follow-up will allow to evaluate further reduction or possible regrowth.
Collapse
Affiliation(s)
- Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maurilio Deandrea
- Endocrinology, Diabetes and Metabolism Department and Center for Thyroid Diseases, Ordine Mauriziano Hospital, Turin, Italy
| | - Stefano Borgato
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Marco Dell’Acqua
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Francesca Retta
- Endocrinology, Diabetes and Metabolism Department and Center for Thyroid Diseases, Ordine Mauriziano Hospital, Turin, Italy
| | - Alberto Mormile
- Endocrinology, Diabetes and Metabolism Department and Center for Thyroid Diseases, Ordine Mauriziano Hospital, Turin, Italy
| | - Chiara Carzaniga
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giacomo Gazzano
- Pathology Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Gabriele Pogliaghi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marina Muzza
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Fu H, Lu X, Ji T, Wang L, Wang G, Wang L, Wang Z. Integrated analysis of colorectal cancer metastasis identifies characteristics of tumor cell during metastasis. Gastroenterol Rep (Oxf) 2024; 12:goae055. [PMID: 38818308 PMCID: PMC11139507 DOI: 10.1093/gastro/goae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Background Metastasis is the main cause of death in colorectal cancer (CRC). Metastasis is a sequential and dynamic process, but the development of tumor cells during this process is unclear. In this study, we aimed to reveal characteristics of tumor cell subset during CRC metastasis. Methods Single-cell RNA sequence CRC data of normal epithelium, non-metastatic primary tumor, metastatic primary tumor, and liver metastases from gene expression omnibus (GEO) dataset were analyzed to reveal characteristics of CRC metastasis. Primary tumor tissues of three non-metastatic CRC and three metastatic CRC patients from Union Hospital of Tongji Medical College (Wuhan, China) were used to verify the characteristics of CRC metastasis. Results We identified a metastasis-related cancer cell subset EP1, which was characterized with a high expression of KRT17, LAMC2, EMP1, and PLAC8. EP1 had an enhanced cell-cell interaction, which interacted with SPP+ macrophages and drove them toward anti-inflammatory and immunosuppressive phenotype. Dynamic changes in genes and TF regulons during the metastasis were also revealed. Conclusions This study advanced our understanding of the development of tumor cells during CRC metastasis and further identified metastasis-related subset and potential therapeutic targets for the treatment and prevention of CRC metastasis.
Collapse
Affiliation(s)
- Haoyu Fu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, Hubei, P. R. China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, Hubei, P. R. China
| | - Xiaohuan Lu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, Hubei, P. R. China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, Hubei, P. R. China
| | - Tiantian Ji
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, Hubei, P. R. China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, Hubei, P. R. China
| | - Liping Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, Hubei, P. R. China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, Hubei, P. R. China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. Chin
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, Hubei, P. R. China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, Hubei, P. R. China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. Chin
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, Hubei, P. R. China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, Hubei, P. R. China
| |
Collapse
|
7
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
8
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Patient with multiple genetically distinct thyroid nodules including papillary thyroid carcinoma harboring novel YWHAG-BRAF fusion. Cancer Genet 2022; 266-267:51-56. [DOI: 10.1016/j.cancergen.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
|
10
|
Yang Y, Zheng H, Li Z, Shi S, Zhong L, Gong L, Lan B. LMO7-ALK Fusion in a Lung Adenocarcinoma Patient With Crizotinib: A Case Report. Front Oncol 2022; 12:841493. [PMID: 35664754 PMCID: PMC9162556 DOI: 10.3389/fonc.2022.841493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background Rearrangements of the anaplastic lymphoma kinase (ALK) gene comprise a small subset of non-small cell lung cancer (NSCLC). Patients with NSCLC harboring ALK fusion proteins are sensitive to ALK tyrosine kinase inhibitors (TKIs). Various fusion partners of ALK are being discovered with the application of next-generation sequencing (NGS). Case presentation Here, we report a female patient with metastatic lung adenocarcinoma harboring LMO7-ALK (L15, A20) rearrangement revealed by NGS. The patient received crizotinib as first-line treatment and has achieved partial response with a progression-free survival over 1 year. Conclusions We firstly found that the satisfactory response to crizotinib verified the oncogenic activity of LMO7-ALK fusion. Great progression and wide application of NGS facilitate the findings of rare fusion types.
Collapse
Affiliation(s)
- Yanlong Yang
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, China
| | - Hongbo Zheng
- Medical Department, Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Zizhe Li
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, China
| | - Shuchen Shi
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, China
| | - Lang Zhong
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, China
| | - Longlong Gong
- Medical Department, Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Bin Lan
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, China
| |
Collapse
|
11
|
Matsuda M, Chu CW, Sokol SY. Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. Development 2022; 149:275389. [PMID: 35451459 PMCID: PMC9188752 DOI: 10.1242/dev.200236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Wang X, Chen H, Kapoor PM, Su YR, Bolla MK, Dennis J, Dunning AM, Lush M, Wang Q, Michailidou K, Pharoah PD, Hopper JL, Southey MC, Koutros S, Freeman LEB, Stone J, Rennert G, Shibli R, Murphy RA, Aronson K, Guénel P, Truong T, Teras LR, Hodge JM, Canzian F, Kaaks R, Brenner H, Arndt V, Hoppe R, Lo WY, Behrens S, Mannermaa A, Kosma VM, Jung A, Becher H, Giles GG, Haiman CA, Maskarinec G, Scott C, Winham S, Simard J, Goldberg MS, Zheng W, Long J, Troester MA, Love MI, Peng C, Tamimi R, Eliassen H, García-Closas M, Figueroa J, Ahearn T, Yang R, Evans DG, Howell A, Hall P, Czene K, Wolk A, Sandler DP, Taylor JA, Swerdlow AJ, Orr N, Lacey JV, Wang S, Olsson H, Easton DF, Milne RL, Hsu L, Kraft P, Chang-Claude J, Lindström S. A genome-wide gene-based gene-environment interaction study of breast cancer in more than 90,000 women. CANCER RESEARCH COMMUNICATIONS 2022; 2:211-219. [PMID: 36303815 PMCID: PMC9604427 DOI: 10.1158/2767-9764.crc-21-0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Background Genome-wide association studies (GWAS) have identified more than 200 susceptibility loci for breast cancer, but these variants explain less than a fifth of the disease risk. Although gene-environment interactions have been proposed to account for some of the remaining heritability, few studies have empirically assessed this. Methods We obtained genotype and risk factor data from 46,060 cases and 47,929 controls of European ancestry from population-based studies within the Breast Cancer Association Consortium (BCAC). We built gene expression prediction models for 4,864 genes with a significant (P<0.01) heritable component using the transcriptome and genotype data from the Genotype-Tissue Expression (GTEx) project. We leveraged predicted gene expression information to investigate the interactions between gene-centric genetic variation and 14 established risk factors in association with breast cancer risk, using a mixed-effects score test. Results After adjusting for number of tests using Bonferroni correction, no interaction remained statistically significant. The strongest interaction observed was between the predicted expression of the C13orf45 gene and age at first full-term pregnancy (PGXE=4.44×10-6). Conclusion In this transcriptome-informed genome-wide gene-environment interaction study of breast cancer, we found no strong support for the role of gene expression in modifying the associations between established risk factors and breast cancer risk. Impact Our study suggests a limited role of gene-environment interactions in breast cancer risk.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hongjie Chen
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Manjeet K. Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Alison M. Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Lush
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Paul D.P. Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetic, NCI, NIH, Bethesda, Maryland
| | | | - Jennifer Stone
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Crawley, Australia
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Rana Shibli
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Rachel A. Murphy
- Cancer Control Research, BC Cancer and School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Kristan Aronson
- Public Health Sciences, Queen's University, Kingston, Canada
| | - Pascal Guénel
- Université Paris-Saclay, Inserm, CESP, Team Exposome and Heredity, Villejuif, France
| | - Thérèse Truong
- Université Paris-Saclay, Inserm, CESP, Team Exposome and Heredity, Villejuif, France
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, German
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, German
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiko Becher
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Stacey Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montréal, Quebec, Canada; Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, Quebec, Canada
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melissa A. Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael I. Love
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cheng Peng
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Rulla Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetic, NCI, NIH, Bethesda, Maryland
| | - Rose Yang
- Division of Cancer Epidemiology and Genetic, NCI, NIH, Bethesda, Maryland
| | - D. Gareth Evans
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Genomic Medicine, St Mary's Hospital, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dale P. Sandler
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United K.ingdom
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - James V. Lacey
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Sophia Wang
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Håkan Olsson
- Departments of Oncology and Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
- Deceased
| | - Douglas F. Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Sara Lindström
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
13
|
Li M, An Z, Tang Q, Ma Y, Yan J, Chen S, Wang Y. Mixed responses to first-line alectinib in non-small cell lung cancer patients with rare ALK gene fusions: A case series and literature review. J Cell Mol Med 2021; 25:9476-9481. [PMID: 34541785 PMCID: PMC8500978 DOI: 10.1111/jcmm.16897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 01/18/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusion is a well‐defined biomarker for ALK tyrosine kinase inhibitors (TKIs) treatment in non‐small cell lung cancer (NSCLC). Alectinib, a second‐generation ALK‐TKI, has been shown to have significantly longer progression‐free survival (PFS) than first‐generation ALK inhibitors in untreated ALK‐rearranged NSCLC patients. However, its clinical efficacy on rare ALK fusions remains unclear. Herein, two advanced NSCLC patients received first‐line alectinib treatment, given their positive ALK fusion status as determined by immunohistochemistry (IHC) testing results. Patients showed limited clinical response (PFS: 4 months) and primary resistance to alectinib respectively. Molecular profiling using next‐generation sequencing (NGS) further revealed a striatin (STRN)‐ALK fusion in the first patient accompanied by MET amplification, and a LIM domain only protein 7 (LMO7)‐ALK fusion in another patient without any other known oncogenic alterations. Both patients demonstrated improved survival after they switched to second‐line crizotinib (PFS: 11 months) and ensartinib (PFS: 18 months), respectively, up till the last follow‐up assessment. In conclusion, the clinical efficacy of ALK‐TKIs including alectinib for lung cancer with uncommon ALK gene fusions is still under evaluation. This study and literature review results showed mixed responses to alectinib in NSCLC patients who harboured rare ALK fusions. Comprehensive molecular profiling of tumour is thus strongly warranted for precise treatment strategies.
Collapse
Affiliation(s)
- Mengnan Li
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou An
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiusu Tang
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yutong Ma
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Junrong Yan
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | | | - Yina Wang
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Zhao X, Li H, Lyu S, Zhai J, Ji Z, Zhang Z, Zhang X, Liu Z, Wang H, Xu J, Fan H, Kou J, Li L, Lang R, He Q. Single-cell transcriptomics reveals heterogeneous progression and EGFR activation in pancreatic adenosquamous carcinoma. Int J Biol Sci 2021; 17:2590-2605. [PMID: 34326696 PMCID: PMC8315026 DOI: 10.7150/ijbs.58886] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic adenosquamous carcinoma (PASC) - a rare pathological pancreatic cancer (PC) type - has a poor prognosis due to high malignancy. To examine the heterogeneity of PASC, we performed single-cell RNA sequencing (scRNA-seq) profiling with sample tissues from a healthy donor pancreas, an intraductal papillary mucinous neoplasm, and a patient with PASC. Of 9,887 individual cells, ten cell subpopulations were identified, including myeloid, immune, ductal, fibroblast, acinar, stellate, endothelial, and cancer cells. Cancer cells were divided into five clusters. Notably, cluster 1 exhibited stem-like phenotypes expressing UBE2C, ASPM, and TOP2A. We found that S100A2 is a potential biomarker for cancer cells. LGALS1, NPM1, RACK1, and PERP were upregulated from ductal to cancer cells. Furthermore, the copy number variations in ductal and cancer cells were greater than in the reference cells. The expression of EREG, FCGR2A, CCL4L2, and CTSC increased in myeloid cells from the normal pancreas to PASC. The gene sets expressed by cancer-associated fibroblasts were enriched in the immunosuppressive pathways. We demonstrate that EGFR-associated ligand-receptor pairs are activated in ductal-stromal cell communications. Hence, this study revealed the heterogeneous variations of ductal and stromal cells, defined cancer-associated signaling pathways, and deciphered intercellular interactions following PASC progression.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Han Li
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shaocheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Jialei Zhai
- Department of Pathology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhigang Zhang
- School of Information Management and Statistics, Hubei University of Economics, Wuhan 430205, Hubei, China
| | - Xinxue Zhang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Zhe Liu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Huaguang Wang
- Department of Pharmacology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Junming Xu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Hua Fan
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Jiantao Kou
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Lixin Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| |
Collapse
|
15
|
Kim D, Jung SH, Chung YJ. Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach. Genomics Inform 2021; 19:e41. [PMID: 35172474 PMCID: PMC8752984 DOI: 10.5808/gi.21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
In addition to mutations and copy number alterations, gene fusions are commonly identified in cancers. In thyroid cancer, fusions of important cancer-related genes have been commonly reported; however, extant panels do not cover all clinically important gene fusions. In this study, we aimed to develop a custom RNA-based sequencing panel to identify the key fusions in thyroid cancer. Our ThyChase panel was designed to detect 87 types of gene fusion. As quality control of RNA sequencing, five housekeeping genes were included in this panel. When we applied this panel for the analysis of fusions containing reference RNA (HD796), three expected fusions (EML4-ALK, CCDC6-RET, and TPM3-NTRK1) were successfully identified. We confirmed the fusion breakpoint sequences of the three fusions from HD796 by Sanger sequencing. Regarding the limit of detection, this panel could detect the target fusions from a tumor sample containing a 1% fusion-positive tumor cellular fraction. Taken together, our ThyChase panel would be useful to identify gene fusions in the clinical field.
Collapse
Affiliation(s)
- Dongmoung Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
16
|
Liu X, Yuan H, Zhou J, Wang Q, Qi X, Bernal C, Avella D, Kaifi JT, Kimchi ET, Timothy P, Cheng K, Miao Y, Jiang K, Li G. LMO7 as an Unrecognized Factor Promoting Pancreatic Cancer Progression and Metastasis. Front Cell Dev Biol 2021; 9:647387. [PMID: 33763427 PMCID: PMC7982467 DOI: 10.3389/fcell.2021.647387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal human malignancies without effective treatment. In an effort to discover key genes and molecular pathways underlying PC growth, we have identified LIM domain only 7 (LMO7) as an under-investigated molecule, which highly expresses in primary and metastatic human and mouse PC with the potential of impacting PC tumorigenesis and metastasis. Using genetic methods with siRNA, shRNA, and CRISPR-Cas9, we have successfully generated stable mouse PC cells with LMO7 knockdown or knockout. Using these cells with loss of LMO7 function, we have demonstrated that intrinsic LMO7 defect significantly suppresses PC cell proliferation, anchorage-free colony formation, and mobility in vitro and slows orthotopic PC tumor growth and metastasis in vivo. Mechanistic studies demonstrated that loss of LMO7 function causes PC cell-cycle arrest and apoptosis. These data indicate that LMO7 functions as an independent and unrecognized druggable factor significantly impacting PC growth and metastasis, which could be harnessed for developing a new targeted therapy for PC.
Collapse
Affiliation(s)
- Xinjian Liu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Department of Pathogen Biology, Key Laboratory of Antibody Technique of National Health Commission of China, Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Qiongling Wang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Xiaoqiang Qi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Catharine Bernal
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
| | - Diego Avella
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Parrett Timothy
- Department of Pathology and Anatomical Sciences, University of Missouri-Columbia, Columbia, MO, United States
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
17
|
A J, Zhang B, Zhang Z, Hu H, Dong JT. Novel Gene Signatures Predictive of Patient Recurrence-Free Survival and Castration Resistance in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13040917. [PMID: 33671634 PMCID: PMC7927111 DOI: 10.3390/cancers13040917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signatures is limited. This study aims to identify castration-resistant PCa (CRPC)-associated genes and develop robust RFS and CRPC signatures. Among 287 genes differentially expressed between localized CRPC and hormone-sensitive PCa (HSPC) samples, 6 genes constituted a signature (CRPC-derived prognosis signature, CRPCPS) that predicted RFS. Moreover, a 3-gene panel derived from the 6 CRPCPS genes was capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9 cohorts in the multivariate analysis and maintained prognostic in patients stratified by tumor stage, Gleason score, and lymph node metastasis status. It also predicted overall survival and metastasis-free survival. Notably, the signature was validated in another six independent cohorts. These findings suggest that these two signatures could be robust tools for predicting RFS and CRPC in clinical practice. Abstract Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signatures is limited. Here, we applied the Robust Rank Aggregation (RRA) method to PCa transcriptome profiles and identified 287 genes differentially expressed between localized castration-resistant PCa (CRPC) and hormone-sensitive PCa (HSPC). Least absolute shrinkage and selection operator (LASSO) and stepwise Cox regression analyses of the 287 genes developed a 6-gene signature predictive of RFS in PCa. This signature included NPEPL1, VWF, LMO7, ALDH2, NUAK1, and TPT1, and was named CRPC-derived prognosis signature (CRPCPS). Interestingly, three of these 6 genes constituted another signature capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9 cohorts in the multivariate analysis and remained valid in patients stratified by tumor stage, Gleason score, and lymph node status. The signature also predicted overall survival and metastasis-free survival. The signature’s robustness was demonstrated by the C-index (0.55–0.74) and the calibration plot in all nine cohorts and the 3-, 5-, and 8-year area under the receiver operating characteristic curve (0.67–0.77) in three cohorts. The nomogram analyses demonstrated CRPCPS’ clinical applicability. The CRPCPS thus appears useful for RFS prediction in PCa.
Collapse
Affiliation(s)
- Jun A
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China;
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
| | - Baotong Zhang
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA;
| | - Zhiqian Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
- Correspondence:
| |
Collapse
|
18
|
Liu M, Chen P, Hu HY, Ou-Yang DJ, Khushbu RA, Tan HL, Huang P, Chang S. Kinase gene fusions: roles and therapeutic value in progressive and refractory papillary thyroid cancer. J Cancer Res Clin Oncol 2021; 147:323-337. [PMID: 33387037 DOI: 10.1007/s00432-020-03491-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
The incidence of papillary thyroid cancer (PTC), the major type of thyroid cancer, is increasing rapidly around the world, and its pathogenesis is still unclear. There is poor prognosis for PTC involved in rapidly progressive tumors and resistance to radioiodine therapy. Kinase gene fusions have been discovered to be present in a wide variety of malignant tumors, and an increasing number of novel types have been detected in PTC, especially progressive tumors. As a tumor-driving event, kinase fusions are constitutively activated or overexpress their kinase function, conferring oncogenic potential, and their frequency is second only to BRAFV600E mutation in PTC. Diverse forms of kinase fusions have been observed and are associated with specific pathological features of PTC (usually at an advanced stage), and clinical trials of therapeutic strategies targeting kinase gene fusions are feasible for radioiodine-resistant PTC. This review summarizes the roles of kinase gene fusions in PTC and the value of clinical therapy of targeting fusions in progressive or refractory PTC, and discusses the future perspectives and challenges related to kinase gene fusions in PTC patients.
Collapse
Affiliation(s)
- Mian Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hui-Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Deng-Jie Ou-Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rooh-Afza Khushbu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hai-Long Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Gvaldin DY, Pushkin AA, Timoshkina NN, Rostorguev EE, Nalgiev AM, Kit OI. Integrative analysis of mRNA and miRNA sequencing data for gliomas of various grades. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00119-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
The purpose of this study was to characterize subtype-specific patterns of mRNA and miRNA expression of gliomas using The Cancer Genome Atlas (TCGA) data to search for genetic determinants that predict prognosis in terms of overall survival and to create interaction networks for grade 2 and 3 (G2 and G3) astrocytomas, oligodendrogliomas and grade 4 (G4) glioblastoma multiforme. Based on open-access TCGA data, 5 groups were formed: astrocytoma G2 (n = 58), astrocytoma G3 (n = 128), oligodendroglioma G2 (n = 102), oligodendroglioma G3 (n = 72) and glioblastoma G4 (n = 564); normal samples of brain tissue were also analysed (n = 15). Data of patient age, sex, survival and expression patterns of mRNA and miRNA were extracted for each sample. After stratification of the data into groups, a differential analysis of expression was carried out, genes and miRNAs that affect overall survival were identified and gene set enrichment analysis (GSEA) and interaction analysis were performed.
Results
A total of 939 samples of glial tumours were analysed, for which subtype-specific expression profiles of genes and miRNAs were identified and networks of mRNA-miRNA interactions were constructed. Genes whose aberrant expression level was associated with survival were determined, and pairwise correlations between differential gene expression (DEG) and differential miRNA expression (DE miRNA) were calculated.
Conclusions
The developed panel of genes and miRNAs allowed us to differentiate glioma subtypes and evaluate prognosis in terms of the overall survival of patients. The regulatory miRNA-mRNA pairs unique to the five glioma subtypes identified in this study can stimulate the development of new therapeutic approaches based on subtype-specific mechanisms of oncogenesis.
Collapse
|
20
|
Pekova B, Sykorova V, Dvorakova S, Vaclavikova E, Moravcova J, Katra R, Astl J, Vlcek P, Kodetova D, Vcelak J, Bendlova B. RET, NTRK, ALK, BRAF, and MET Fusions in a Large Cohort of Pediatric Papillary Thyroid Carcinomas. Thyroid 2020; 30:1771-1780. [PMID: 32495721 DOI: 10.1089/thy.2019.0802] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Pediatric papillary thyroid carcinoma (PTC) is a rare malignancy, but with increasing incidence. Pediatric PTCs have distinct clinical and pathological features and even the molecular profile differs from adult PTCs. Somatic point mutations in pediatric PTCs have been previously described and studied, but complex information about fusion genes is lacking. The aim of this study was to identify different fusion genes in a large cohort of pediatric PTCs and to correlate them with clinical and pathological data of patients. Methods: The cohort consisted of 93 pediatric PTC patients (6-20 years old). DNA and RNA were extracted from fresh frozen tissue samples, followed by DNA and RNA-targeted next-generation sequencing analyses. Fusion gene-positive samples were verified by real-time polymerase chain reaction. Results: A genetic alteration was found in 72/93 (77.4%) pediatric PTC cases. In 52/93 (55.9%) pediatric PTC patients, a fusion gene was detected. Twenty different types of RET, NTRK3, ALK, NTRK1, BRAF, and MET fusions were found, of which five novel, TPR/RET, IKBKG/RET, BBIP1/RET, OPTN/BRAF, and EML4/MET, rearrangements were identified and a CUL1/BRAF rearrangement that has not been previously described in thyroid cancer. Fusion gene-positive PTCs were significantly associated with the mixture of classical and follicular variants of PTC, extrathyroidal extension, higher T classification, lymph node and distant metastases, chronic lymphocytic thyroiditis, and frequent occurrence of psammoma bodies compared with fusion gene-negative PTCs. Fusion-positive patients also received more doses of radioiodine therapy. The most common fusion genes were the RET fusions, followed by NTRK3 fusions. RET fusions were associated with more frequent lymph node and distant metastases and psammoma bodies, and NTRK3 fusions were associated with the follicular variant of PTC. Conclusions: Fusion genes were the most common genetic alterations in pediatric PTCs. Fusion gene-positive PTCs were associated with more aggressive disease than fusion gene-negative PTCs.
Collapse
Affiliation(s)
- Barbora Pekova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Vlasta Sykorova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Sarka Dvorakova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Eliska Vaclavikova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Jitka Moravcova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Rami Katra
- Department of Ear, Nose and Throat, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jaromir Astl
- Department of Otorhinolaryngology and Maxillofacial Surgery, 3rd Faculty of Medicine, Military University Hospital, Prague, Czech Republic
| | - Petr Vlcek
- Department of Nuclear Medicine and Endocrinology, and 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Daniela Kodetova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Josef Vcelak
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Bela Bendlova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
21
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Stefansson K, Oda H, Öfverman C, Lundin E, Hedman H, Lindquist D. LRIG1‑2 and LMO7 immunoreactivity in vulvar squamous cell carcinoma: Association with prognosis in relation to HPV‑DNA and p16INK4a status. Oncol Rep 2019; 42:142-150. [PMID: 31059071 PMCID: PMC6549080 DOI: 10.3892/or.2019.7138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/03/2019] [Indexed: 01/06/2023] Open
Abstract
The present study was conducted to investigate the possible prognostic value of molecular markers LRIG1‑2 and LIM domain 7 protein (LMO7) in vulvar squamous cell carcinoma (VSCC) and their possible correlation to human papilloma virus (HPV)‑ and p16INK4a‑status of the tumors. Patients diagnosed with VSCC at the University Hospital of Umeå, Sweden, during the years 1990‑2013 were selected. Tumor blocks were retrieved from tissue archives and clinical data were collected from the records of patients. HPV‑PCR analysis, HPV genotyping and immunohistochemistry were performed. In total, 112 patients were included. Forty percent of the tumors were HPV‑positive, 27% were p16INK4a‑positive and 23% were positive for both HPV and p16INK4a (considered HPV‑driven). HPV‑positivity and p16INK4a‑positivity were associated with prolonged disease‑free survival (DFS) in Kaplan‑Meier survival analysis. Leucine‑rich repeats and immunoglobulin‑like domains 1 (LRIG1) immunoreactivity was not significantly associated with survival. High leucine‑rich repeats and immunoglobulin‑like domains 2 (LRIG2) immunoreactivity was associated with a prolonged overall survival (OS) (P=0.001). By analyzing HPV‑negative cases only, it was determined that high LRIG2 immunoreactivity was associated with both favorable OS (P=0.008) and DFS (P=0.031). LRIG2 immunoreactivity was also an independent prognostic factor in multivariate analysis of OS (P=0.002, HR=0.41; 95% CI, 0.24‑0.71). High immunoreactivity with LMO7‑1250 antibody was associated with survival benefits in the whole cohort (OS; P=0.011) although DFS was only prolonged in HPV‑negative and not HPV‑driven tumors (P=0.038 and 0.042, respectively). The present study indicated that LRIG2 and LMO7 may be useful prognostic markers in VSCC, particularly for patients without HPV‑driven tumors or with advanced tumors at diagnosis. In contrast to earlier observations regarding other types of squamous cell carcinoma, LRIG1 was not a significant prognostic factor in VSCC.
Collapse
Affiliation(s)
- Kristina Stefansson
- Department of Radiation Sciences, Oncology, Umeå University, S‑90187 Umeå, Sweden
| | - Husam Oda
- Department of Medical Biosciences, Pathology, Umeå University, S‑90187 Umeå, Sweden
| | - Charlotte Öfverman
- Department of Radiation Sciences, Oncology, Umeå University, S‑90187 Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology, Umeå University, S‑90187 Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, S‑90187 Umeå, Sweden
| | - David Lindquist
- Department of Radiation Sciences, Oncology, Umeå University, S‑90187 Umeå, Sweden
| |
Collapse
|