1
|
Pang C, Zhang H, Liu Y, Tang N, Tian K, Mu Y, Li X, Xiao L. Glutathione peroxidase 4 restrains temporomandibular joint osteoarthritis progression by inhibiting ferroptosis. J Cell Mol Med 2024; 28:e18377. [PMID: 38686488 PMCID: PMC11058612 DOI: 10.1111/jcmm.18377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
There are few effective therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA) due to the unclear pathology and mechanisms. We aimed to confirm the roles of GPX4 and ferroptosis in TMJOA progression. ELISA assay was hired to evaluate concentrations of ferroptosis-related markers. The qRT-PCR assay was hired to assess gene mRNA level. Western blot assay and immunohistochemistry were hired to verify the protein level. CCK-8 assay was hired to detect cell viability. Human fibroblast-like synoviocytes (FLSs) were cultured to confirm the effects of GPX4 and indicated inhibitors, and further verified the effects of GPX4 and ferroptosis inhibitors in TMJOA model rats. Markers of ferroptosis including 8-hidroxy-2-deoxyguanosine (8-OHdG) and iron were notably increased in TMJOA tissues and primary OA-FLSs. However, the activity of the antioxidant system including the glutathione peroxidase activity, glutathione (GSH) contents, and glutathione/oxidized glutathione (GSH/GSSG) ratio was notably inhibited in TMJOA tissues, and the primary OA-FLSs. Furthermore, the glutathione peroxidase 4 (GPX4) expression was down-regulated in TMJOA tissues and primary OA-FLSs. Animal and cell experiments have shown that ferroptosis inhibitors notably inhibited ferroptosis and promoted HLS survival as well as up-regulated GPX4 expression. Also, GPX4 knockdown promoted ferroptosis and GPX4 overexpression inhibited ferroptosis. GPX4 also positively regulated cell survival which was the opposite with ferroptosis. In conclusion, GPX4 and ferroptosis regulated the progression of TMJOA. Targeting ferroptosis might be an effective therapeutic strategy for TMJOA patients in the clinic.
Collapse
Affiliation(s)
- Chunyan Pang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Hongmei Zhang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Kun Tian
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuanChina
| | - Yandong Mu
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuanChina
| | - Xue Li
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuanChina
| |
Collapse
|
2
|
Roh TH, Chae MK, Ko JS, Kikkawa DO, Jang SY, Yoon JS. Phospholipase C-γ as a Potential Therapeutic Target for Graves' Orbitopathy. Endocrinol Metab (Seoul) 2023; 38:739-749. [PMID: 37989267 PMCID: PMC10765002 DOI: 10.3803/enm.2023.1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGRUOUND Phospholipase C-γ (PLC-γ) plays a crucial role in immune responses and is related to the pathogenesis of various inflammatory disorders. In this study, we investigated the role of PLC-γ and the therapeutic effect of the PLC-specific inhibitor U73122 using orbital fibroblasts from patients with Graves' orbitopathy (GO). METHODS The expression of phospholipase C gamma 1 (PLCG1) and phospholipase C gamma 2 (PLCG2) was evaluated using polymerase chain reaction in GO and normal orbital tissues/fibroblasts. The primary cultures of orbital fibroblasts were treated with non-toxic concentrations of U73122 with or without interleukin (IL)-1β to determine its therapeutic efficacy. The proinflammatory cytokine levels and activation of downstream signaling molecules were determined using Western blotting. RESULTS PLCG1 and PLCG2 mRNA expression was significantly higher in GO orbital tissues than in controls (P<0.05). PLCG1 and PLCG2 mRNA expression was significantly increased (P<0.05) in IL-1β, tumor necrosis factor-α, and a cluster of differentiation 40 ligand-stimulated GO fibroblasts. U73122 significantly inhibited the IL-1β-induced expression of proinflammatory molecules, including IL-6, IL-8, monocyte chemoattractant protein-1, cyclooxygenase-2, and intercellular adhesion molecule-1 (ICAM-1), and phosphorylated protein kinase B (p-Akt) and p38 (p-p38) kinase in GO fibroblasts, whereas it inhibited IL-6, IL-8, and ICAM-1, and p-Akt and c-Jun N-terminal kinase (p-JNK) in normal fibroblasts (P<0.05). CONCLUSION PLC-γ-inhibiting U73122 suppressed the production of proinflammatory cytokines and the phosphorylation of Akt and p38 kinase in GO fibroblasts. This study indicates the implications of PLC-γ in GO pathogenesis and its potential as a therapeutic target for GO.
Collapse
Affiliation(s)
- Tae Hoon Roh
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Sang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Park HY, Chae MK, Ko J, Kikkawa DO, Jang SY, Yoon JS. Therapeutic effect of ibrutinib, a selective Bruton's tyrosine kinase inhibitor, in orbital fibroblasts from patients with Graves' orbitopathy. PLoS One 2022; 17:e0279060. [PMID: 36521376 PMCID: PMC9754806 DOI: 10.1371/journal.pone.0279060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Bruton's tyrosine kinase (BTK) is an essential protein in B-cell antigen receptor (BCR) signaling pathway and is known to be related to pathogenetic effect on B-cell related malignancies and various autoimmune diseases. In this study, we investigated the therapeutic effect of ibrutinib, an orally bioavailable BTK inhibitor in the pathogenesis of Graves' orbitopathy (GO) in in vitro model. METHODS Expression of BTK in orbital tissues from GO and normal control subjects were evaluated by real-time polymerase chain reaction (PCR). Primary cultured orbital fibroblasts from each subject were exposed to ibrutinib and stimulated with interleukin (IL)-1β or insulin like growth factor (IGF)-1. Production of inflammatory cytokines was evaluated by real time PCR and enzyme-linked immunosorbent assays (ELISA). The downstream transcription factors were also determined by western blot assays. RESULTS The expression of BTK in GO tissues were significantly higher than in healthy controls. After stimulation of GO orbital fibroblasts with IL-1β or IGF-1, BTK mRNA and phosphorylated (p)- BTK protein expression was also enhanced. Ibrutinib reduced the expression of BTK mRNA and proteins of p-BTK, and inhibited the IL-1β- and IGF-1-induced production of proinflammatory cytokines including IL-6, IL-8 and COX-2 in both GO and normal cells. Ibrutinib also significantly attenuated phosphorylation of Akt, p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) in IL-1β stimulated GO cells and Akt, JNK, and NF-κB in IL-1ß stimulated normal cells. CONCLUSIONS BTK expression is enhanced in GO tissue and orbital fibroblasts. Ibrutinib, a BTK inhibitor suppresses proinflammatory cytokine production as well as phosphorylation of Akt and NF-κB protein. Our results suggest the potential role of BTK in GO inflammatory pathogenesis and possibility of a novel therapeutic target of GO.
Collapse
Affiliation(s)
- Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Siloam Eye Hospital, Seoul, Republic of Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology, University of California San Diego, La Jolla, California, United States of America
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Zhang Y, Wei J, Zhou H, Li B, Chen Y, Qian F, Liu J, Xie X, Xu H. Identification of two potential immune-related biomarkers of Graves' disease based on integrated bioinformatics analyses. Endocrine 2022; 78:306-314. [PMID: 35962894 DOI: 10.1007/s12020-022-03156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Graves' disease (GD) is an autoimmune disease, the incidence of which is increasing yearly. GD requires long-life therapy. Therefore, the potential immune-related biomarkers of GD need to be studied. METHOD In our study, differentially expressed genes (DEGs) were derived from the online Gene Expression Omnibus (GEO) microarray expression dataset GSE71956. Protein‒protein interaction (PPI) network analyses were used to identify hub genes, which were validated by qPCR. GSEA was used to screen potential pathways and related immune cells. Next, CIBERSORT analysis was used to further explore the immune subtype distribution pattern among hub genes. ROC curves were used to analyze the specificity and sensitivity of hub genes. RESULT 44 DEGs were screened from the GEO dataset. Two hub genes, EEF1A1 and EIF4B, were obtained from the PPI network and validated by qPCR (p < 0.05). GSEA was conducted to identify potential pathways and immune cells related to these the two hub genes. Immune cell subtype analysis revealed that hub genes had extensive associations with many different types of immune cells, particularly resting memory CD4+ T cells. AUCs of ROC analysis were 0.687 and 0.733 for EEF1A1 and EIF4B, respectively. CONCLUSION Our study revealed two hub genes, EEF1A1 and EIF4B, that are associated with resting memory CD4+ T cells and potential immune-related molecular biomarkers and therapeutic targets of GD.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jia Wei
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hong Zhou
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Bingxin Li
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingting Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Xie
- Department of Endocrinology and Metabolism, Shanghai Traditional Chinese and Medicine Integrated Hospital, 18 Baoding Road, Hongkou District, Shanghai, 200080, China.
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
5
|
Choi YJ, Kim C, Choi EW, Lee SH, Chae MK, Jun HO, Kim BY, Yoon JS, Jang SY. MicroRNA-155 acts as an anti-inflammatory factor in orbital fibroblasts from Graves’ orbitopathy by repressing interleukin-2-inducible T-cell kinase. PLoS One 2022; 17:e0270416. [PMID: 35980936 PMCID: PMC9387810 DOI: 10.1371/journal.pone.0270416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of microRNA (miR)-155 in inflammation in an in-vitro model of Graves’ orbitopathy (GO). The expression levels of miR-155 were compared between GO and non-GO orbital tissues. The effects of inflammatory stimulation of interleukin (IL)-1β and tumour necrosis factor alpha (TNF-α) on miR-155 expression on GO and non-GO orbital fibroblasts (OFs) were investigated. The effects of miR-155 mimics and inhibitors of inflammatory proteins and IL-2-inducible T-cell kinase (ITK) expression were examined, along with those related to the knockdown of ITK with siITK transfection on inflammatory proteins. We also examined how ITK inhibitors affect miR-155 expression in GO and non-GO OFs. The expression levels of miR-155 were higher in GO orbital tissues than in non-GO tissue. The overexpression of miR-155 was induced by IL-1β and TNF-α in OFs from GO and non-GO patients. IL-1β-induced IL-6 (ICAM1) protein production was significantly reduced (increased) by miR-155 mimics and inhibitors. The mRNA and protein levels of ITK were downregulated by overexpressed miR-155 via miR-155 mimics. Knockdown of ITK via siITK transfection induced a decrease in the expression levels of ITK, IL-17, IL-6, IL-1β, and TNF-α protein. The expression of miR-155 was significantly downregulated by treatment with ITK inhibitors and Bruton’s tyrosine kinase (BTK)/ITK dual inhibitors in a time-dependent manner. Our results indicated a potential relationship between miR-155 and ITK in the context of GO OFs. The overexpression of miR-155 repressed ITK expression and relieved inflammation. Thus, miR-155 appears to have anti-inflammatory effects in GO OFs. This discovery provides a new concept for developing GO treatment therapeutics.
Collapse
Affiliation(s)
- Yeon Jeong Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Charm Kim
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Eun Woo Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Seung Hun Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Oh Jun
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Bo-Yeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Poon SHL, Cheung JJC, Shih KC, Chan YK. A systematic review of multimodal clinical biomarkers in the management of thyroid eye disease. Rev Endocr Metab Disord 2022; 23:541-567. [PMID: 35066781 DOI: 10.1007/s11154-021-09702-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Thyroid Eye Disease (TED) is an autoimmune disease that affects the extraocular muscles and periorbital fat. It most commonly occurs with Graves' Disease (GD) as an extrathyroidal manifestation, hence, it is also sometimes used interchangeably with Graves' Ophthalmopathy (GO). Well-known autoimmune markers for GD include thyroid stimulating hormone (TSH) receptor antibodies (TSH-R-Ab) which contribute to hyperthyroidism and ocular signs. Currently, apart from radiological investigations, detection of TED is based on clinical signs and symptoms which is largely subjective, with no established biomarkers which could differentiate TED from merely GD. We evaluated a total of 28 studies on potential biomarkers for diagnosis of TED. Articles included were published in English, which investigated clinical markers in tear fluid, orbital adipose-connective tissues, orbital fibroblasts and extraocular muscles, serum, thyroid tissue, as well as imaging biomarkers. Results demonstrated that biomarkers with reported diagnostic power have high sensitivity and specificity for TED, including those using a combination of biomarkers to differentiate between TED and GD, as well as the use of magnetic resonance imaging (MRI). Other biomarkers which were upregulated include cytokines, proinflammatory markers, and acute phase reactants in subjects with TED, which are however, deemed less specific to TED. Further clinical investigations for these biomarkers, scrutinising their specificity and sensitivity on a larger sample of patients, may point towards selection of suitable biomarkers for aiding detection and prognosis of TED in the future.
Collapse
Affiliation(s)
- Stephanie Hiu Ling Poon
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR
| | | | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR.
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR
| |
Collapse
|
7
|
Tang W, Lv Q, Huang X, Li Y, Zou J, Zheng J, Sun L, Bao Y, Chen H, Li T, Zhang B, Xue S, Song Y, Zhang X, Chen X, Cai J, Shi Y. MiR-143 Targets IGF-1R to Suppress Autoimmunity in Thyroid-Associated Ophthalmopathy. J Inflamm Res 2022; 15:1543-1554. [PMID: 35256853 PMCID: PMC8898058 DOI: 10.2147/jir.s339483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease that involves the remodeling of orbit and periorbital tissues. Thyroid-stimulating hormone receptor (TSHR) and insulin-like growth factor 1 receptor (IGF-1R) may stimulate the activation of autoimmunity in TAO, but the exact mechanism is unclear. We investigated whether IGF-1R/TSHR modulation in TAO may involve microRNA regulation. Methods We conducted microarray analysis using RNA from the orbital connective tissue samples of 3 healthy and 3 patients with TAO. The involvement of differentially regulated microRNA in IGF-1R/TSHR modulation in TAO was evaluated in orbital fibroblasts (OFs) and female BALB/c mice. Results Using hierarchical cluster analysis, we identified that miR-143 was downregulated in TAO. The expression levels of miR-143 in OFs were significantly reduced under IL-1B stimulation. However, OF proliferation and inflammatory responses decreased when miR-143 is overexpressed. In contrast, the suppression of miR-143 increased levels of inflammatory markers (IL-6, IL-8, MCP1) and hyaluronan accumulation. Moreover, overexpression of miR-143 significantly lowers levels of IGF-1R and TSHR. A luciferase assay indicated that miR-143 targets the 3′-UTR of IGF-1R. Increases in the expression of IGF-1R increased the expression of the inflammasome marker NLRP3 and apoptotic marker cleaved caspase-1; however, miR-143 overexpression decreased levels of IGF-1R, TSHR, NLRP3, cleaved caspase 1, IL-1B, and IL-18. In a mouse model of TAO, overexpression of miR-143 significantly reduced levels of IGF-1R and attenuated the adipogenesis associated with TAO. Conclusion We found that miR-143 directly targets IGF-1R to alleviate the inflammatory response in TAO by indirectly decreasing levels of TSHR and inactivating NLRP3.
Collapse
Affiliation(s)
- Wei Tang
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Qian Lv
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Xiao Huang
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Yuzhen Li
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - JunJie Zou
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Jiaoyang Zheng
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Liangliang Sun
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Yi Bao
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Haiyan Chen
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Tuo Li
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Bei Zhang
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Song Xue
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Yan Song
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Xingxing Zhang
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Xiangfang Chen
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
- Correspondence: Xiangfang Chen; Yongquan Shi, Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, People’s Republic of China, Email ;
| | - Jiping Cai
- Department of Ophthalmology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Yongquan Shi
- Department of Endocrinology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People’s Republic of China
| |
Collapse
|
8
|
Hu Z, Xiao M, Cai H, Li W, Fang W, Long X. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/AKT pathway. J Cell Mol Med 2021; 26:925-936. [PMID: 34953035 PMCID: PMC8817133 DOI: 10.1111/jcmm.17149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022] Open
Abstract
To investigate the role of glycyrrhizin on the progression of temporomandibular joint osteoarthritis (TMJOA) and the underlying mechanism by regulation of the high‐mobility group box 1 (HMGB1) receptor for advanced glycation end products (RAGE)/toll‐like receptor 4 (TLR4)‐nuclear factor kappa B (NF‐κB)/protein kinase B (AKT) pathway. After a rat model of TMJOA was built by intra‐articular injection of monosodium iodoacetate, glycyrrhizin was intragastrically administered at low concentration (20 mg/kg) or high concentration (50 mg/kg). Micro‐computed tomography, histological and immunohistochemical analysis were used to reveal the progression of TMJOA. Rat TMJ chondrocytes and disc cells were cultured in inflammatory condition with different doses of glycyrrhizin. Western blot was used to evaluate the effect of glycyrrhizin on the HMGB1‐RAGE/TLR4‐NF‐κB/AKT pathway. Administration of glycyrrhizin alleviated cartilage degeneration, lowered the levels of inflammatory and catabolic mediators and reduced the production of HMGB1, RAGE and TLR4 in TMJOA animal model. Increased production of RAGE and TLR4, and activated intracellular NF‐κB and/or AKT signalling pathways in chondrocytes and disc cells were found in inflammatory condition. Upon activation, matrix metalloprotease‐3 and interleukin‐6 were upregulated. Glycyrrhizin inhibited not only HMGB1 release but also RAGE and TLR4 in inflammatory condition. Glycyrrhizin alleviated the pathological changes of TMJOA by regulating the HMGB1‐RAGE/TLR4‐NF‐kB/AKT signalling pathway. This study revealed the potential of glycyrrhizin as a novel therapeutic drug to suppress TMJ cartilage degradation.
Collapse
Affiliation(s)
- Zhihui Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mian Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hengxing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhang L, Li S, Li J, Li Y. LncRNA ORLNC1 Promotes Bone Marrow Mesenchyml Stem Cell Pyroptosis Induced by Advanced Glycation End Production by Targeting miR-200b-3p/Foxo3 Pathway. Stem Cell Rev Rep 2021; 17:2262-2275. [PMID: 34482528 DOI: 10.1007/s12015-021-10247-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 01/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are a type of adult stem cells that originate from the mesoderm and have important roles in the body because of their self-renewal and multidirectional differentiation potential. Now it has been proved that BMSCs are closely related to the development of osteoporosis (OP). There is growing evidence that lncRNAs are involved in regulating the pyroptosis of BMSCs. And advanced glycation end-products (AGEs) have been recognized as NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome activators. In this study, we aimed to explore the role of lncRNA ORLNC1 (NONMMUT016106.2) on the pyroptosis of BMSCs under CML (Nε-(carboxymethyl) lysine, the most common AGEs) treatment and its specific molecular mechanisms. Our study revealed that CML treatment promoted pyroptosis of BMSCs and upregulated ORLNC1 expression. As a competing endogenous RNA (ceRNA) of miR-200b-3p, the level of ORLNC1 was negatively correlated with miR-200b-3p. Foxo3 was a target of miR-200b-3p and ORLNC1 promoted BMSCs pyroptosis induced by CML through targeting miR-200b-3p/Foxo3 pathway.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China.,Department of Endocrinology, The Second Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Shilun Li
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Juan Li
- Department of Endocrinology, The Second Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China.
| |
Collapse
|
10
|
Sun B, Ying S, Ma Q, Li H, Li J, Song J. Metformin ameliorates HMGB1-mediated oxidative stress through mTOR pathway in experimental periodontitis. Genes Dis 2021; 10:542-553. [DOI: 10.1016/j.gendis.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/08/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
|
11
|
RAGE and HMGB1 Expression in Orbital Tissue Microenvironment in Graves' Ophthalmopathy. Mediators Inflamm 2021; 2021:8891324. [PMID: 33776579 PMCID: PMC7979288 DOI: 10.1155/2021/8891324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a chronic autoimmune inflammatory disorder involving orbital tissues. A receptor for advanced glycation end products (RAGE) and its ligand high mobility group box 1 (HMGB1) protein trigger inflammation and cell proliferation and are involved in the pathogenesis of various chronic inflammatory diseases. This study was aimed to evaluate RAGE and HMGB1 expression in GO to determine its potential clinical significance. To the best of our knowledge, this is the first study showing RAGE and HMGB1 expression in orbital tissue using immunohistochemistry. Sections of orbital adipose tissue obtained from patients diagnosed with GO (23 patients; 36 orbits) and normal controls (NC) (15 patients; 15 orbits) were analyzed by immunohistochemistry for RAGE and HMGB1 expression. Expression profiles were then correlated with clinical data of the study group. RAGE and HMGB1 expression were elevated in GO patients in comparison with NC (p = 0.001 and p = 0.02, respectively). We observed a correlation between RAGE expression and occurrence of dysthyroid optic neuropathy (DON) (p = 0.05) and levels of TSH Receptor Antibodies (TRAb) (p = 0.01). Overexpression of RAGE and HMGB1 might be associated with GO pathogenesis. In addition, RAGE and HMGB1 proteins may be considered as promising therapeutic targets, but this requires further research.
Collapse
|