1
|
Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog 2023; 19:e1011854. [PMID: 38128049 PMCID: PMC10734937 DOI: 10.1371/journal.ppat.1011854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.
Collapse
Affiliation(s)
- Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Telleria EL, Tinoco-Nunes B, Forrest DM, Di-Blasi T, Leštinová T, Chang KP, Volf P, Pitaluga AN, Traub-Csekö YM. Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania. Front Immunol 2023; 14:1162596. [PMID: 38022562 PMCID: PMC10652419 DOI: 10.3389/fimmu.2023.1162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Bruno Tinoco-Nunes
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David M. Forrest
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Kwang Poo Chang
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - André Nóbrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Vomáčková Kykalová B, Sassù F, Volf P, Telleria EL. RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection. Front Physiol 2023; 14:1182141. [PMID: 37265840 PMCID: PMC10230645 DOI: 10.3389/fphys.2023.1182141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Production of different antimicrobial peptides (AMPs) is one of the insect's prominent defense strategies, regulated mainly by Toll and immune deficiency (IMD) humoral pathways. Here we focused mainly on two AMPs of Phlebotomus papatasi, vector of Leishmania major parasites, their association with the relish transcription factor and the effective participation on Leishmania infection. Methods and results: We further characterized the role of previously described gut-specific P. papatasi defensin (PpDef1) and identified the second defensin (PpDef2) expressed in various sand fly tissues. Using the RNAi-mediated gene silencing, we report that the silencing of PpDef1 gene or simultaneous silencing of both defensin genes (PpDef1 and PpDef2) resulted in increased parasite levels in the sand fly (detectable by PCR) and higher sand fly mortality. In addition, we knocked down relish, the sole transcription factor of the IMD pathway, to evaluate the association of the IMD pathway with AMPs expression in P. papatasi. We demonstrated that the relish gene knockdown reduced the expression of PpDef2 and attacin, another AMP abundantly expressed in the sand fly body. Conclusions: Altogether, our experiments show the importance of defensins in the sand fly response toward L. major and the role of the IMD pathway in regulating AMPs in P. papatasi.
Collapse
|
4
|
Telleria EL, Azevedo-Brito DA, Kykalová B, Tinoco-Nunes B, Pitaluga AN, Volf P, Traub-Csekö YM. Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.747820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.
Collapse
|
5
|
Kykalová B, Tichá L, Volf P, Loza Telleria E. Phlebotomus papatasi Antimicrobial Peptides in Larvae and Females and a Gut-Specific Defensin Upregulated by Leishmania major Infection. Microorganisms 2021; 9:microorganisms9112307. [PMID: 34835433 PMCID: PMC8625375 DOI: 10.3390/microorganisms9112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Phlebotomus papatasi is the vector of Leishmania major, causing cutaneous leishmaniasis in the Old World. We investigated whether P. papatasi immunity genes were expressed toward L. major, commensal gut microbes, or a combination of both. We focused on sand fly transcription factors dorsal and relish and antimicrobial peptides (AMPs) attacin and defensin and assessed their relative gene expression by qPCR. Sand fly larvae were fed food with different bacterial loads. Relish and AMPs gene expressions were higher in L3 and early L4 larval instars, while bacteria 16S rRNA increased in late L4 larval instar, all fed rich-microbe food compared to the control group fed autoclaved food. Sand fly females were treated with an antibiotic cocktail to deplete gut bacteria and were experimentally infected by Leishmania. Compared to non-infected females, dorsal and defensin were upregulated at early and late infection stages, respectively. An earlier increase of defensin was observed in infected females when bacteria recolonized the gut after the removal of antibiotics. Interestingly, this defensin gene expression occurred specifically in midguts but not in other tissues of females and larvae. A gut-specific defensin gene upregulated by L. major infection, in combination with gut-bacteria, is a promising molecular target for parasite control strategies.
Collapse
|
6
|
Lemos-Silva T, Telleria EL, Traub-Csekö YM. The gene expression of Leishmania infantum chagasi inside Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil. Mem Inst Oswaldo Cruz 2021; 116:e200571. [PMID: 33681890 PMCID: PMC7949195 DOI: 10.1590/0074-02760200571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leishmania infantum chagasi is the causative agent and Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the Americas. We investigated the expression of Leishmania genes within L. longipalpis after artificial infection. mRNAs from genes involved in sugar and amino acid metabolism were upregulated at times of high parasite proliferation inside the insect. mRNAs from genes involved in metacyclogenesis had higher expression in late stages of infection. Other modulated genes of interest were involved in immunomodulation, purine salvage pathway and protein recycling. These data reveal aspects of the adaptation of the parasite to the microenvironment of the vector gut and reflect the preparation for infection in the vertebrate.
Collapse
Affiliation(s)
- Thais Lemos-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, RJ, Brasil
| | - Erich Loza Telleria
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, RJ, Brasil.,Charles University, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Yara Maria Traub-Csekö
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
7
|
Binding of Leishmania infantum Lipophosphoglycan to the Midgut Is Not Sufficient To Define Vector Competence in Lutzomyia longipalpis Sand Flies. mSphere 2020; 5:5/5/e00594-20. [PMID: 32907950 PMCID: PMC7485685 DOI: 10.1128/msphere.00594-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that the presence of LPG is sufficient to define the vector competence of restrictive sand fly vectors with respect to Leishmania parasites. However, the permissiveness of other sand flies with respect to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector, Lutzomyia longipalpis. We found that LPG-mediated midgut binding persists in late-stage parasites. This observation is of relevance for the understanding of vector-parasite molecular interactions and suggests that only a subset of infective metacyclic-stage parasites (metacyclics) lose their ability to attach to the midgut, with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be a complex issue and should be investigated on a strain-specific basis. The major surface lipophosphoglycan (LPG) of Leishmania parasites is critical to vector competence in restrictive sand fly vectors in mediating Leishmania attachment to the midgut epithelium, considered essential to parasite survival and development. However, the relevance of LPG for sand flies that harbor multiple species of Leishmania remains elusive. We tested binding of Leishmania infantum wild-type (WT), LPG-defective (Δlpg1 mutants), and add-back (Δlpg1 + LPG1) lines to sand fly midguts in vitro and their survival in Lutzomyia longipalpis sand flies in vivo. Le. infantum WT parasites attached to the Lu. longipalpis midgut in vitro, with late-stage parasites binding to midguts in significantly higher numbers than were seen with early-stage promastigotes. Δlpg1 mutants did not bind to Lu. longipalpis midguts, and this was rescued in the Δlpg1 + LPG1 lines, indicating that midgut binding is mediated by LPG. When Lu. longipalpis sand flies were infected with the Le. infantum WT or Le. infantum Δlpg1 or Le. infantum Δlpg1 + LPG1 line of the BH46 or BA262 strains, the BH46 Δlpg1 mutant, but not the BA262 Δlpg1 mutant, survived and grew to numbers similar to those seen with the WT and Δlpg1 + LPG1 lines. Exposure of BH46 and BA262 Δlpg1 mutants to blood-engorged midgut extracts led to mortality of the BA262 Δlpg1 but not the BH46 Δlpg1 parasites. These findings suggest that Le. infantum LPG protects parasites on a strain-specific basis early in infection, likely against toxic components of blood digestion, but that it is not necessary to prevent Le. infantum evacuation along with the feces in the permissive vector Lu. longipalpis. IMPORTANCE It is well established that the presence of LPG is sufficient to define the vector competence of restrictive sand fly vectors with respect to Leishmania parasites. However, the permissiveness of other sand flies with respect to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector, Lutzomyia longipalpis. We found that LPG-mediated midgut binding persists in late-stage parasites. This observation is of relevance for the understanding of vector-parasite molecular interactions and suggests that only a subset of infective metacyclic-stage parasites (metacyclics) lose their ability to attach to the midgut, with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be a complex issue and should be investigated on a strain-specific basis.
Collapse
|
8
|
Abstract
Background Leishmania development in the sand fly gut leads to highly infective forms called metacyclic promastigotes. This process can be routinely mimicked in culture. Gene expression–profiling studies by transcriptome analysis have been performed with the aim of studying promastigote forms in the sand fly gut, as well as differences between sand fly–and culture-derived promastigotes. Findings Transcriptome analysis has revealed the crucial role of the microenvironment in parasite development within the sand fly gut because substantial differences and moderate correlation between the transcriptomes of cultured and sand fly–derived promastigotes have been found. Sand fly–derived metacyclics are more infective than metacyclics in culture. Therefore, some caution should be exercised when using cultured promastigotes, depending on the experimental design. The most remarkable examples are the hydrophilic acidic surface protein/small endoplasmic reticulum protein (HASP/SHERP) cluster, the glycoprotein 63 (gp63), and autophagy genes, which are up-regulated in sand fly–derived promastigotes compared with cultured promastigotes. Because HASP/SHERP genes are up-regulated in nectomonad and metacyclic promastigotes in the sand fly, the encoded proteins are not metacyclic specific. Metacyclic promastigotes are distinguished by morphology and high infectivity. Isolating them from the sand fly gut is not exempt from technical difficulty, because other promastigote forms remain in the gut even 15 days after infection. Leishmania major procyclic promastigotes within the sand fly gut up-regulate genes involved in cell cycle regulation and glucose catabolism, whereas metacyclics increase transcript levels of fatty acid biosynthesis and ATP-coupled proton transport genes. Most parasite's signal transduction pathways remain uncharacterized. Future elucidation may improve understanding of parasite development, particularly signaling molecule-encoding genes in sand fly versus culture and between promastigote forms in the sand fly gut. Conclusions Transcriptome analysis has been demonstrated to be technically efficacious to study differential gene expression in sand fly gut promastigote forms. Transcript and protein levels are not well correlated in these organisms (approximately 25% quantitative coincidences), especially under stress situations and at differentiation processes. However, transcript and protein levels behave similarly in approximately 60% of cases from a qualitative point of view (increase, decrease, or no variation). Changes in translational efficiency observed in other trypanosomatids strongly suggest that the differences are due to translational regulation and regulation of the steady-state protein levels. The lack of low-input sample strategies does not allow translatome and proteome analysis of sand fly–derived promastigotes so far.
Collapse
|
9
|
Sundar S, Singh B. Understanding Leishmania parasites through proteomics and implications for the clinic. Expert Rev Proteomics 2018; 15:371-390. [PMID: 29717934 PMCID: PMC5970101 DOI: 10.1080/14789450.2018.1468754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Leishmania spp. are causative agents of leishmaniasis, a broad-spectrum neglected vector-borne disease. Genomic and transcriptional studies are not capable of solving intricate biological mysteries, leading to the emergence of proteomics, which can provide insights into the field of parasite biology and its interactions with the host. Areas covered: The combination of genomics and informatics with high throughput proteomics may improve our understanding of parasite biology and pathogenesis. This review analyses the roles of diverse proteomic technologies that facilitate our understanding of global protein profiles and definition of parasite development, survival, virulence and drug resistance mechanisms for disease intervention. Additionally, recent innovations in proteomics have provided insights concerning the drawbacks associated with conventional chemotherapeutic approaches and Leishmania biology, host-parasite interactions and the development of new therapeutic approaches. Expert commentary: With progressive breakthroughs in the foreseeable future, proteome profiles could provide target molecules for vaccine development and therapeutic intervention. Furthermore, proteomics, in combination with genomics and informatics, could facilitate the elimination of several diseases. Taken together, this review provides an outlook on developments in Leishmania proteomics and their clinical implications.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| | - Bhawana Singh
- a Department of Medicine, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| |
Collapse
|
10
|
Martins-da-Silva A, Telleria EL, Batista M, Marchini FK, Traub-Csekö YM, Tempone AJ. Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response. Viruses 2018; 10:v10010043. [PMID: 29346269 PMCID: PMC5795456 DOI: 10.3390/v10010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Hematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. We identified a non-specific antiviral response in L. longipalpis LL5 embryonic cells when treated with non-specific double-stranded RNAs (dsRNAs). This response is reminiscent of interferon response in mammals. We are investigating putative effectors for this antiviral response. Secreted molecules have been implicated in immune responses, including interferon-related responses. We conducted a mass spectrometry analysis of conditioned medium from LL5 cells 24 and 48 h after dsRNA or mock treatment. We identified 304 proteins. At 24 h, 19 proteins had an abundance equal or greater than 2-fold change, while the levels of 17 proteins were reduced when compared to control cells. At the 48 h time point, these numbers were 33 and 71, respectively. The two most abundant secreted peptides at 24 h in the dsRNA-transfected group were phospholipid scramblase, an interferon-inducible protein that mediates antiviral activity, and forskolin-binding protein (FKBP), a member of the immunophilin family, which mediates the effect of immunosuppressive drugs. The transcription profile of most candidates did not follow the pattern of secreted protein abundance.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Michel Batista
- Laboratório de Genômica Funcional, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
- Plataforma Espectrometria de Massas-RPT02H, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
| | - Fabricio Klerynton Marchini
- Laboratório de Genômica Funcional, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
- Plataforma Espectrometria de Massas-RPT02H, Instituto Carlos Chagas-Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba 81350-010, PR, Brazil.
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Antonio Jorge Tempone
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, Rio de Janeiro 21040-360, RJ, Brazil.
| |
Collapse
|
11
|
Nogueira PM, Assis RR, Torrecilhas AC, Saraiva EM, Pessoa NL, Campos MA, Marialva EF, Ríos-Velasquez CM, Pessoa FA, Secundino NF, Rugani JN, Nieves E, Turco SJ, Melo MN, Soares RP. Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection. PLoS Negl Trop Dis 2016; 10:e0004848. [PMID: 27508930 PMCID: PMC4980043 DOI: 10.1371/journal.pntd.0004848] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly.
Collapse
Affiliation(s)
- Paula M. Nogueira
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Parasitologia, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael R. Assis
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Biológicas, UNIFESP, São Paulo, São Paulo, Brazil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália L. Pessoa
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marco A. Campos
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Eric F. Marialva
- Centro de Pesquisas Leônidas e Maria Deane/FIOCRUZ, Manaus, Amazonas, Brazil
| | | | - Felipe A. Pessoa
- Centro de Pesquisas Leônidas e Maria Deane/FIOCRUZ, Manaus, Amazonas, Brazil
| | - Nágila F. Secundino
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Jerônimo N. Rugani
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Elsa Nieves
- Laboratório de Parasitologia Experimental, Departamento de Biologia, Universidad de Los Andes, Mérida, Venezuela
| | - Salvatore J. Turco
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Maria N. Melo
- Departamento de Parasitologia, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo P. Soares
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Myšková J, Dostálová A, Pěničková L, Halada P, Bates PA, Volf P. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. Parasit Vectors 2016; 9:413. [PMID: 27457627 PMCID: PMC4960694 DOI: 10.1186/s13071-016-1695-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Leishmania parasites are transmitted by phlebotomine sand flies and a crucial step in their life-cycle is the binding to the sand fly midgut. Laboratory studies on sand fly competence to Leishmania parasites suggest that the sand flies fall into two groups: several species are termed “specific/restricted” vectors that support the development of one Leishmania species only, while the others belong to so-called “permissive” vectors susceptible to a wide range of Leishmania species. In a previous study we revealed a correlation between specificity vs permissivity of the vector and glycosylation of its midgut proteins. Lutzomyia longipalpis and other four permissive species tested possessed O-linked glycoproteins whereas none were detected in three specific vectors examined. Results We used a combination of biochemical, molecular and parasitological approaches to characterize biochemical and biological properties of O-linked glycoprotein of Lu. longipalpis. Lectin blotting and mass spectrometry revealed that this molecule with an apparent molecular weight about 45–50 kDa corresponds to a putative 19 kDa protein with unknown function detected in a midgut cDNA library of Lu. longipalpis. We produced a recombinant glycoprotein rLuloG with molecular weight around 45 kDa. Anti-rLuloG antibodies localize the native glycoprotein on epithelial midgut surface of Lu. longipalpis. Although we could not prove involvement of LuloG in Leishmania attachment by blocking the native protein with anti-rLuloG during sand fly infections, we demonstrated strong binding of rLuloG to whole surface of Leishmania promastigotes. Conclusions We characterized a novel O-glycoprotein from sand fly Lutzomyia longipalpis. It has mucin-like properties and is localized on the luminal side of the midgut epithelium. Recombinant form of the protein binds to Leishmania parasites in vitro. We propose a role of this molecule in Leishmania attachment to sand fly midgut.
Collapse
Affiliation(s)
- Jitka Myšková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic.
| | - Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Lucie Pěničková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the ASCR, v.v.i., Videňská 1083, 142 20, Prague 4, Czech Republic
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|