1
|
Circulation of Ngari Virus in Livestock, Kenya. mSphere 2022; 7:e0041622. [PMID: 36472449 PMCID: PMC9769740 DOI: 10.1128/msphere.00416-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ngari virus (NRIV) is a mosquito-borne reassortant orthobunyavirus that causes severe febrile illness and hemorrhagic fever in humans and small ruminants. Due to limited diagnostics and surveillance, NRIV has only been detected sporadically during Rift Valley fever virus outbreaks. Little is known on its interepidemic maintenance and geographic distribution. In this study, sera from cattle, goats, and sheep were collected through a cross-sectional survey after the rainy seasons between 2020 and 2021 in two pastoralist-dominated semiarid ecosystems, Baringo and Kajiado counties in Kenya. NRIV was detected in 11 apparently healthy animals (11/2,039, 0.54%) by RT-PCR and isolated in cell culture from seven individuals. Growth analyses displayed efficient replication in cells from sheep and humans in contrast to weak replication in goat cells. NRIV infection of a wide variety of different vector cells showed only rapid replication in Aedes albopictus cells but not in cells derived from other mosquito species or sandflies. Phylogenetic analyses of complete-coding sequences of L, M, and S segments of four viruses showed that the Kenyan sequences established a monophyletic clade most closely related to a NRIV sequence from a small ruminant from Mauritania. NRIV neutralizing reactivity in cattle, goats, and sheep were 41.6% (95% CI = 30 to 54.3), 52.4% (95% CI = 37.7 to 66.6), and 19% (95% CI = 9.7 to 33.6), respectively. This is the first detection of NRIV in livestock in Kenya. Our results demonstrate active and undetected circulation of NRIV in the three most common livestock species highlighting the need for an active one-health surveillance of host networks, including humans, livestock, and vectors. IMPORTANCE Surveillance of vectors and hosts for infection with zoonotic arthropod-borne viruses is important for early detection and intervention measures to prevent outbreaks. Here, we report the undetected circulation of Ngari virus (NRIV) in apparently healthy cattle, sheep, and goats in Kenya. NRIV is associated with outbreaks of hemorrhagic fever in humans and small ruminants. We demonstrate the isolation of infectious virus from several animals as well as presence of neutralizing antibodies in 38% of the tested animals. Our data indicate active virus circulation and endemicity likely having important implications for human and animal health.
Collapse
|
2
|
Koka H, Lutomiah J, Langat S, Koskei E, Nyunja A, Mutisya J, Mulwa F, Owaka S, Ofula V, Konongoi S, Eyase F, Sang R. Evidence of circulation of Orthobunyaviruses in diverse mosquito species in Kwale County, Kenya. Virol J 2021; 18:204. [PMID: 34641884 PMCID: PMC8507213 DOI: 10.1186/s12985-021-01670-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/16/2021] [Indexed: 12/05/2022] Open
Abstract
Background Arbovirus surveillance and recurrence of outbreaks in Kenya continues to reveal the re-emergence of viruses of public health importance. This calls for sustained efforts in early detection and characterization of these agents to avert future potential outbreaks. Methods A larval survey was carried out in three different sites in Kwale County, Vanga, Jego and Lunga Lunga. All containers in every accessible household and compound were sampled for immature mosquitoes. In addition, adult mosquitoes were also sampled using CO2-baited CDC light traps and BG-Sentinel traps in the three sites and also in Tsuini. The mosquitoes were knocked down using trimethylamine and stored in a liquid nitrogen shipper for transportation to the laboratory where they were identified to species, pooled and homogenized ready for testing. Results A total of 366 houses and 1730 containers were inspected. The House Index (HI), Container Index (CI) and Breateau Index (BI) for Vanga Island were (3%: 0.66: 3.66) respectively. In Jego, a rural site, the HI, CI and BI were (2.4%: 0.48: 2.4) respectively. In Lunga Lunga, a site in an urban area, the HI, CI and BI were (22.03%: 3.97: 29.7) respectively. The indices suggest that this region is at risk of arbovirus transmission given they were above the WHO threshold (CI > 1, HI > 1% and BI > 5). The most productive containers were the concrete tanks (44.4%), plastic tank (22.2%), claypot (13.3%), plastic drums (8.9%), plastic basins (4%), jerricans (1.2%) and buckets (0.3%). Over 20,200 adult mosquitoes were collected using CDC light traps, and over 9,200 using BG- sentinel traps. These mosquitoes were screened for viruses by inoculating in Vero cells. Eleven Orthobunyavirus isolates were obtained from pools of Ae. pembaensis (4), Ae. tricholabis (1), Cx. quinquefasciatus (3), Culex spp. (1) and Cx. zombaensis (2). Five of the Orthobunyaviruses were sequenced and four of these were determined to be Bunyamwera viruses while one isolate was found to be Nyando virus. One isolate remained unidentified. Conclusions These results indicate circulation of Orthobunyaviruses known to cause diverse grades of febrile illness with rash in humans in this region and highlights the need for continued monitoring and surveillance to avert outbreaks.
Collapse
Affiliation(s)
- Hellen Koka
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya.
| | - Joel Lutomiah
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Solomon Langat
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Edith Koskei
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Albert Nyunja
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - James Mutisya
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Francis Mulwa
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Samuel Owaka
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Victor Ofula
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Samson Konongoi
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - Fredrick Eyase
- US Army Medical Research Directorate - Kenya, P. O. Box 606-00621, Nairobi, Kenya
| | - Rosemary Sang
- Centre for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| |
Collapse
|
3
|
Chepkorir E, Tchouassi DP, Konongoi SL, Lutomiah J, Tigoi C, Irura Z, Eyase F, Venter M, Sang R. Serological evidence of Flavivirus circulation in human populations in Northern Kenya: an assessment of disease risk 2016-2017. Virol J 2019; 16:65. [PMID: 31101058 PMCID: PMC6525424 DOI: 10.1186/s12985-019-1176-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
Background Yellow fever, Dengue, West Nile and Zika viruses are re-emerging mosquito-borne Flaviviruses of public health concern. However, the extent of human exposure to these viruses and associated disease burden in Kenya and Africa at large remains unknown. We assessed the seroprevalence of Yellow fever and other Flaviviruses in human populations in West Pokot and Turkana Counties of Kenya. These areas border Uganda, South Sudan and Ethiopia where recent outbreaks of Yellow fever and Dengue have been reported, with possibility of spillover to Kenya. Methodology Human serum samples collected through a cross-sectional survey in West Pokot and Turkana Counties were screened for neutralizing antibodies to Yellow fever, Dengue-2, West Nile and Zika virus using the Plaque Reduction Neutralization Test (PRNT). Seroprevalence was compared by county, site and important human demographic characteristics. Adjusted odds ratios (aOR) were estimated using Firth logistic regression model. Results Of 877 samples tested, 127 neutralized with at least one of the four flaviviruses (14.5, 95% CI 12.3–17.0%), with a higher proportion in Turkana (21.1%, n = 87/413) than in West Pokot (8.6%, n = 40/464). Zika virus seroprevalence was significantly higher in West Pokot (7.11%) than in Turkana County (0.24%; χ2P < 0.0001). A significantly higher Yellow fever virus seroprevalence was also observed in Turkana (10.7%) compared to West Pokot (1.29%; χ2 P < 0.0001). A high prevalence of West Nile virus was detected in Turkana County only (10.2%) while Dengue was only detected in one sample, from West Pokot. The odds of infection with West Nile virus was significantly higher in males than in females (aOR = 2.55, 95% CI 1.22–5.34). Similarly, the risk of Zika virus infection in West Pokot was twice higher in males than females (aOR = 2.01, 95% CI 0.91–4.41). Conclusion Evidence of neutralizing antibodies to West Nile and Zika viruses indicates that they have been circulating undetected in human populations in these areas. While the observed Yellow Fever prevalence in Turkana and West Pokot Counties may imply virus activity, we speculate that this could also be as a result of vaccination following the Yellow Fever outbreak in the Omo river valley, South Sudan and Uganda across the border. Electronic supplementary material The online version of this article (10.1186/s12985-019-1176-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Chepkorir
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya. .,Center for Viral Zoonoses, Department of Medical Virology, University of Pretoria, P. O. Box 323, Arcadia, 0007, South Africa.
| | - D P Tchouassi
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - S L Konongoi
- Center for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - J Lutomiah
- Center for Virus Research, Kenya Medical Research Institute, P. O. Box 54628-00200, Nairobi, Kenya
| | - C Tigoi
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Z Irura
- Division of Disease Surveillance and Response, Ministry of Health, P. O. Box 20781-00202, Nairobi, Kenya
| | - F Eyase
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 606, Village Market, Nairobi, Kenya
| | - M Venter
- Center for Viral Zoonoses, Department of Medical Virology, University of Pretoria, P. O. Box 323, Arcadia, 0007, South Africa
| | - R Sang
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
4
|
Dutuze MF, Nzayirambaho M, Mores CN, Christofferson RC. A Review of Bunyamwera, Batai, and Ngari Viruses: Understudied Orthobunyaviruses With Potential One Health Implications. Front Vet Sci 2018; 5:69. [PMID: 29707545 PMCID: PMC5906542 DOI: 10.3389/fvets.2018.00069] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
Abstract
Bunyamwera (BUNV), Batai (BATV), and Ngari (NRIV) are mosquito-borne viruses of the Bunyamwera serogroup in the Orthobunyavirus genus of the Bunyaviridae family. These three viruses have been found to cause disease in both livestock animals, avian species, and humans. Thus, these viruses pose a potential threat to human public health, animal health, and food security. This is especially the case in the developing nations, where BUNV and NRIV are found, mainly in Africa. BUNV and BATV are fairly well characterized, while NRIV is not well characterized owing to only sporadic detection in human and animal populations in Africa. Reassortment is common among bunyaviruses, but NRIV is believed to be the only natural reassortant of the Bunyamwera serogroup. It resulted from a combination of BUNV S and L segments and the BATV M segment. This indicates at least some level co-circulation of BUNV and BATV, which have no historically been reported to overlap in geographic distributions. But as these viruses are undercharacterized, there remains a gap in the understanding of how such reassortment could occur, and the consequences of such. Due to their combined wide range of hosts and vectors, geographic distributions, potential severity of associated diseases, and potential for transmissibility between vertebrate hosts, these viruses represent a significant gap in knowledge with important One Health implications. The goal of this review is to report available knowledge of and identify potential future directions for study of these viruses. As these are collectively understudied viruses, there is a relative paucity of data; however, we use available studies to discuss different perspectives in an effort to promote a better understanding of these three viruses and the public and One Health threat(s) they may pose.
Collapse
Affiliation(s)
- M Fausta Dutuze
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.,College of Agriculture and Animal Sciences and Veterinary Medicine, University of Rwanda, Kigali, Rwanda
| | | | - Christopher N Mores
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|