1
|
Ko JCK, Choi YWY, Poon ESK, Wyre N, Go JLL, Poon LLM, Sin SYW. Prevalence and genotypes of Chlamydia psittaci in pet birds of Hong Kong. PLoS One 2024; 19:e0306528. [PMID: 39241026 PMCID: PMC11379223 DOI: 10.1371/journal.pone.0306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 09/08/2024] Open
Abstract
Psittacosis, or parrot fever, is a zoonotic disease caused by Chlamydia species associated with birds. One of the causative agents of the disease is Chlamydia psittaci, which is commonly carried by psittacine and other bird species, can be highly pathogenic and virulent to humans. In Hong Kong, a city with high population density, psittacosis is a notifiable disease with over 60% of cases in the last decade resulting in hospitalization. However, the sources of transmission of C. psittaci and its prevalence in pet birds in Hong Kong are currently unknown. To evaluate the risks of psittacosis transmission through pet birds, we tested the presence of C. psittaci and determined its genotypes in samples obtained from 516 captive birds from households, pet shops, and a veterinary hospital in Hong Kong. Results revealed that five samples (0.97%), collected from budgerigars and cockatiels, were C. psittaci-positive, while four (80%) of them were obtained from pet shops. Our phylogenetic analysis revealed that all identified strains belonged to Genotype A and showed high similarity to other sequences of this genotype obtained from various geographical locations and host species, including mammals. Our findings provide evidence for the presence of Chlamydia psittaci and shed light on its sources in captive birds in Hong Kong. They highlight the potential zoonotic risks associated with this pathogen, which can affect both humans and wild birds.
Collapse
Affiliation(s)
- Jackie Cheuk Kei Ko
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Yannes Wai Yan Choi
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Nicole Wyre
- Zodiac Pet & Exotic Hospital, Shop 101A to 103A, 1/F, Victoria Centre, 15 Watson Road, Fortress Hill, Hong Kong, China
| | - Jennifer Le Lin Go
- Centre for Comparative Medicine Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Leo Lit Man Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| |
Collapse
|
2
|
Chaiwattanarungruengpaisan S, Thongdee M, Arya N, Paungpin W, Sirimanapong W, Sariya L. Diversity and genetic characterization of Chlamydia isolated from Siamese crocodiles (Crocodylus siamensis). Acta Trop 2024; 253:107183. [PMID: 38479468 DOI: 10.1016/j.actatropica.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Chlamydiosis, an infection caused by several Chlamydia species, has been reported in Nile, saltwater, and Siamese crocodiles. Despite its widespread reports in various countries, including Thailand, genetic information on Chlamydia species remains limited. This study presents a whole-genome-based characterization of Siamese crocodile-isolated Chlamydia. The results showed that Siamese crocodile Chlamydia contained a single circular chromosome with a size of 1.22-1.23 Mbp and a plasmid with a size of 7.7-8.0 kbp. A plasmid containing eight coding sequences (CDSs) was grouped in a β lineage. A chromosome sequence had approximately 1,018-1,031 CDSs. Chlamydial factors involving virulence were documented in terms of the presence of cytotoxins and several virulence factors in the chromosomes of Siamese crocodile Chlamydia. The analysis of antimicrobial resistance genes in the Chlamydia genome revealed that the most common resistance genes were associated with aminoglycosides, fluoroquinolones, macrolides, tetracyclines, and cephalosporins, with loose matching (identities between 21.12 % and 74.65 %). Phylogenetic analyses, encompassing the assessments of both whole proteome and nine taxonomic markers, revealed that Siamese crocodile Chlamydia was separated into three lineages (lineages I-III) with high bootstrapping statistic support. Interestingly, isolate 12-01 differed genetically from the others, suggesting that it is a new member of Chlamydia. The study findings indicate that Siamese crocodiles are susceptible hosts to Chlamydia, involving more than one species. This study is the first employing the highest number of whole-genome data on Siamese crocodile Chlamydia and provides better insights into pathogen genetics.
Collapse
Affiliation(s)
- Somjit Chaiwattanarungruengpaisan
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Nlin Arya
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Weena Paungpin
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
3
|
Tanpradit N, Thongdee M, Sariya L, Paungpin W, Chaiwattanarungruengpaisan S, Sirimanapong W, Kasantikul T, Phonarknguen R, Punchukrang A, Lekcharoen P, Arya N. Epidemiology of Chlamydia sp. infection in farmed Siamese crocodiles (Crocodylus siamensis) in Thailand. Acta Vet Scand 2023; 65:50. [PMID: 38008768 PMCID: PMC10680321 DOI: 10.1186/s13028-023-00713-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Although Chlamydia sp. causes widespread disease outbreaks in juvenile crocodiles in Thailand, data regarding the epidemiology, and risk factors of such infections are limited. The aim of this study was to investigate the prevalence and possible risk factors associated with Chlamydia sp. infections on Siamese crocodile (Crocodylus siamensis) farms in Thailand. A cross-sectional study was conducted from July to December 2019. Samples were collected from 40 farms across six regions in Thailand. Conjunctival, pharyngeal, and cloacal swab samples were analyzed for Chlamydiaceae nucleic acids using semi-nested PCR followed by phylogenetic analysis based on the ompA gene fragment. Risk factors of infection were analyzed using chi-square and univariate regression to calculate odds ratios. RESULTS The prevalence of Chlamydia sp. infection across all regions was 65%. The ompA phylogenetic analysis showed that Chlamydia sp. detected in this study was genetically closely related to Chlamydia crocodili and Chlamydia caviae. The risk factors for infection were water source, reusing treated wastewater from the treatment pond, not disposing of leftover food, low frequency of water replacement in the enclosure of juvenile crocodiles, and lack of water replacement after the death of a crocodile. CONCLUSION The prevalence of Chlamydia sp. infection in farmed crocodiles in Thailand was 65% during the study period. Cloacal swabs were superior to conjunctival and pharyngeal swabs due to their higher sensitivity in detecting Chlamydia sp., as well as their lower invasiveness. Good management and biosecurity in crocodile farming can reduce the risk of Chlamydia sp. INFECTION
Collapse
Affiliation(s)
- Nae Tanpradit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Metawee Thongdee
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Weena Paungpin
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- Faculty of Veterinary Science, The Veterinary Aquatic Animal Research Health Care Unit, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanit Kasantikul
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, USA
| | - Rassameepen Phonarknguen
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Apichart Punchukrang
- Faculty of Agricultural Technology, Songkhla Rajabhat University, Songkhla, 90000, Thailand
| | - Paisin Lekcharoen
- The Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nlin Arya
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Paungpin W, Thongdee M, Chaiwattanarungruengpaisan S, Sariya L, Sirimanapong W, Kasantikul T, Phonarknguen R, Darakamas P, Arya N. Coinfection of Chlamydia spp. and herpesvirus in juvenile farmed Siamese crocodiles ( Crocodylus siamensis) in Thailand. Vet World 2021; 14:1908-1914. [PMID: 34475716 PMCID: PMC8404128 DOI: 10.14202/vetworld.2021.1908-1914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim For a decade, chlamydial and herpesvirus infections have caused significant morbidity and mortality in farmed crocodiles. In September 2017, a total of 160 juvenile freshwater Siamese crocodiles (Crocodylus siamensis) with conjunctivitis/pharyngitis lesions were admitted at the Veterinary Aquatic Animal Research Health Care Unit, Faculty of Veterinary Science, Mahidol University. All crocodiles did not respond well to antibiotics or supportive treatments and died. This study aimed to detect and identify the causative agents associated with conjunctivitis/pharyngitis and fatal outcomes in juvenile farmed Siamese crocodiles. Materials and Methods A total of 138 pharyngeal and conjunctival swabs and conjunctival scrapes were collected from live crocodiles. All swab and scrape samples were DNA-extracted and amplified by polymerase chain reaction (PCR) using Chlamydiaceae- and herpesvirus-specific primers. Tissue samples (brain, lung, liver, heart, spleen, and intestine) were collected from two representative postmortem animals. All tissue samples were processed for molecular and pathological analyses. Results PCR examinations identified chlamydial and herpesvirus DNA in 92% (126/138) and 100% (138/138), respectively, of the tested swab and scrape samples. Of those positive samples, 79% (26/33), 67% (4/6), and 98% (97/99) of the pharyngeal swabs, conjunctival swabs, and conjunctival scrapes, respectively, were positive for both chlamydial and herpesvirus DNA. Histopathological examination indicated necrosis and mononuclear cell infiltration in the liver, kidney, and intestine of the affected animals. The intracytoplasmic accumulation of Chlamydia was randomly observed in the examined tissue sample. Moreover, the presence of chlamydial and herpesvirus DNA was also detected in the tissue samples, including the heart, intestine, brain, lung, liver, and spleen, of the affected animals by PCR. Phylogenetic analyses revealed that Chlamydia spp. detected in the juvenile Siamese crocodiles was notably different from other known species in the Chlamydia genus, while the herpesvirus detected in the crocodiles was closely related to crocodyline herpesvirus 1. Conclusion Based on histopathological and molecular examinations, this report provided the first evidence of coinfection of Chlamydia spp. and crocodyline herpesvirus 1 in juvenile Siamese crocodiles in Thailand.
Collapse
Affiliation(s)
- Weena Paungpin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wanna Sirimanapong
- The Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Tanit Kasantikul
- Department of Pre-clinic and Applied animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Veterinary Diagnostic Laboratory, Clemson Livestock Poultry Health, 500 Clemson Rd, Columbia, SC 29229, USA
| | - Rassameepen Phonarknguen
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Poonnut Darakamas
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Nlin Arya
- Department of Pre-clinic and Applied animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|