1
|
Sun Y, Zhou J, Jiang Y. Negative Regulation and Protective Function of Natural Killer Cells in HIV Infection: Two Sides of a Coin. Front Immunol 2022; 13:842831. [PMID: 35320945 PMCID: PMC8936085 DOI: 10.3389/fimmu.2022.842831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells play an important immunologic role, targeting tumors and virus-infected cells; however, NK cells do not impede the progression of human immunodeficiency virus (HIV) infection. In HIV infection, NK cells exhibit impaired functions and negatively regulate other immune cell responses, although NK cells can kill HIV-infected cells and thereby suppress HIV replication. Considerable recent research has emerged regarding NK cells in the areas of immune checkpoints, negative regulation, antibody-dependent cell-mediated cytotoxicity and HIV reservoirs during HIV infection; however, no overall summary of these factors is available. This review focuses on several important aspects of NK cells in relation to HIV infection, including changes in NK cell count, subpopulations, and immune checkpoints, as well as abnormalities in NK cell functions and NK cell negative regulation. The protective function of NK cells in inhibiting HIV replication to reduce the viral reservoir and approaches for enhancing NK cell functions are also summarized.
Collapse
|
2
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|
3
|
Alsahebfosoul F, Rahimpourkoldeh S, Eskandari N, Shaygannejad V, Ganjalikhani Hakemi M, Dabiri A, Jafarnia M, Mirmossayeb O. Gene Expression of CD226 and Its Serum Levels in Patients With Multiple Sclerosis. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.14.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
4
|
Zhang Y, Liu T, Chen Y, Dong Z, Zhang J, Sun Y, Jin B, Gao F, Guo S, Zhuang R. CD226 reduces endothelial cell glucose uptake under hyperglycemic conditions with inflammation in type 2 diabetes mellitus. Oncotarget 2017; 7:12010-23. [PMID: 26910838 PMCID: PMC4914265 DOI: 10.18632/oncotarget.7505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/26/2016] [Indexed: 01/01/2023] Open
Abstract
CD226 is a co-stimulatory adhesion molecule found on immune and endothelial cells. Here, we evaluated a possible role for CD226 in inhibiting glucose uptake in isolated human umbilical vein endothelial cells (HUVECs) and in wild-type (WT) and CD226 knockout (KO) mice with high-fat diet (HFD)-induced type 2 diabetes (T2DM). CD226 expression increased under hyperglycemic conditions in the presence of TNF-α. Furthermore, CD226 knockdown improved glucose uptake in endothelial cells, and CD226 KO mice exhibited increased glucose tolerance. Levels of soluble CD226 in plasma were higher in T2DM patients following an oral glucose tolerance test (OGTT) than under fasting conditions. Our results indicate that low-grade inflammation coupled with elevated blood glucose increases CD226 expression, resulting in decreased endothelial cell glucose uptake in T2DM.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Chen
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zilong Dong
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinxue Zhang
- Department of Immunology, Fourth Military Medical University Xi'an, China
| | - Yizheng Sun
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University Xi'an, China
| | - Feng Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuzhong Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University Xi'an, China
| |
Collapse
|
5
|
Hou S, Ge K, Zheng X, Wei H, Sun R, Tian Z. CD226 protein is involved in immune synapse formation and triggers Natural Killer (NK) cell activation via its first extracellular domain. J Biol Chem 2014; 289:6969-6977. [PMID: 24451371 DOI: 10.1074/jbc.m113.498253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD226, an activating receptor that interacts with the ligands CD155 and CD112, activates natural killer (NK) cells via its immunoreceptor tyrosine-based activatory motif (ITAM). There are two extracellular domains of CD226; however, the comparative functional relevance of these domains remains unknown. In this study, two different deletion mutants, rCD226-ECD1 (the first extracellular domain) and rCD226-ECD (full extracellular domains), were recombinantly expressed. We observed that rCD226-ECD1, similar to rCD226-ECD, specifically bound to ligand-positive cell lines and that this interaction could be competitively blocked by an anti-CD226 mAb. In addition, rCD226-ECD1 was able to block the binding of CD112 mAb to tumor cells in a competitive binding assay. Importantly, based on surface plasmon resonance (SPR), we determined that rCD226-ECD1, similar to rCD226-ECD, directly bound to its ligand CD155 on a protein chip. Functionally, NK cell cytotoxicity against K562 or HeLa cells was blocked by rCD226-ECD1 by reducing the expression of CD69 and granzyme B, indicating the critical role of ECD1 in NK cell activation. We also examined the role of rCD226-ECD1 in effector/target interactions by using rCD226-ECD to block these interactions. Using flow cytometry, we found that the number of conjugates between IL-2-dependent NKL cells and HeLa cells was reduced and observed that the formation of immune synapses was also decreased under confocal microscopy. In addition, we prepared two anti-rCD226-ECD1 agonistic antibodies, 2E6 and 3B9. Both 2E6 and 3B9 antibodies could induce the phosphorylation of ERK in NK-92 cells. Taken together, our results show that CD226 functions via its first extracellular domain.
Collapse
Affiliation(s)
- Shengke Hou
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027
| | - Kuikui Ge
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027
| | - Xiaodong Zheng
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027
| | - Haiming Wei
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230027, China
| | - Rui Sun
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230027, China.
| | - Zhigang Tian
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
6
|
Eriksson EM, Keh CE, Deeks SG, Martin JN, Hecht FM, Nixon DF. Differential expression of CD96 surface molecule represents CD8⁺ T cells with dissimilar effector function during HIV-1 infection. PLoS One 2012; 7:e51696. [PMID: 23272144 PMCID: PMC3521672 DOI: 10.1371/journal.pone.0051696] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/05/2012] [Indexed: 11/29/2022] Open
Abstract
During HIV-1 infection, immune dysregulation and aberrant lymphocyte functions are well-established characteristics. Cell surface molecules are important for immunological functions and changes in expression can affect lymphocyte effector functions, thereby contributing to pathogenesis and disease progression. In this study we have focused on CD96, a member of the IgG superfamily receptors that have generated increasing recent interest due to their adhesive and co-stimulatory functions in addition to immunoregulatory capacity. CD96 is expressed by both T and NK cells. Although the function of CD96 is not completely elucidated, it has been shown to have adhesive functions and enhance cytotoxicity. Interestingly, CD96 may also have inhibitory functions due to its immunoreceptor tyrosine-based inhibitory motif (ITIM). The clinical significance of CD96 is still comparatively limited although it has been associated with chronic Hepatitis B infection and disease progression. CD96 has not previously been studied in the context of HIV-1 infection, but due to its potential importance in immune regulation and relevance to chronic disease, we examined CD96 expression in relation to HIV-1 pathogenesis. In a cross-sectional analysis, we investigated the CD8+ T cell expression of CD96 in cohorts of untreated HIV-1 infected adults with high viral loads (non-controllers) and low viral loads (“elite” controllers). We demonstrated that elite controllers have significantly higher CD96 mean fluorescence intensity on CD8+ T cells compared to HIV-1 non-controllers and CD96 expression was positively associated with CD4+ T cell counts. Functional assessment showed that CD8+ T cells lacking CD96 expression represented a population that produced both perforin and IFN-γ following stimulation. Furthermore, CD96 expression on CD8+ T cells was decreased in presence of lipopolysaccharide in vitro. Overall, these findings indicate that down-regulation of CD96 is an important aspect of HIV-1 pathogenesis and differential expression is related to cell effector functions and HIV-1 disease course.
Collapse
Affiliation(s)
- Emily M Eriksson
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | |
Collapse
|
7
|
The human immunodeficiency virus type 1 Nef and Vpu proteins downregulate the natural killer cell-activating ligand PVR. J Virol 2012; 86:4496-504. [PMID: 22301152 DOI: 10.1128/jvi.05788-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) evades the immune responses of natural killer (NK) cells through mechanisms that have been partially deciphered. Here we show that in HIV-1-infected T lymphocytes, the early viral Nef protein downmodulates PVR (CD155, Necl-5), a ligand for the activating receptor DNAM-1 (CD226) expressed by all NK cells, CD8(+) T cells, and other cell types. This novel Nef activity is conserved by Nef proteins of laboratory HIV-1 strains (NL4-3, SF2) and of a patient-derived virus, but it is not maintained by HIV-2. Nef uses the same motifs to downregulate PVR and HLA-I molecules, likely by the same mechanisms. Indeed, as previously demonstrated for HLA-I, Nef reduces the total amounts of cell-associated PVR. Optimal downregulation of cell surface PVR by Nef also requires the presence of the late viral factor Vpu. In line with PVR reduction, the NK cell-mediated lysis of T cells infected by a wild-type but not Nef-deficient virus is virtually abrogated upon blocking of both DNAM-1 and another activating receptor, NKG2D, previously shown to mediate killing of HIV-infected cells. Together, these data demonstrate that the PVR downmodulation by Nef and Vpu is a strategy evolved by HIV-1 to prevent NK cell-mediated lysis of infected cells. The PVR downregulation reported here has the potential to affect the immune responses of other DNAM-1-positive cells besides NK cells and to alter multiple PVR-mediated cellular processes, such as adhesion and migration, and may thus greatly influence HIV-1 pathogenesis.
Collapse
|
8
|
Alkhatatbeh MJ, Mhaidat NM, Enjeti AK, Lincz LF, Thorne RF. The putative diabetic plasma marker, soluble CD36, is non-cleaved, non-soluble and entirely associated with microparticles. J Thromb Haemost 2011; 9:844-51. [PMID: 21276198 DOI: 10.1111/j.1538-7836.2011.04220.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND CD36 is a widely expressed cell surface receptor that binds lipoproteins, and its function has been implicated in many complications of the metabolic syndrome. A cell-free form of CD36, soluble CD36 (sCD36), has been reported in human plasma, found to be elevated in obesity and diabetes, and claimed as a marker of insulin resistance. OBJECTIVE To determine the nature of sCD36; in particular, whether sCD36 is truly soluble or, as hypothesized, is found as a component of circulating microparticles (MPs). METHODS Lipoproteins were fractionated by density gradient centrifugation, and plasma MPs were isolated by ultracentrifugation, size exclusion, and immunoprecipitation with CD36 detected by immunoblotting. MPs from plasma and activated platelets were analyzed by multicolor flow cytometry, with a DyLight-488 anti-CD36 conjugate in combination with antibodies against different cellular markers. RESULTS Cell-free plasma CD36 was not observed associated with lipoproteins and was not a proteolytic fragment; rather, it was associated with the plasma MP fraction, suggesting that sCD36 in the plasma of normal subjects is a product of circulating MPs. Cytometric and immunoblotting analyses of plasma from normal donors showed that these MPs were derived mainly from platelets. Analysis of in vitro activated platelets also showed that CD36 to be secreted in the form of MPs. CONCLUSIONS sCD36 is not a proteolytic product, but rather is associated with a specific subset of circulating MPs that can readily be analysed. This finding will enable more specific investigations into the cellular source of the increased levels of plasma CD36 found in subjects with diabetes.
Collapse
Affiliation(s)
- M J Alkhatatbeh
- Cancer Research Unit, School of Biomedical Sciences and Pharmacy, Faculty of Health, the University of Newcastle, NSW, Australia
| | | | | | | | | |
Collapse
|
9
|
Gong J, Zhu C, Zhuang R, Song C, Li Q, Xu Z, Wei Y, Yang K, Yang A, Chen L, Jin B. Establishment of an enzyme-linked immunosorbent assay system for determining soluble CD96 and its application in the measurement of sCD96 in patients with viral hepatitis B and hepatic cirrhosis. Clin Exp Immunol 2008; 155:207-15. [PMID: 19040604 DOI: 10.1111/j.1365-2249.2008.03829.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD96, previously named T cell activation increased late expression (Tactile), is a transmembrane molecule that functions as an activated receptor on natural killer cells. It is well known that many transmembrane molecules have soluble forms, which were either shed from the cell surface or spliced at mRNA level. In many cases, the levels of soluble forms in the circulation could be used as biomarkers of lymphocyte activation in bacterial or virus infection, tumour, transplantation and autoimmune disease. To investigate whether CD96 could be released into the sera and the possible biological function of soluble hCD96 (sCD96), we generated and characterized five clones of anti-hCD96 mouse monoclonal antibodies (mAb) and developed a sandwich enzyme-linked immunosorbent assay (ELISA) system based on two anti-hCD96 mAbs with different epitope specificities. Using this ELISA system, sCD96 in serum samples from 99 healthy individuals could be detected. Furthermore, we found that the level of sCD96 in serum samples from patients with chronic viral hepatitis B or classes B and C of hepatic cirrhosis classified using the Child-Pugh score was much higher (P < 0.001 versus healthy individuals; P = 0.006 versus healthy individuals respectively) than that from healthy individuals (0.98 ng/ml). Our study demonstrates for the first time that sCD96 existed in sera, and suggests that sCD96 may be used as a serous marker for some diseases such as chronic viral hepatitis B infection or hepatic cirrhosis in classes B and C. The level of sCD96 in patients' serum may have some relationship with a chronic inflammatory reaction.
Collapse
Affiliation(s)
- J Gong
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|