1
|
Dong HL, Chen ZL, He MJ, Cui JZ, Cheng H, Wang QY, Xiong XH, Liu G, Chen HP. The Chimeric Chaoyang-Zika Vaccine Candidate Is Safe and Protective in Mice. Vaccines (Basel) 2024; 12:215. [PMID: 38400198 PMCID: PMC10893063 DOI: 10.3390/vaccines12020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus that causes congenital syndromes including microcephaly and fetal demise in pregnant women. No commercial vaccines against ZIKV are currently available. We previously generated a chimeric ZIKV (ChinZIKV) based on the Chaoyang virus (CYV) by replacing the prME protein of CYV with that of a contemporary ZIKV strain GZ01. Herein, we evaluated this vaccine candidate in a mouse model and showed that ChinZIKV was totally safe in both adult and suckling immunodeficient mice. No viral RNA was detected in the serum of mice inoculated with ChinZIKV. All of the mice inoculated with ChinZIKV survived, while mice inoculated with ZIKV succumbed to infection in 8 days. A single dose of ChinZIKV partially protected mice against lethal ZIKV challenge. In contrast, all the control PBS-immunized mice succumbed to infection after ZIKV challenge. Our results warrant further development of ChinZIKV as a vaccine candidate in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gang Liu
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Hui-Peng Chen
- Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
2
|
Tryptophan Trimers and Tetramers Inhibit Dengue and Zika Virus Replication by Interfering with Viral Attachment Processes. Antimicrob Agents Chemother 2020; 64:AAC.02130-19. [PMID: 31932383 DOI: 10.1128/aac.02130-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Here, we report a class of tryptophan trimers and tetramers that inhibit (at low micromolar range) dengue and Zika virus infection in vitro These compounds (AL family) have three or four peripheral tryptophan moieties directly linked to a central scaffold through their amino groups; thus, their carboxylic acid groups are free and exposed to the periphery. Structure-activity relationship (SAR) studies demonstrated that the presence of extra phenyl rings with substituents other than COOH at the N1 or C2 position of the indole side chain is a requisite for the antiviral activity against both viruses. The molecules showed potent antiviral activity, with low cytotoxicity, when evaluated on different cell lines. Moreover, they were active against laboratory and clinical strains of all four serotypes of dengue virus as well as a selected group of Zika virus strains. Additional mechanistic studies performed with the two most potent compounds (AL439 and AL440) demonstrated an interaction with the viral envelope glycoprotein (domain III) of dengue 2 virus, preventing virus attachment to the host cell membrane. Since no antiviral agent is approved at the moment against these two flaviviruses, further pharmacokinetic studies with these molecules are needed for their development as future therapeutic/prophylactic drugs.
Collapse
|
3
|
Adam A, Woda M, Kounlavouth S, Rothman AL, Jarman RG, Cox JH, Ledgerwood JE, Gromowski GD, Currier JR, Friberg H, Mathew A. Multiplexed FluoroSpot for the Analysis of Dengue Virus- and Zika Virus-Specific and Cross-Reactive Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:3804-3814. [PMID: 30413671 DOI: 10.4049/jimmunol.1800892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne pathogens that have a significant impact on human health. Immune sera, mAbs, and memory B cells (MBCs) isolated from patients infected with one DENV type can be cross-reactive with the other three DENV serotypes and even more distantly related flaviviruses such as ZIKV. Conventional ELISPOTs effectively measure Ab-secreting B cells but because they are limited to the assessment of a single Ag at a time, it is challenging to distinguish serotype-specific and cross-reactive MBCs in the same well. We developed a novel multifunction FluoroSpot assay using fluorescently labeled DENV and ZIKV (FLVs) that measures the cross-reactivity of Abs secreted by single B cells. Conjugation efficiency and recognition of FLVs by virus-specific Abs were confirmed by flow cytometry. Using a panel of DENV immune, ZIKV immune, and naive PBMC, FLVs were able to simultaneously detect DENV serotype-specific, ZIKV-specific, DENV serotype cross-reactive, and DENV/ZIKV cross-reactive Abs secreted by individual MBCs. Our findings indicate that the FLVs are sensitive and specific tools to detect specific and cross-reactive MBCs. These reagents will allow the assessment of the breadth as well as the durability of DENV/ZIKV B cell responses following vaccination or natural infection. This novel approach using FLVs in a FluoroSpot assay can be applied to other diseases such as influenza in which prior immunity with homosubtype- or heterosubtype-specific MBCs may influence subsequent infections.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Marcia Woda
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Sonia Kounlavouth
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Josephine H Cox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Anuja Mathew
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903;
| |
Collapse
|
4
|
Abstract
Recent Zika virus outbreaks have been associated with severe outcomes, especially during pregnancy. A great deal of effort has been put toward understanding this virus, particularly the immune mechanisms responsible for rapid viral control in the majority of infections. Identifying and understanding the key mechanisms of immune control will provide the foundation for the development of effective vaccines and antiviral therapy. Here, we outline a mathematical modeling approach for analyzing the within-host dynamics of Zika virus, and we describe how these models can be used to understand key aspects of the viral life cycle and to predict antiviral efficacy.
Collapse
Affiliation(s)
- Katharine Best
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
5
|
Arora N, Banerjee AK, Narasu ML. Zika outbreak aftermath: status, progress, concerns and new insights. Future Virol 2018. [DOI: 10.2217/fvl-2018-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zika, a neurotrophic virus belonging to Flaviviridae family of viruses and transmitted by vector mosquitoes of Aedes species, took the world by storm during its recent outbreak. Its spread to newer territories, unprecedented pace of transmission, lack of existing therapeutic agents and vaccines and an empty drug pipeline raised an alarm. Uncertainty about full spectrum of diseases and its long-term consequences, newly discovered modes of transmission and controversies over vector status of mosquito species like Culex quinquefasciatus led to layers of complexity and presented new hurdles and challenges in Zika virus research. This review summarizes the progress and updates of efforts, concerns, financial burden and available resources in light of newly acquired knowledge in Zika virus research.
Collapse
Affiliation(s)
- Neelima Arora
- Centre for Biotechnology, Institute of Science & Technology (Autonomous), Jawaharlal Nehru Technological University-Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | - Amit K Banerjee
- Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Mangamoori L Narasu
- Centre for Biotechnology, Institute of Science & Technology (Autonomous), Jawaharlal Nehru Technological University-Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| |
Collapse
|
6
|
Challenges and opportunities in controlling mosquito-borne infections. Nature 2018; 559:490-497. [PMID: 30046071 DOI: 10.1038/s41586-018-0318-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/24/2018] [Indexed: 11/08/2022]
Abstract
Mosquito-borne diseases remain a major cause of morbidity and mortality across the tropical regions. Despite much progress in the control of malaria, malaria-associated morbidity remains high, whereas arboviruses-most notably dengue-are responsible for a rising burden of disease, even in middle-income countries that have almost completely eliminated malaria. Here I discuss how new interventions offer the promise of considerable future reductions in disease burden. However, I emphasize that intervention programmes need to be underpinned by rigorous trials and quantitative epidemiological analyses. Such analyses suggest that the long-term goal of elimination is more feasible for dengue than for malaria, even if malaria elimination would offer greater overall health benefit to the public.
Collapse
|