1
|
Gu H, Liu Y, Yang L, Cui Z, Jiang W, Gu Q, Shen T, Luo P, Xiao S, Xia Z. A novel model of post-burn hypertrophic scarring in rat tail with a high success rate and simple methodology. Burns 2024; 50:107272. [PMID: 39413466 DOI: 10.1016/j.burns.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Hypertrophic scars present a serious concern after surgeries and trauma, particularly with the highest risk following burn injury. The current modeling methods usually involve relatively complicated surgical operations and special equipment, and have unstable reproducibility and reliability. This study aimed to establish a simple and reliable model of post-burn hypertrophic scarring in the rat tail. METHODS Wet gauze saturated with hot water (94-98 °C) was applied to the dorsal side of the rat tail for varying durations to induce burn injury. Wounds were left exposed until completely healed, and the optimal duration for scalding treatment was determined based on gross examination. Thereafter, the optimal scalding duration was used again to evaluate scar formation over time, which was tracked through hematoxylin-eosin (HE) and Masson staining, immunohistochemistry of scar-related proteins and number/distribution of vascular endothelial cells, and picrosirius red staining to measure the quantities and proportion of type I and III collagen. RESULTS The scalding duration which led to optimal post-burn scarring was 15 s, with an overall success rate of 87.5 %. Complete healing of the wound occurred after roughly 30 days, leading to the formation of scars grossly red in appearance, tough to the touch and raised compared to the surrounding skin. Microscopically, the epidermis and dermis of the scar were significantly thicker than normal rat tail skin, and the dermis of scar contained a large number of disorganized bundles of fine filamentous collagen. We also observed a significant increase in the number of TGF-β1-positive cells and capillaries in the dermis (p < 0.05). Picrosirius red staining showed that compared to type III collagen, the expression of type I collagen was more dominant in scar tissue, and was more finely distributed than in normal rat tail skin. CONCLUSION We successfully established a model for post-burn hypertrophic scarring, utilizing reliable and simple techniques and materials, which could simulate the biological characteristics of post-burn scarring. Our innovative model has the potential to facilitate the study of post-burn wound healing and scar formation.
Collapse
Affiliation(s)
- Haoyu Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Yingying Liu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Lu Yang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Zhenci Cui
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Wen Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Qiuyun Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Tingting Shen
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China
| | - Pengfei Luo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China.
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China.
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
2
|
Ifediba M, Baetz N, Lambert L, Benzon H, Page V, Anderson N, Roth S, Miess J, Nicolosi I, Beck S, Sopko N, Garrett C. Characterization of heterogeneous skin constructs for full thickness skin regeneration in murine wound models. Tissue Cell 2024; 88:102403. [PMID: 38728948 DOI: 10.1016/j.tice.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
An autologous heterogeneous skin construct (AHSC) has been developed and used clinically as an alternative to traditional skin grafting techniques for treatment of cutaneous defects. AHSC is manufactured from a small piece of healthy skin in a manner that preserves endogenous regenerative cellular populations. To date however, specific cellular and non-cellular contributions of AHSC to the epidermal and dermal layers of closed wounds have not been well characterized given limited clinical opportunity for graft biopsy following wound closure. To address this limitation, a three-part mouse full-thickness excisional wound model was developed for histologic and macroscopic graft tracing. First, fluorescent mouse-derived AHSC (mHSC) was allografted onto non-fluorescent recipient mice to enable macroscopic and histologic time course evaluation of wound closure. Next, mHSC-derived from haired pigmented mice was allografted onto gender- and major histocompatibility complex (MHC)-mismatched athymic nude mouse recipients. Resulting grafts were distinguished from recipient murine skin via immunohistochemistry. Finally, human-derived AHSC (hHSC) was xenografted onto athymic nude mice to evaluate engraftment and hHSC contribution to wound closure. Experiments demonstrated that mHSC and hHSC facilitated wound closure through production of viable, proliferative cellular material and promoted full-thickness skin regeneration, including hair follicles and glands in dermal compartments. This combined macroscopic and histologic approach to tracing AHSC-treated wounds from engraftment to closure enabled robust profiling of regenerated architecture and further understanding of processes underlying AHSC mechanism of action. These models may be applied to a variety of wound care investigations, including those requiring longitudinal assessments of healing and targeted identification of donor and recipient tissue contributions.
Collapse
Affiliation(s)
- Marytheresa Ifediba
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicholas Baetz
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Lyssa Lambert
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Haley Benzon
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Vonda Page
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicole Anderson
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Stephanie Roth
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - James Miess
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Ian Nicolosi
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nikolai Sopko
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA.
| | - Caroline Garrett
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| |
Collapse
|
3
|
Abbas DB, Griffin M, Fahy EJ, Spielman AF, Guardino NJ, Pu A, Lintel H, Lorenz HP, Longaker MT, Wan DC. Establishing a Xenograft Model with CD-1 Nude Mice to Study Human Skin Wound Repair. Plast Reconstr Surg 2024; 153:121-128. [PMID: 36988644 DOI: 10.1097/prs.0000000000010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND A significant gap exists in the translatability of small-animal models to human subjects. One important factor is poor laboratory models involving human tissue. Thus, the authors have created a viable postnatal human skin xenograft model using athymic mice. METHODS Discarded human foreskins were collected following circumcision. All subcutaneous tissue was removed from these samples sterilely. Host CD-1 nude mice were then anesthetized, and dorsal skin was sterilized. A 1.2-cm-diameter, full-thickness section of dorsal skin was excised. The foreskin sample was then placed into the full-thickness defect in the host mice and sutured into place. Xenografts underwent dermal wounding using a 4-mm punch biopsy after engraftment. Xenografts were monitored for 14 days after wounding and then harvested. RESULTS At 14 days postoperatively, all mice survived the procedure. Grossly, the xenograft wounds showed formation of a human scar at postoperative day 14. Hematoxylin and eosin and Masson trichome staining confirmed scar formation in the wounded human skin. Using a novel artificial intelligence algorithm using picrosirius red staining, scar formation was confirmed in human wounded skin compared with the unwounded skin. Histologically, CD31 + immunostaining confirmed vascularization of the xenograft. The xenograft exclusively showed human collagen type I, CD26 + , and human nuclear antigen in the human scar without any staining of these human markers in the murine skin. CONCLUSION The proposed model demonstrates wound healing to be a local response from tissue resident human fibroblasts and allows for reproducible evaluation of human skin wound repair in a preclinical model. CLINICAL RELEVANCE STATEMENT Radiation-induced fibrosis is a widely prevalent clinical phenomenon without a well-defined treatment at this time. This study will help establish a small-animal model to better understand and develop novel therapeutics to treat irradiated human skin.
Collapse
Affiliation(s)
- Darren B Abbas
- From the Hagey Laboratory for Pediatric Regenerative Medicine
| | | | - Evan J Fahy
- From the Hagey Laboratory for Pediatric Regenerative Medicine
| | | | | | - Adrian Pu
- From the Hagey Laboratory for Pediatric Regenerative Medicine
| | - Hendrik Lintel
- From the Hagey Laboratory for Pediatric Regenerative Medicine
| | - H Peter Lorenz
- From the Hagey Laboratory for Pediatric Regenerative Medicine
| | - Michael T Longaker
- From the Hagey Laboratory for Pediatric Regenerative Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Derrick C Wan
- From the Hagey Laboratory for Pediatric Regenerative Medicine
| |
Collapse
|
4
|
Mony MP, Harmon KA, Hess R, Dorafshar AH, Shafikhani SH. An Updated Review of Hypertrophic Scarring. Cells 2023; 12:cells12050678. [PMID: 36899815 PMCID: PMC10000648 DOI: 10.3390/cells12050678] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Hypertrophic scarring (HTS) is an aberrant form of wound healing that is associated with excessive deposition of extracellular matrix and connective tissue at the site of injury. In this review article, we provide an overview of normal (acute) wound healing phases (hemostasis, inflammation, proliferation, and remodeling). We next discuss the dysregulated and/or impaired mechanisms in wound healing phases that are associated with HTS development. We next discuss the animal models of HTS and their limitations, and review the current and emerging treatments of HTS.
Collapse
Affiliation(s)
- Manjula P. Mony
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kelly A. Harmon
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ryan Hess
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
5
|
Neves LMG, Wilgus TA, Bayat A. In Vitro, Ex Vivo, and In Vivo Approaches for Investigation of Skin Scarring: Human and Animal Models. Adv Wound Care (New Rochelle) 2023; 12:97-116. [PMID: 34915768 DOI: 10.1089/wound.2021.0139] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significance: The cutaneous repair process naturally results in different types of scarring that are classified as normal or pathological. Affected individuals are often affected from an esthetic, physical (functional), and psychosocial perspective. The distinct nature of scarring in humans, particularly the formation of pathological scars, makes the study of skin scarring a challenge for researchers in this area. Several established experimental models exist for studying scar formation. However, the increasing development and validation of newly emerging models have made it possible to carry out studies focused on different variables that influence this unique process. Recent Advances: Experimental models such as in vitro, ex vivo, and in vivo models have obtained different degrees of success in the reproduction of the scar formation in its native milieu and true environment. These models also differ in their ability to elucidate the molecular, cellular, and structural mechanisms involved in scarring, as well as for testing new agents and approaches for therapies. The models reviewed here, including cells derived from human skin and in vivo animal models, have contributed to the advancement of skin scarring research. Critical Issues and Future Directions: The absence of experimental models that faithfully reproduce the typical characteristics of the different types of human skin scars makes the improvement of validated models and the establishment of new ones a critical unmet need. The fields of wound healing research combined with tissue engineering have offered newer alternatives for experimental studies with the potential to provide clinically useful knowledge about scar formation.
Collapse
Affiliation(s)
- Lia M G Neves
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom
| | - Traci A Wilgus
- Department of Pathology, Ohio State University, Columbus, Ohio, USA
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom.,Medical Research Council (MRC) Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Burmeister DM, Supp DM, Clark RA, Tredget EE, Powell HM, Enkhbaatar P, Bohannon JK, Cancio LC, Hill DM, Nygaard RM. Advantages and Disadvantages of Using Small and Large Animals in Burn Research: Proceedings of the 2021 Research Special Interest Group. J Burn Care Res 2022; 43:1032-1041. [PMID: 35778269 DOI: 10.1093/jbcr/irac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Multiple animal species and approaches have been used for modeling different aspects of burn care, with some strategies considered more appropriate or translatable than others. On April 15, 2021, the Research Special Interest Group of the American Burn Association held a virtual session as part of the agenda for the annual meeting. The session was set up as a pro/con debate on the use of small versus large animals for application to four important aspects of burn pathophysiology: burn healing/conversion; scarring; inhalation injury; and sepsis. For each of these topics, 2 experienced investigators (one each for small and large animal models) described the advantages and disadvantages of using these preclinical models. The use of swine as a large animal model was a common theme due to anatomic similarities with human skin. The exception to this was a well-defined ovine model of inhalation injury; both of these species have larger airways which allow for incorporation of clinical tools such as bronchoscopes. However, these models are expensive and demanding from labor and resource standpoints. Various strategies have been implemented to make the more inexpensive rodent models appropriate for answering specific questions of interest in burns. Moreover, modelling burn-sepsis in large animals has proven difficult. It was agreed that the use of both small and large animal models have merit for answering basic questions about the responses to burn injury. Expert opinion and the ensuing lively conversations are summarized herein, which we hope will help inform experimental design of future research.
Collapse
Affiliation(s)
- David M Burmeister
- Uniformed Services University of the Health Sciences, Department of Medicine, Bethesda, MD, United States of America
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Richard A Clark
- Stony Brook University, Departments of Dermatology, Biomedical Engineering and Medicine, Stony Brook, NY, USA
| | - Edward E Tredget
- Firefighters' Burn Treatment Unit, Department of Surgery, 2D3.31 Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, USA
| | - Julia K Bohannon
- Vanderbilt University Medical Center, Department of Anesthesiology, Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - David M Hill
- Firefighters' Burn Center, Regional One Health, 877 Jefferson Avenue, Memphis, TN, USA
| | - Rachel M Nygaard
- Department of Surgery, Hennepin Healthcare, Minneapolis, MN, USA
| |
Collapse
|
7
|
Rössler S, Nischwitz SP, Luze H, Holzer-Geissler JCJ, Zrim R, Kamolz LP. In Vivo Models for Hypertrophic Scars—A Systematic Review. Medicina (B Aires) 2022; 58:medicina58060736. [PMID: 35743999 PMCID: PMC9229864 DOI: 10.3390/medicina58060736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Backgroundand Objectives: Hypertrophic scars following surgeries or burns present a serious concern for many patients because these scars not only lead to an aesthetical but also to a functional and psychological burden. Treatment of hypertrophic scars is challenging because despite various treatment options, a low level of evidence hinders preference of any specific treatment plan. To properly identify new therapeutic approaches, the use of in vivo models remains indispensable. A gold standard for hypertrophic scars has not been established to date. This review aims at giving a comprehensive overview of the available in vivo models. Materials and Methods: PubMed and CINAHL were queried for currently existing models. Results: Models with mice, rats, rabbits, pigs, guinea pigs and dogs are used in hypertrophic scar research. Rodent models provide the advantage of ready availability and low costs, but the number of scars per animal is limited due to their relatively small body surface, leading to a high number of test animals which should be avoided according to the 3Rs. Multiple scars per animal can be created in the guinea pig and rabbit ear model; but like other rodent models, these models exhibit low transferability to human conditions. Pig models show a good transferability, but are cost-intensive and require adequate housing facilities. Further, it is not clear if a currently available pig model can deliver clinical and histological features of human hypertrophic scars concurrently. Conclusions: None of the analyzed animal models can be clearly recommended as a standard model in hypertrophic scar research because the particular research question must be considered to elect a suitable model.
Collapse
Affiliation(s)
- Stefan Rössler
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
- Correspondence: ; Tel.: +43-664-1209100
| | - Sebastian Philipp Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
| | - Hanna Luze
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
| | - Judith C. J. Holzer-Geissler
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
| | - Robert Zrim
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
- International University of Monaco, 98000 Monaco-Ville, Monaco
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (S.P.N.); (H.L.); (J.C.J.H.-G.); (R.Z.); (L.-P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| |
Collapse
|
8
|
Cristóbal L, Asúnsolo Á, Sánchez J, Ortega MA, Álvarez-Mon M, García-Honduvilla N, Buján J, Maldonado AA. Mouse Models for Human Skin Transplantation: A Systematic Review. Cells Tissues Organs 2021; 210:250-259. [PMID: 34521089 DOI: 10.1159/000516154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Immunodeficient mouse models with human skin xenografts have been developed in the past decades to study different conditions of the skin. Features such as follow-up period and size of the graft are of different relevance depending on the purpose of an investigation. The aim of this study is to analyze the different mouse models grafted with human skin. A systematic review of the literature was performed in line with the PRISMA statement using MEDLINE/PubMed databases from January 1970 to June 2020. Articles describing human skin grafted onto mice were included. Animal models other than mice, skin substitutes, bioengineered skin, postmortem or fetal skin, and duplicated studies were excluded. The mouse strain, origin of human skin, graft dimensions, follow-up of the skin graft, and goals of the study were analyzed. Ninety-one models were included in the final review. Five different applications were found: physiology of the skin (25 models, mean human skin graft size 1.43 cm2 and follow-up 72.92 days), immunology and graft rejection (17 models, mean human skin graft size 1.34 cm2 and follow-up 86 days), carcinogenesis (9 models, mean human skin graft size 1.98 cm2 and follow-up 253 days), skin diseases (25 models, mean human skin graft size 1.55 cm2 and follow-up 86.48 days), and would healing/scars (15 models, mean human skin graft size 2.54 cm2 and follow-up 129 days). The follow-up period was longer in carcinogenesis models (253 ± 233.73 days), and the skin graft size was bigger in wound healing applications (2.54 ± 3.08 cm2). Depending on the research application, different models are suggested. Careful consideration regarding graft size, follow-up, immunosuppression, and costs should be analyzed and compared before choosing any of these mouse models. To our knowledge, this is the first systematic review of mouse models with human skin transplantation.
Collapse
Affiliation(s)
- Lara Cristóbal
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain.,Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, The City University of New York, New York, New York, USA
| | - Jorge Sánchez
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain,
| | - Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, CIBEREHD, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Andrés A Maldonado
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain.,Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department for Plastic, Hand and Reconstructive Surgery, BG Trauma Center Frankfurt am Main, Academic Hospital of the Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Kalabusheva EP, Rippa AL, Tsitrina AA, Pinto A, Terskikh AV, Chermnykh ES, Vorotelyak EA. Xenotransplantation of a Full-Layer Human Skin Strip as a Model for Studying Skin Regeneration and the Hair Follicle Cycle. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Outcome of Comparison between Partial Thickness Skin Graft Harvesting from Scalp and Lower Limb for Scalp Defect: A Clinical Trial Study. World J Plast Surg 2021. [DOI: 10.52547/wjps.10.2.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
11
|
Karim AS, Liu A, Lin C, Uselmann AJ, Eliceiri KW, Brown ME, Gibson ALF. Evolution of ischemia and neovascularization in a murine model of full thickness human wound healing. Wound Repair Regen 2020; 28:812-822. [PMID: 32686215 PMCID: PMC8592059 DOI: 10.1111/wrr.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 11/30/2022]
Abstract
Translation of wound healing research is limited by the lack of an appropriate animal model, due to the anatomic and wound healing differences in animals and humans. Here, we characterize healing of grafted, full-thickness human skin in an in vivo model of wound healing. Full-thickness human skin, obtained from reconstructive operations, was grafted onto the dorsal flank of NOD.Cg-KitW41J Tyr + Prkdcscid Il2rgtm1Wjl /ThomJ mice. The xenografts were harvested 1 to 12 weeks after grafting, and histologic analyses were completed for viability, neovascularization, and hypoxia. Visual inspection of the xenograft shows drying and sloughing of the epidermis starting at week four. By week 12, the xenograft appears healed but has lost 63.05 ± 0.24% of the initial graft size. There is histologic evidence of epidermolysis as early as 2 weeks, which progresses until week 4, when new epidermis appears from the wound edges. Epidermal regeneration is complete by week 12, although the epidermis appears hypertrophied. An initial increase of infiltrating immune mouse cells into the xenograft normalizes to baseline 6 months after grafting. Neovascularization, as evidenced by positive staining for the proteins human CD31 and alpha smooth muscle actin, is present as early as 2 weeks after grafting at the interface between the xenograft and the mouse tissue. CD31 and alpha smooth muscle actin staining increased throughout the xenograft over the 12 weeks, leading to greater viability of the tissue. Likewise, there is increased Hypoxia Inducible Factor 1-alpha expression at the interface of viable and nonviable tissue, which suggest a hypoxia-driven process causing early graft loss. These findings illustrate human skin wound healing in an ischemic environment, providing a timeline for use of full thickness human skin after grafting in a murine model to study mechanisms underlying human skin wound healing.
Collapse
Affiliation(s)
- Aos S. Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christie Lin
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adam J. Uselmann
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin W. Eliceiri
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Angela L. F. Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
12
|
Rennekampff HO, Tenenhaus M. Theoretical basis for optimal surgical incision planning to reduce hypertrophic scar formation. Med Hypotheses 2020; 140:109672. [PMID: 32197119 DOI: 10.1016/j.mehy.2020.109672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND After approximately 24 weeks of gestation, human cutaneous wounds and incisions heal by scar formation. Continued or unregulated stimulation of tissue fibroblasts is thought to lead to an activated state with ongoing collagen deposition resulting in a visible hypertrophic scar. There is evidence that mechanical forces as sensed by fibroblasts lead to downstream events such as excessive extracellular matrix deposition. Mechanical forces acting on the wound fibroblast are exerted by underlying muscles as well as intrinsic forces found in the dermal component of the surrounding skin. Under static conditions, collagen is oriented parallel to the direction of strain. In an effort to minimize resultant scar formation various and often contradictory lines of non-extension, lines of least tension, have been described for planning optimal surgical incisions. HYPOTHESIS We hypothesize that it is possible to avoid longitudinal stretch on incisions and thereby minimize resultant pathologic scars if defined anatomical considerations are respected. We hypothesize that placement of skin incisions parallel to lines of minimal longitudinal stretch, non-invasively measured by orientation of collagen orientation would in turn result in minimal scar formation. EVIDENCE Historical recommendations often derived from human post mortem studies and animal experiments have shed some light on cutaneously observed lines of non-extension. Theoretical considerations of non-extension lines have suggested possible directions of surgical incisions. Post surgical analysis of dermatological interventions have similarly added to our understanding of possible non-extension lines. Measuring anisotropy in the skin can determine collagen orientation in the skin and may therefore allow one to objectively place incisions parallel to non-extension lines. To date no randomized clinical study in humans has addressed whether such an approach would lead to less scarring. A study involving volunteers examining many body areas seems ethically challenged. CONCLUSION The hypothesis, although not proven, is supported by available evidence. If our hypothesis that measurable cutaneous collagen orientation guided incisions improved scar formation then surgical incision planning would deservedly require more clinical attention. Preoperative measurement or at least pre-closure assessment of anisotropy prior to surgical incision placement or closure would notably reduce the incidence of hypertrophic scars.
Collapse
Affiliation(s)
- H O Rennekampff
- Dept of Plastic Surgery, Hand and Burn Surgery, RheinMaas Klinikum, Aachen/Wuerselen, Germany.
| | - M Tenenhaus
- Dept of Plastic Surgery, Hand and Burn Surgery, RheinMaas Klinikum, Aachen/Wuerselen, Germany
| |
Collapse
|
13
|
Li J, Wang J, Wang Z, Xia Y, Zhou M, Zhong A, Sun J. Experimental models for cutaneous hypertrophic scar research. Wound Repair Regen 2019; 28:126-144. [PMID: 31509318 DOI: 10.1111/wrr.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023]
Abstract
Human skin wound repair may result in various outcomes with most of them leading to scar formation. Commonly seen in many cutaneous wound healing cases, hypertrophic scars are considered as phenotypes of abnormal wound repair. To prevent the formation of hypertrophic scars, efforts have been made to understand the mechanism of scarring following wound closure. Numerous in vivo and in vitro models have been created to facilitate investigations into cutaneous scarring and the development of antiscarring treatments. To select the best model for a specific study, background knowledge of the current models of hypertrophic scars is necessary. In this review, we describe in vivo and in vitro models for studying hypertrophic scars, as well as the distinct characteristics of these models. The choice of models for a specific study should be based on the characteristics of the model and the goal of the study. In general, in vivo animal models are often used in phenotypical scar formation analysis, development of antiscarring treatment, and functional analyses of individual genes. In contrast, in vitro models are chosen to pathway identification during scar formation as well as in high-throughput analysis in drug development. Besides helping investigators choose the best scarring model for their research, the goal of this review is to provide knowledge for improving the existing models and development of new models. These will contribute to the progress of scarring studies.
Collapse
Affiliation(s)
- Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
14
|
Abstract
Hypertrophic scar (HTS) is a common outcome of deep dermal wound healing mainly followed mechanical, chemical, and thermal injuries in the skin. Because of the lack of the most effective prevention and treatment, it is particularly important to establish an ideal dermal animal model for improving the understanding of the pathogenesis and exploring therapeutic approaches of HTS. Compared to other dermal fibrotic animal models in rabbits, red Duroc pigs, guinea pigs, rats, and mice, the approach that uses normal human split-thickness skin grafted onto nude or other immunodeficient mice which develop scars that resemble human HTS offers the advantages of lower cost, easier manipulation, and shorter research period. In this chapter, we will introduce the detailed procedures to create the ideal dermal fibrotic mouse model.
Collapse
|