1
|
Back F, Barras A, Nyam-Erdene A, Yang JC, Melinte S, Rumipamba J, Burnouf T, Boukherroub R, Szunerits S, Chuang EY. Platelet Extracellular Vesicles Loaded Gelatine Hydrogels for Wound Care. Adv Healthc Mater 2025; 14:e2401914. [PMID: 39449544 DOI: 10.1002/adhm.202401914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Platelet extracellular vesicles (pEVs) isolated from clinical-grade human platelet concentrates are attracting attention as a promising agent for wound healing therapies. Although pEVs have shown potential for skin regeneration, their incorporation into wound bandages has remained limitedly explored. Herein, gelatine-based hydrogel (PAH-G) foams for pEVs loading and release are formulated by crosslinking gelatine with poly(allylamine) hydrochloride (PAH) in the presence of glutaraldehyde and sodium bicarbonate. The optimized PAH-G hydrogel foam, PAH0.24G37, displayed an elastic modulus G' = 8.5 kPa at 37 °C and retained a rubbery state at elevated temperatures. The excellent swelling properties of PAH0.24G37 allowed to easily absorb pEVs at high concentration (1 × 1011 particles mL-1). The therapeutic effect of pEVs was evaluated in vivo on a chronic wound rat model. These studies demonstrated full wound closure after 14 days upon treatment with PAH0.24G37@pEVs. The maintenance of a reduced-inflammatory environment from the onset of treatment promoted a quicker transition to skin remodeling. Promotion of follicle activation and angiogenesis as well as M1-M2 macrophage modulation are evidenced. Altogether, the multifunctional properties of PAH0.24G37@pEVs addressed the complex challenges associated with chronic diabetic wounds, representing a significant advance toward personalized treatment regimens for these conditions.
Collapse
Affiliation(s)
- Florence Back
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Ariunjargal Nyam-Erdene
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Jen-Chang Yang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Sorin Melinte
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - José Rumipamba
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - Thierry Burnouf
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| |
Collapse
|
2
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wang Z, Knight R, Stephens P, Ongkosuwito EM, Wagener FADTG, Von den Hoff JW. Stem cells and extracellular vesicles to improve preclinical orofacial soft tissue healing. Stem Cell Res Ther 2023; 14:203. [PMID: 37580820 PMCID: PMC10426149 DOI: 10.1186/s13287-023-03423-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Orofacial soft tissue wounds caused by surgery for congenital defects, trauma, or disease frequently occur leading to complications affecting patients' quality of life. Scarring and fibrosis prevent proper skin, mucosa and muscle regeneration during wound repair. This may hamper maxillofacial growth and speech development. To promote the regeneration of injured orofacial soft tissue and attenuate scarring and fibrosis, intraoral and extraoral stem cells have been studied for their properties of facilitating maintenance and repair processes. In addition, the administration of stem cell-derived extracellular vesicles (EVs) may prevent fibrosis and promote the regeneration of orofacial soft tissues. Applying stem cells and EVs to treat orofacial defects forms a challenging but promising strategy to optimize treatment. This review provides an overview of the putative pitfalls, promises and the future of stem cells and EV therapy, focused on orofacial soft tissue regeneration.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Phil Stephens
- Advanced Therapeutics Group, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - E M Ongkosuwito
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands.
| |
Collapse
|