1
|
Konar ESM, Mai K, Brachs S, Waghmare SG, Samarin AM, Policar T, Samarin AM. Evaluation of viability, developmental competence, and apoptosis-related transcripts during in vivo post-ovulatory oocyte aging in zebrafish Danio rerio (Hamilton, 1822). Front Vet Sci 2024; 11:1389070. [PMID: 38952806 PMCID: PMC11216024 DOI: 10.3389/fvets.2024.1389070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Post-ovulatory aging is a time-dependent deterioration of ovulated oocytes and a major limiting factor reducing the fitness of offspring. This process may lead to the activation of cell death pathways like apoptosis in oocytes. Methodology We evaluated oocyte membrane integrity, egg developmental competency, and mRNA abundance of apoptosis-related genes by RT-qPCR. Oocytes from zebrafish Danio rerio were retained in vivo at 28.5°C for 24 h post-ovulation (HPO). Viability was assessed using trypan blue (TB) staining. The consequences of in vivo oocyte aging on the developmental competence of progeny were determined by the embryo survival at 24 h post fertilization, hatching, and larval malformation rates. Results The fertilization, oocyte viability, and hatching rates were 91, 97, and 65% at 0 HPO and dropped to 62, 90, and 22% at 4 HPO, respectively. The fertilizing ability was reduced to 2% at 8 HPO, while 72% of oocytes had still intact plasma membranes. Among the apoptotic genes bcl-2 (b-cell lymphoma 2), bada (bcl2-associated agonist of cell death a), cathepsin D, cathepsin Z, caspase 6a, caspase 7, caspase 8, caspase 9, apaf1, tp53 (tumor protein p53), cdk1 (cyclin-dependent kinase 1) studied, mRNA abundance of anti-apoptotic bcl-2 decreased and pro-apoptotic cathepsin D increased at 24 HPO. Furthermore, tp53 and cdk1 mRNA transcripts decreased at 24 HPO compared to 0 HPO. Discussion Thus, TB staining did not detect the loss of oocyte competency if caused by aging. TB staining, however, could be used as a simple and rapid method to evaluate the quality of zebrafish oocytes before fertilization. Taken together, our results indicate the activation of cell death pathways in the advanced stages of oocyte aging in zebrafish.
Collapse
Affiliation(s)
- Essaikiammal Sodalai Muthu Konar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Swapnil Gorakh Waghmare
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Azadeh Mohagheghi Samarin
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Tomas Policar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Azin Mohagheghi Samarin
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| |
Collapse
|
2
|
Terzioglu M, Saralahti A, Piippo H, Rämet M, Andressoo JO. Improving CRISPR/Cas9 mutagenesis efficiency by delaying the early development of zebrafish embryos. Sci Rep 2020; 10:21023. [PMID: 33273577 PMCID: PMC7713128 DOI: 10.1038/s41598-020-77677-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/13/2020] [Indexed: 11/11/2022] Open
Abstract
CRISPR/Cas9 driven mutagenesis in zygotes is a popular tool for introducing targeted mutations in model organisms. Compared to mouse, mutagenesis in zebrafish is relatively inefficient and results in somatic mosaicism most likely due to a short single-cell stage of about 40 min. Here we explored two options to improve CRISPR/Cas9 mutagenesis in zebrafish—extending the single-cell stage and defining conditions for carrying out mutagenesis in oocytes prior to in vitro fertilization. Previous work has shown that ovarian fluid from North American salmon species (coho and chinook salmon) prolong oocyte survival ex vivo so that they are viable for hours instead of dying within minutes if left untreated. We found that commonly farmed rainbow trout (Oncorhynchus mykiss) ovarian fluid (RTOF) has similar effect on zebrafish oocyte viability. In order to prolong single-cell stage, we incubated zebrafish zygotes in hydrogen sulfide (H2S) and RTOF but failed to see any effect. However, the reduction of temperature from standard 28 to 12 °C postponed the first cell division by about an hour. In addition, the reduction in temperature was associated with increased CRISPR/Cas9 mutagenesis rate. These results suggest that the easily applicable reduction in temperature facilitates CRISPR/Cas9 mutagenesis in zebrafish.
Collapse
Affiliation(s)
- M Terzioglu
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - A Saralahti
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - H Piippo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M Rämet
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - J-O Andressoo
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
3
|
Can H, Chanumolu SK, Gonzalez-Muñoz E, Prukudom S, Otu HH, Cibelli JB. Comparative analysis of single-cell transcriptomics in human and Zebrafish oocytes. BMC Genomics 2020; 21:471. [PMID: 32640983 PMCID: PMC7346435 DOI: 10.1186/s12864-020-06860-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Zebrafish is a popular model organism, which is widely used in developmental biology research. Despite its general use, the direct comparison of the zebrafish and human oocyte transcriptomes has not been well studied. It is significant to see if the similarity observed between the two organisms at the gene sequence level is also observed at the expression level in key cell types such as the oocyte. Results We performed single-cell RNA-seq of the zebrafish oocyte and compared it with two studies that have performed single-cell RNA-seq of the human oocyte. We carried out a comparative analysis of genes expressed in the oocyte and genes highly expressed in the oocyte across the three studies. Overall, we found high consistency between the human studies and high concordance in expression for the orthologous genes in the two organisms. According to the Ensembl database, about 60% of the human protein coding genes are orthologous to the zebrafish genes. Our results showed that a higher percentage of the genes that are highly expressed in both organisms show orthology compared to the lower expressed genes. Systems biology analysis of the genes highly expressed in the three studies showed significant overlap of the enriched pathways and GO terms. Moreover, orthologous genes that are commonly overexpressed in both organisms were involved in biological mechanisms that are functionally essential to the oocyte. Conclusions Orthologous genes are concurrently highly expressed in the oocytes of the two organisms and these genes belong to similar functional categories. Our results provide evidence that zebrafish could serve as a valid model organism to study the oocyte with direct implications in human.
Collapse
Affiliation(s)
- Handan Can
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sree K Chanumolu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Elena Gonzalez-Muñoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590, Málaga, Spain.,Department of Cell Biology, Genetics and Physiology, University of Málaga and; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBNE), 29071, Málaga, Spain
| | - Sukumal Prukudom
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Hasan H Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Jose B Cibelli
- Departments of Animal Science and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Prukudom S, Siripattarapravat K, Poulos W, Cibelli JB. Optimized Protocol of Zebrafish Somatic Cell Nuclear Transfer (SCNT). Methods Mol Biol 2019; 1920:353-375. [PMID: 30737703 DOI: 10.1007/978-1-4939-9009-2_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zebrafish (Danio rerio) is an established animal model to study developmental biology as well as a wide array of human diseases. Here we describe a protocol for somatic cell nuclear transfer (SCNT). This protocol can be used to introduce genetic modifications in zebrafish and for the study of cell plasticity.
Collapse
Affiliation(s)
- Sukumal Prukudom
- Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Kasetsart University, Bangkok, Thailand
| | - Kannika Siripattarapravat
- Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Kasetsart University, Bangkok, Thailand
| | - William Poulos
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
- Large Animal Clinical Sciences Department, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Duan Y, Dong X, Nie J, Li P, Lu F, Ma D, Ji C. Wee1 kinase inhibitor MK-1775 induces apoptosis of acute lymphoblastic leukemia cells and enhances the efficacy of doxorubicin involving downregulation of Notch pathway. Oncol Lett 2018; 16:5473-5481. [PMID: 30250620 DOI: 10.3892/ol.2018.9291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 01/18/2018] [Indexed: 11/06/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematologic malignancy affecting pediatric and adult populations. Although the outcomes of ALL in children have improved markedly in previous years, limited treatment strategies are available at present for adult patients with ALL. Wee1 is a crucial cell cycle checkpoint kinase of G2/M that regulates cell cycle progression and maintains chromatin integrity. MK-1775, a selective inhibitor of Wee1 has recently been identified to be able to induce apoptosis of tumor cells by abrogating G2/M checkpoint. The present study investigated the anti-leukemic activity of MK-1775 alone and in combination with doxorubicin (Adriamycin®; ADM) in various human ALL cell lines. MK-1775 treatment induced apoptosis of ALL cells, accompanied by unscheduled mitotic entry and downregulation of Notch pathway. The anti-leukemic activity of MK-1775 was in a concentration- and time-dependent manner. The data also indicated that it decreased the half-maximal inhibitory concentration (IC50) of ADM compared with the control group. The combination of MK-1775 and ADM induced an increased apoptotic rate compared with each agent alone. In addition, the human bone marrow stromal cell HS-5 cell line was detected to exhibit an increased IC50 value of MK-1775 treatment in contrast to ALL cell lines. It indicates that the hematopoietic supportive capability may remain intact during the treatment of MK-1775. Taken together, the Wee1 inhibitor MK-1775 may be an attractive agent in the treatment of patients with ALL.
Collapse
Affiliation(s)
- Yanchao Duan
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Hematology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Xin Dong
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Nie
- Department of Internal Medicine, The Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
6
|
Fatira E, Havelka M, Labbé C, Depincé A, Iegorova V, Pšenička M, Saito T. Application of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly produced gynogenetic sterlet with homozygous quadruple haploid. Sci Rep 2018; 8:5997. [PMID: 29662093 PMCID: PMC5902484 DOI: 10.1038/s41598-018-24376-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a very promising cloning technique for reconstruction of endangered animals. The aim of the present research is to implement the interspecific SCNT (iSCNT) technique to sturgeon; one fish family bearing some of the most critically endangered species. We transplanted single cells enzymatically isolated from a dissociated fin-fragment of the Russian sturgeon (Acipenser gueldenstaedtii) into non-enucleated eggs of the sterlet (Acipenser ruthenus), two species bearing different ploidy (4n and 2n, respectively). Up to 6.7% of the transplanted eggs underwent early development, and one feeding larva (0.5%) was successfully produced. Interestingly, although this transplant displayed tetraploidism (4n) as the donor species, the microsatellite and species-specific analysis showed recipient-exclusive homozygosis without any donor markers. Namely, with regards to this viable larva, host genome duplication occurred twice to form tetraploidism during its early development, probably due to iSCNT manipulation. The importance of this first attempt is to apply iSCNT in sturgeon species, establishing the crucial first steps by adjusting the cloning-methodology in sturgeon's biology. Future improvements in sturgeon's cloning are necessary for providing with great hope in sturgeon's reproduction.
Collapse
Affiliation(s)
- Effrosyni Fatira
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Miloš Havelka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Catherine Labbé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Alexandra Depincé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Viktoriia Iegorova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Ehime, 798-4206, Japan
| |
Collapse
|
7
|
Jalali F, DiBenedetto AJ, Karlsson JOM. Chilling causes perivitelline granule formation in activated zebrafish oocytes. Cryobiology 2018; 81:210-213. [PMID: 29407225 DOI: 10.1016/j.cryobiol.2018.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
Abstract
Chilling sensitivity in oocytes of the zebrafish represents a potential obstacle to their successful cryopreservation. Here, we report the first cryomicroscopic observations of the response of zebrafish oocytes to chilling conditions. In activated stage V oocytes that had been exposed to hypothermic temperatures, we observed a latent effect of chilling, manifesting as a granular precipitate that appeared in the perivitelline fluid upon return to 28.5 °C. The granules were visible in unstained oocytes under transmitted light microscopy, and the resulting perivitelline turbidity increased in a dose-dependent manner with decreasing chilling temperature (p < 0.001), as well as with increasing time of hypothermic exposure (p < 0.0001). The change in appearance of the perivitelline space in oocytes that had been chilled and rewarmed became statistically significant after a 7-min exposure to 10 °C and after only 30 s at 1 °C (p < 0.05). Thus, even moderate chilling exposures can lead to detectable changes in activated zebrafish oocytes.
Collapse
Affiliation(s)
- Fatemeh Jalali
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Jens O M Karlsson
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, USA.
| |
Collapse
|
8
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
|
10
|
Sharma D, Kinsey WH. PYK2: a calcium-sensitive protein tyrosine kinase activated in response to fertilization of the zebrafish oocyte. Dev Biol 2012; 373:130-40. [PMID: 23084926 DOI: 10.1016/j.ydbio.2012.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/22/2012] [Accepted: 10/11/2012] [Indexed: 12/23/2022]
Abstract
Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone.
Collapse
Affiliation(s)
- Dipika Sharma
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
11
|
Electro-activated aqueous solutions: Theory and application in the food industry and biotechnology. INNOV FOOD SCI EMERG 2012. [DOI: 10.1016/j.ifset.2012.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Depince A, Marandel L, Goardon L, Le Bail PY, Labbe C. Trout coelomic fluid suitability as Goldfish oocyte extender can be determined by a simple turbidity test. Theriogenology 2011; 75:1755-61. [PMID: 21356550 DOI: 10.1016/j.theriogenology.2010.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/07/2010] [Accepted: 12/26/2010] [Indexed: 01/11/2023]
Affiliation(s)
- A Depince
- Cryopreservation and Regeneration group, INRA, Rennes, France
| | | | | | | | | |
Collapse
|
13
|
He C, Wang C, Chang Z, Guo B, Li R, Yue X, Lan X, Chen H, Lei C. AGPAT6 polymorphism and its association with milk traits of dairy goats. GENETICS AND MOLECULAR RESEARCH 2011; 10:2747-56. [DOI: 10.4238/2011.november.4.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Wühr M, Obholzer N, Megason S, Detrich H, Mitchison T. Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos. Methods Cell Biol 2011; 101:1-18. [PMID: 21550437 PMCID: PMC6551615 DOI: 10.1016/b978-0-12-387036-0.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The large and transparent cells of cleavage-stage zebrafish embryos provide unique opportunities to study cell division and cytoskeletal dynamics in very large animal cells. Here, we summarize recent progress, from our laboratories and others, on live imaging of the microtubule and actin cytoskeletons during zebrafish embryonic cleavage. First, we present simple protocols for extending the breeding competence of zebrafish mating ensembles throughout the day, which ensures a steady supply of embryos in early cleavage, and for mounting these embryos for imaging. Second, we describe a transgenic zebrafish line [Tg(bactin2:HsENSCONSIN17-282-3xEGFP)hm1] that expresses the green fluorescent protein (GFP)-labeled microtubule-binding part of ensconsin (EMTB-3GFP). We demonstrate that the microtubule-based structures of the early cell cycles can be imaged live, with single microtubule resolution and with high contrast, in this line. Microtubules are much more easily visualized using this tagged binding protein rather than directly labeled tubulin (injected Alexa-647-labeled tubulin), presumably due to lower background from probe molecules not attached to microtubules. Third, we illustrate live imaging of the actin cytoskeleton by injection of the actin-binding fragment of utrophin fused to GFP. Fourth, we compare epifluorescence-, spinning-disc-, laser-scanning-, and two-photon-microscopic modalities for live imaging of the microtubule cytoskeleton in early embryos of our EMTB-3GFP-expressing transgenic line. Finally, we discuss future applications and extensions of our methods.
Collapse
Affiliation(s)
- M. Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - N.D. Obholzer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - S.G. Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - H.W. Detrich
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - T.J. Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Bail PYL, Depince A, Chenais N, Mahe S, Maisse G, Labbe C. Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish. BMC DEVELOPMENTAL BIOLOGY 2010; 10:64. [PMID: 20529309 PMCID: PMC2889862 DOI: 10.1186/1471-213x-10-64] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/08/2010] [Indexed: 12/31/2022]
Abstract
Background Nuclear transfer has the potential to become one strategy for fish genetic resources management, by allowing fish reconstruction from cryopreserved somatic cells. Survival rates after nuclear transfer are still low however. The part played by unsuitable handling conditions is often questioned, but the different steps in the procedure are difficult to address separately. In this work led on goldfish (Carassius auratus), the step of somatic cells injection was explored. Non-enucleated metaphase II oocytes were used as a template to explore the toxicity of the injection medium, to estimate the best location where the cell should be injected, and to assess the delay necessary between cell injection and oocyte activation. Results Trout coelomic fluid was the most suitable medium to maintain freshly spawned oocytes at the metaphase II stage during oocyte manipulation. Oocytes were then injected with several media to test their toxicity on embryo development after fertilization. Trout coelomic fluid was the least toxic medium after injection, and the smallest injected volume (10 pL) allowed the same hatching rates as the non injected controls (84.8% ± 23). In somatic cell transfer experiments using non enucleated metaphase II oocytes as recipient, cell plasma membrane was ruptured within one minute after injection. Cell injection at the top of the animal pole in the oocyte allowed higher development rates than cell injection deeper within the oocyte (respectively 59% and 23% at mid-blastula stage). Embryo development rates were also higher when oocyte activation was delayed for 30 min after cell injection than when activation was induced without delay (respectively 72% and 48% at mid-blastula stage). Conclusions The best ability of goldfish oocytes to sustain embryo development was obtained when the carrier medium was trout coelomic fluid, when the cell was injected close to the animal pole, and when oocyte activation was induced 30 min after somatic cell injection. Although the experiments were not designed to produce characterized clones, application of these parameters to somatic cell nuclear transfer experiments in enucleated metaphase II oocytes is expected to improve the quality of the reconstructed embryos.
Collapse
Affiliation(s)
- Pierre-Yves Le Bail
- INRA, Cryopreservation and Regeneration of Fish, UR1037 SCRIBE, Campus de Beaulieu, F-35 000 Rennes, France
| | | | | | | | | | | |
Collapse
|
16
|
Pérez-Camps M, Cardona-Costa J, García-Ximénez F. Transplantation of adult fibroblast nuclei into the central region of metaphase II eggs resulted in mid-blastula transition embryos. Zebrafish 2010; 7:215-8. [PMID: 20441523 DOI: 10.1089/zeb.2009.0625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a novel technical method to perform somatic nuclear transplantation (NT) in zebrafish using nonactivated eggs as recipients without the need to detect the micropyle was developed in our lab. However, the use of spermatozoa as an activating agent prevented to know whether the inserted nucleus compromised embryonic and early larval developmental ability. The aim of the present work was to test the developmental ability of the embryos reconstructed by transplanting adult fibroblast nuclei into the central region of the metaphase II egg but subsequently activated by only water. In addition, because an oocyte aging facilitates the activation in mammalian oocytes, this work also pursued to test whether the use of limited-aged eggs (2 h) as recipients improved the activation process in zebrafish NT. The adult somatic nucleus located in the central region of the nonactivated egg resulted in the 12% of mid-blastula transition embryos versus the 20% when the transplant is in the animal pole (p >or= 0.05). This suggests that the central region of the nonactivated metaphase II eggs can be a suitable place for nucleus deposition in NT in zebrafish. These results reinforce the possibility to use nonactivated metaphase II eggs in subsequent reprogramming studies by adult somatic NT in zebrafish. Unfortunately, in contrast to mammals, a limited egg aging (2 h) did not improve the activation process in zebrafish NT.
Collapse
Affiliation(s)
- Mireia Pérez-Camps
- Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Valencia, Spain.
| | | | | |
Collapse
|
17
|
Siripattarapravat K, Pinmee B, Venta PJ, Chang CC, Cibelli JB. Somatic cell nuclear transfer in zebrafish. Nat Methods 2009; 6:733-5. [DOI: 10.1038/nmeth.1369] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/29/2009] [Indexed: 11/09/2022]
|