1
|
Meyer DN, Silva I, Vo B, Paquette A, Blount JR, George SE, Gonzalez G, Cavaneau E, Khalaf A, Petriv AM, Wu CC, Haimbaugh A, Baker TR. Juvenile exposure to low-level 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alters behavior and longitudinal morphometrics in zebrafish and F 1 offspring. J Dev Orig Health Dis 2024; 15:e22. [PMID: 39397699 DOI: 10.1017/s2040174424000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental endocrine disruptor and model AhR agonist, is linked to skeletal abnormalities, cardiac edema, stunted growth rate, altered metabolism, and neurobehavioral deficits. We have previously reported transgenerational reproductive outcomes of developmental TCDD exposure in adult zebrafish (Danio rerio), an NIH-validated model for developmental and generational toxicology. Using the same paradigm of sublethal TCDD exposure (50 pg/ml) at both 3 and 7 weeks post fertilization (wpf), we investigated several novel endpoints, including longitudinal morphometrics and anxiety-linked behavior, in fish exposed as juveniles. We also assessed developmental abnormalities and neurobehavior in their F1 larval offspring. TCDD exposure induced timepoint-dependent decreases in several craniofacial and trunk morphometrics across juvenile development. In early adulthood, however, only exposed males underwent a transient period of compensatory growth, ending between 7 and 12 months post fertilization (mpf). At 12 mpf, exposed adult fish of both sexes displayed increased exploratory behaviors in a novel tank test. The F1 offspring of parents exposed at both 3 and 7 wpf were hyperactive, but neurobehavioral outcomes diverged depending on parental exposure window. F1 exposure-lineage larvae had increased rates of edema and skeletal abnormalities, but fewer unhatched larvae compared to controls. Parent- and timepoint-specific effects of exposure on abnormality rate were also evaluated; these outcomes were considerably less severe. Our novel behavioral findings expand current knowledge of the long-term and intergenerational consequences of early-life TCDD exposure in a zebrafish model, in addition to delineating minor longitudinal morphometric changes in exposed fish and abnormalities in larval offspring.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Isabela Silva
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Brianna Vo
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Amelia Paquette
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Jessica R Blount
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Serena E George
- School of Veterinary Medicine, University of Madison-Wisconsin, Madison, WI, USA
| | - Gabrielle Gonzalez
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Emma Cavaneau
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aicha Khalaf
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Anna-Maria Petriv
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Chia-Chen Wu
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Alex Haimbaugh
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Connell ML, Meyer DN, Haimbaugh A, Baker TR. Status of single-cell RNA sequencing for reproductive toxicology in zebrafish and the transcriptomic trade-off. CURRENT OPINION IN TOXICOLOGY 2024; 38:100463. [PMID: 38846809 PMCID: PMC11155726 DOI: 10.1016/j.cotox.2024.100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The utilization of transcriptomic studies identifying profiles of gene expression, especially in toxicogenomics, has catapulted next-generation sequencing to the forefront of reproductive toxicology. An innovative yet underutilized RNA sequencing technique emerging into this field is single-cell RNA sequencing (scRNA-seq), which provides sequencing at the individual cellular level of gonad tissue. ScRNA-seq provides a novel and unique perspective for identifying distinct cellular profiles, including identification of rare cell subtypes. The specificity of scRNA-seq is a powerful tool for reproductive toxicity research, especially for translational animal models including zebrafish. Studies to date not only have focused on 'tissue atlassing' or characterizing what cell types make up different tissues but have also begun to include toxicant exposure as a factor that this review aims to explore. Future scRNA-seq studies will contribute to understanding exposure-induced outcomes; however, the trade-offs with traditional methods need to be considered.
Collapse
Affiliation(s)
- Mackenzie L Connell
- University of Florida, Department of Environmental & Global Health, 2173 Mowry Rd, Gainesville, FL 32611, USA
| | - Danielle N Meyer
- University of Florida, Department of Environmental & Global Health, 2173 Mowry Rd, Gainesville, FL 32611, USA
| | - Alex Haimbaugh
- University of Florida, Department of Environmental & Global Health, 2173 Mowry Rd, Gainesville, FL 32611, USA
| | - Tracie R Baker
- University of Florida, Department of Environmental & Global Health, 2173 Mowry Rd, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Sharma A, Kumari P, Sharma I. Experimental exploration of estrogenic effects of norethindrone and 17α-ethinylestradiol on zebrafish (Danio rerio) gonads. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109782. [PMID: 37884256 DOI: 10.1016/j.cbpc.2023.109782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Synthetic progestins and xenoestrogens found in aquatic habitats are currently gaining attention on global scale. The current study aimed to investigate the time-and dose-dependent effects of synthetic progestin Norethindrone (NET; 100, 500 and 1000 ng/L) and estrogen 17α-ethinylestradiol (EE2; 100 ng/L) individually as well as in binary mixture (1000 ng/L NET + 100 ng/L EE2) on reproductive histology and transcriptional expression profile of genes in adult zebrafish. For this, 20 female (3.15 ± 0.18 cm & 0.33 ± 0.06 g) and 20 male zebrafish in each group (2.93 ± 0.13 cm & 0.29 ± 0.04 g) were exposed to drugs dissolved in water for 30 days in 12 L rectangular tanks. We found that both NET and EE2 exposure reduced the gonadosomatic index in females, while only EE2 exposure caused significant reduction in males (p ≤ 0.05). Interestingly, NET delayed oocyte maturation in females and accelerated spermatogenesis in males, while EE2 consistently suppressed sperm maturation throughout the experiment. Further, qRT-PCR results revealed differential expression pattern of the study genes (er-α, er-β1, er-β2, pgr, vegfaa and p53) in male and female zebrafish. Co-exposure indicated potential inconsistencies in steroidal function in mixtures rather than single exposures. Our findings imply that changes in gonadal histology after NET and EE2 exposure may result from unique regulation of steroid hormone receptors. Additionally, significantly reduced p53 levels (p ≤ 0.05) following co-exposure in both sexes may suggest an elevated risk of neoplastic transformations. Further research with mammalian models will help to explore the mechanisms behind differing effects of alone and co-exposures.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Zoology, Panjab University, Chandigarh 160014, India. https://twitter.com/@sharma_anu0812
| | - Priti Kumari
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Indu Sharma
- Department of Zoology, Panjab University, Chandigarh 160014, India. https://twitter.com/@InduSha28285972
| |
Collapse
|
4
|
Pandelides Z, Sturgis MC, Thornton C, Aluru N, Willett KL. Benzo[a]pyrene-induced multigenerational changes in gene expression, behavior, and DNA methylation are primarily influenced by paternal exposure. Toxicol Appl Pharmacol 2023; 469:116545. [PMID: 37146889 PMCID: PMC11589888 DOI: 10.1016/j.taap.2023.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is implicated in many developmental and behavioral adverse outcomes in offspring of exposed parents. The objective of this study was to investigate sex-dependent multigenerational effects of preconceptional effects of BaP exposure. Adult wild-type (5D) zebrafish were fed 708 μg BaP/g diet (measured) at a rate of 1% body weight twice/day (14 μg BaP/g fish/day) for 21 days. Fish were spawned using a crossover design, and parental (F0) behavior and reproductive indexes were measured. In offspring, behavioral effects were measured at 96 h post fertilization (hpf) in F1 & F2 larvae, and again when F1s were adults. Compared to controls, there was no significant effect on F0 adult behavior immediately following exposure, but locomotor activity was significantly increased in F1 adults of both sexes. Larval behavior (96 hpf, photomotor response assay) was significantly altered in both the F1 and F2 generations. To assess molecular changes associated with BaP exposure, we conducted transcriptome and DNA methylation profiling in F0 gametes (sperm and eggs) and F1 embryos (10 hpf) from all four crosses. Embryos resulting from the BaP male and control female cross had the most differentially expressed genes (DEGs) and differentially methylated regions (DMRs). Some DMRs were associated with genes encoding chromatin modifying enzymes suggesting regulation of chromatin conformation by DNA methylation. Overall, these results suggest that parental dietary BaP exposure significantly contributes to the multigenerational adverse outcomes.
Collapse
Affiliation(s)
- Z Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - M C Sturgis
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - C Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - N Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543, United States of America
| | - K L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
5
|
Scalisi EM, Pecoraro R, Salvaggio A, Capparucci F, Fortuna CG, Zimbone M, Impellizzeri G, Brundo MV. Titanium Dioxide Nanoparticles: Effects on Development and Male Reproductive System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111783. [PMID: 37299686 DOI: 10.3390/nano13111783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are used intensively. Thanks to their extremely small size (1-100 nm), TiO2-NPs are more absorbable by living organisms; consequently, they can cross the circulatory system and then be distributed in various organs including the reproductive organs. We have evaluated the possible toxic effect of TiO2-NPs on embryonic development and the male reproductive system using Danio rerio as an organism model. TiO2-NPs (P25, Degussa) were tested at concentrations of 1 mg/L, 2 mg/L, and 4 mg/L. TiO2-NPs did not interfere with the embryonic development of Danio rerio, however, in the male gonads the TiO2-NPs caused an alteration of the morphological/structural organization. The immunofluorescence investigation showed positivity for biomarkers of oxidative stress and sex hormone binding globulin (SHBG), both confirmed by the results of qRT-PCR. In addition, an increased expression of the gene responsible for the conversion of testosterone to dihydrotestosterone was found. Since Leydig cells are mainly involved in this activity, an increase in gene activity can be explained by the ability of TiO2-NPs to act as endocrine disruptors, and, therefore, with androgenic activity.
Collapse
Affiliation(s)
- Elena Maria Scalisi
- Department of Biological, Geological and Environmental Science, University of Catania, 95124 Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Science, University of Catania, 95124 Catania, Italy
| | - Antonio Salvaggio
- Experimental Zooprophylactic Institute of Sicily "A. Mirri", 90129 Palermo, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmacological and Environmental Science, University of Messina, 98166 Messina, Italy
| | | | | | | | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, 95124 Catania, Italy
| |
Collapse
|
6
|
Faiad W, Soukkarieh C, Murphy DJ, Hanano A. Effects of dioxins on animal spermatogenesis: A state-of-the-art review. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1009090. [PMID: 36339774 PMCID: PMC9634422 DOI: 10.3389/frph.2022.1009090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The male reproductive system is especially affected by dioxins, a group of persistent environmental pollutants, resulting in irreversible abnormalities including effects on sexual function and fertility in adult males and possibly on the development of male offspring. The reproductive toxicity caused by dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals, spermatogenesis is a highly sensitive and dynamic process that includes proliferation and maturation of germ cells. Spermatogenesis is subject to multiple endogenous and exogenous regulatory factors, including a wide range of environmental toxicants such as dioxins. This review discusses the toxicological effects of dioxins on spermatogenesis and their relevance to male infertility. After a detailed categorization of the environmental contaminants affecting the spermatogenesis, the exposure pathways and bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins on spermatogenesis are then outlined in detail. The endocrine-disrupting effects of dioxins in animals and humans are discussed with a particular focus on their effects on the expression of spermatogenesis-related genes. Finally, the impacts of dioxins on the ratio of X and Y chromosomes, the status of serum sex hormones, the quality and fertility of sperm, and the transgenerational effects of dioxins on male reproduction are reviewed.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J. Murphy
- School of Applied Sciences, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria,Correspondence: Abdulsamie Hanano
| |
Collapse
|
7
|
Haimbaugh A, Akemann C, Meyer D, Gurdziel K, Baker TR. Insight into 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced disruption of zebrafish spermatogenesis via single cell RNA-seq. PNAS NEXUS 2022; 1:pgac060. [PMID: 35799832 PMCID: PMC9252172 DOI: 10.1093/pnasnexus/pgac060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent and environmentally persistent endocrine disrupting chemical. Our previous work demonstrated the latent reproductive maladies of early-life TCDD exposure in zebrafish. Zebrafish acutely exposed to low, environmentally relevant levels of TCDD (50 pg/mL) during two windows of sexual differentiation in development (1 hour of exposure at 3 and 7 weeks postfertilization) were later infertile, showed a reduction in sperm, and exhibited gene expression consistent with an altered microenvironment, even months after exposure. Due to the highly heterogeneous cell- type and -stage landscape of the testes, we hypothesized various cell types contribute markedly different profiles toward the pathology of TCDD exposure. To investigate the contributions of the diverse cell types in the adult zebrafish testes to TCDD-induced pathology, we utilized single-cell RNA-seq and the 10x Genomics platform. The method successfully captured every stage of testicular germ cell development. Testes of adult fish exposed during sexual differentiation to TCDD contained sharply decreased populations of late spermatocytes, spermatids, and spermatozoa. Spermatogonia and early spermatocyte populations were, in contrast, enriched following exposure. Pathway analysis of differentially expressed genes supported previous findings that TCDD exposure resulted in male infertility, and suggested this outcome is due to apoptosis of spermatids and spermatozoa, even years after exposure cessation. Increased germ cell apoptosis was confirmed histologically. These results provide support for an environmental exposure explanation of idiopathic male infertility.
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI 48207, USA
| | | |
Collapse
|
8
|
Haimbaugh A, Meyer D, Akemann C, Gurdziel K, Baker TR. Comparative Toxicotranscriptomics of Single Cell RNA-Seq and Conventional RNA-Seq in TCDD-Exposed Testicular Tissue. FRONTIERS IN TOXICOLOGY 2022; 4:821116. [PMID: 35615540 PMCID: PMC9126299 DOI: 10.3389/ftox.2022.821116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
In this report, we compare the outcomes and limitations of two methods of transcriptomic inquiry on adult zebrafish testes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during sexual differentiation: conventional or bulk RNA-seq (bulk-seq) and single cell RNA sequencing (scRNA-seq) data. scRNA-seq has emerged as a valuable tool for uncovering cell type-specific transcriptome dynamics which exist in heterogeneous tissue. Our lab previously showed the toxicological value of the scRNA-seq pipeline to characterize the sequelae of TCDD exposure in testes, demonstrating that loss of spermatids and spermatozoa, but not other cell types, contributed to the pathology of infertility in adult male zebrafish exposed during sexual differentiation. To investigate the potential for technical artifacts in scRNA-seq such as cell dissociation effects and reduced transcriptome coverage, we compared bulk-sequenced and scRNA-seq-paired samples from control and TCDD-exposed samples to understand what is gained and lost in scRNA-seq vs bulk-seq, both transcriptomically and toxicologically. We hypothesized that the testes may be sensitive to tissue disruption as they contain multiple cell types under constant division and/or maturation, and that TCDD exposure may mediate the extent of sensitivity. Thus, we sought to understand the extent to which this dissociation impacts the toxicological value of data returned from scRNA-seq. We confirm that the required dissociation of individual cells from intact tissue has a significant impact on gene expression, affecting gene pathways with the potential to confound toxicogenomics studies on exposures if findings are not well-controlled and well-situated in context. Additionally, a common scRNA-seq method using cDNA amplified from the 3' end of mRNA under-detects low-expressing transcripts including transcription factors. We confirm this, and show TCDD-related genes may be overlooked by scRNA-seq, however, this under-detection effect is not mediated by TCDD exposure. Even so, scRNA-seq generally extracted toxicologically relevant information better than the bulk-seq method in the present study. This report aims to inform future experimental design for transcriptomic investigation in the growing field of toxicogenomics by demonstrating the differential information extracted from sequencing cells-despite being from the same tissue and exposure scheme-is influenced by the specific protocol used, with implications for the interpretation of exposure-induced risk.
Collapse
Affiliation(s)
- Alex Haimbaugh
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Genome Sciences Core, Office of the Vice President for Research, Wayne State University, Detroit, MI, United States
| | - Tracie R. Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Walcheck MT, Matkowskyj KA, Turco A, Blaine-Sauer S, Nukaya M, Noel J, Ronnekleiv OK, Ronnekleiv-Kelly SM. Sex-dependent development of Kras-induced anal squamous cell carcinoma in mice. PLoS One 2021; 16:e0259245. [PMID: 34735515 PMCID: PMC8568287 DOI: 10.1371/journal.pone.0259245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Anal squamous cell carcinoma (SCC) will be diagnosed in an estimated 9,080 adults in the United States this year, and rates have been rising over the last several decades. Most people that develop anal SCC have associated human papillomavirus (HPV) infection (~85-95%), with approximately 5-15% of anal SCC cases occurring in HPV-negative patients from unknown etiology. This study identified and characterized the Kras-driven, female sex hormone-dependent development of anal squamous cell carcinoma (SCC) in the LSL-KrasG12D; Pdx1-Cre (KC) mouse model that is not dependent on papillomavirus infection. One hundred percent of female KC mice develop anal SCC, while no male KC mice develop tumors. Both male and female KC anal tissue express Pdx1 and Cre-recombinase mRNA, and the activated mutant KrasG12D gene. Although the driver gene mutation KrasG12D is present in anus of both sexes, only female KC mice develop Kras-mutant induced anal SCC. To understand the sex-dependent differences, KC male mice were castrated and KC female mice were ovariectomized. Castrated KC males displayed an unchanged phenotype with no anal tumor formation. In contrast, ovariectomized KC females demonstrated a marked reduction in anal SCC development, with only 15% developing anal SCC. Finally, exogenous administration of estrogen rescued the tumor development in ovariectomized KC female mice and induced tumor development in castrated KC males. These results confirm that the anal SCC is estrogen mediated. The delineation of the role of female sex hormones in mediating mutant Kras to drive anal SCC pathogenesis highlights a subtype of anal SCC that is independent of papillomavirus infection. These findings may have clinical applicability for the papillomavirus-negative subset of anal SCC patients that typically respond poorly to standard of care chemoradiation.
Collapse
Affiliation(s)
- Morgan T. Walcheck
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Kristina A. Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
| | - Anne Turco
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Manabu Nukaya
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Jessica Noel
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Oline K. Ronnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University, Portland, OR, United States of America
| | - Sean M. Ronnekleiv-Kelly
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
10
|
Wilson RH, Carney PR, Glover E, Parrott JC, Rojas BL, Moran SM, Yee JS, Nukaya M, Goetz NA, Rubinstein CD, Krentz KJ, Xing Y, Bradfield CA. Generation of an Allelic Series at the Ahr Locus Using an Edited Recombinant Approach. Toxicol Sci 2021; 180:239-251. [PMID: 33480436 DOI: 10.1093/toxsci/kfab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and a member of the PER-ARNT-SIM (PAS) superfamily of environmental sensors. The AHR is involved in a series of biological processes including adaptive metabolism of xenobiotics, toxicity of certain environmental pollutants, vascular development, fertility, and immune function. Mouse models, including the Ahr null and Ahr conditional null (Ahrfx) mice, are widely used for the study of AHR-mediated biology and toxicity. The Ahr conditional null mouse harbors the low-affinity Ahrd allele that exhibits approximately a 10-fold lower binding affinity for certain xenobiotic AHR ligands than the widely used C57BL/6 mouse that harbors the higher affinity Ahrb1 allele. Here, we report a novel mouse model that introduces a V375A polymorphism that converts the low-affinity allele into a high-affinity allele, offering a more sensitive conditional model. In the generation of this novel conditional allele, two additional mutants arose, including a 3-bp deletion in the PAS-B domain (AhrNG367R) and an early termination codon in the PAS-B domain (AhrTer383). The AhrNG367R allele presents as a phenocopy of the null and the AhrTer383 allele presents as an antimorph when assessing for the ductus venosus and liver lobe weight endpoints. These new models represent a series of tools that will be useful in further characterizing AHR biology.
Collapse
Affiliation(s)
- Rachel H Wilson
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Patrick R Carney
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Edward Glover
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica C Parrott
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Brenda L Rojas
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Susan M Moran
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jeremiah S Yee
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Manabu Nukaya
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Nicholas A Goetz
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Clifford D Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kathy J Krentz
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yongna Xing
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
11
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
12
|
Akemann C, Meyer DN, Gurdziel K, Baker TR. TCDD-induced multi- and transgenerational changes in the methylome of male zebrafish gonads. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa010. [PMID: 33214906 PMCID: PMC7660120 DOI: 10.1093/eep/dvaa010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 05/23/2023]
Abstract
The legacy endocrine disrupting chemical and aryl hydrocarbon receptor agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is produced as a byproduct of industrial processes and causes adverse health effects ranging from skin irritation to cancer. TCDD endpoints are also observed in subsequent, unexposed generations; however, the mechanisms of these multi- and transgenerational effects are unknown. We hypothesized an epigenetic mechanism, specifically DNA methylation for the transgenerational, male-mediated reproductive effects of developmental TCDD exposure. Using whole genome bisulfite sequencing, we evaluated DNA methylation changes in three generations of zebrafish, the first of which was exposed to TCDD during sexual development at 50 ppt for 1 h at both 3- and 7-week post-fertilization. We discovered that TCDD induces multi- and transgenerational methylomic changes in testicular tissue from zebrafish with decreased reproductive capacity, but most significantly in the indirectly exposed F1 generation. In comparing differentially methylated genes to concurrent transcriptomic changes, we identified several genes and pathways through which transgenerational effects of low level TCDD exposure are likely inherited. These include significant differential methylation of genes involved in reproduction, endocrine function, xenobiotic metabolism, and epigenetic processing. Notably, a number of histone modification genes were both differentially methylated and expressed in all generations, and many differentially methylated genes overlapped between multiple generations. Collectively, our results suggest that DNA methylation is a promising mechanism to explain male-mediated transgenerational reproductive effects of TCDD exposure in zebrafish, and these effects are likely inherited through integration of multiple epigenetic pathways.
Collapse
Affiliation(s)
- Camille Akemann
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| | - Danielle N Meyer
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| | - Katherine Gurdziel
- School of Medicine, Applied Genome Technology Center, Wayne State University, Detroit, 261 E Hancock St, Detroit, MI, 4820, USA
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University, Detroit, 540 E. Canfield, Detroit, MI, 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, 5135 Woodward Ave. Detroit, MI, 48202, USA
| |
Collapse
|
13
|
Sumi N, Chitra KC. Fullerene C 60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:196-206. [PMID: 30870666 DOI: 10.1016/j.aquatox.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The engineered carbon nanomaterial, fullerene C60, with unique physicochemical properties, released into the aquatic environment is known to formulate high risk factor for the aquatic life. The present study was aimed to investigate fullerene C60 induced oxidative imbalance in ovary and testis of the freshwater fish, Anabas testudineus. The median lethal concentration (96 h-LC50) of fullerene C60 in Anabas testudineus was 50 mg/ L, and fish exposed to two sublethal concentrations i.e., 5 mg/ L and 10 mg/ L (one-tenth and one-fifth of LC50) for short-term (24, 48, 72 and 96 h) and long-term (7, 15, 30 and 60 d) durations. The antioxidant parameters such as the activities of superoxide dismutase (SOD), catalase, glutathione reductase, glutathione peroxidase, the levels of hydrogen peroxide generation and lipid peroxidation were analyzed along with histopathological alterations in gonadal tissues. Both sublethal concentrations of fullerene C60 caused significant (P < 0.05) decrease in the activities of antioxidant enzymes, whereas the levels of hydrogen peroxide generation and lipid peroxidation increased significantly (P < 0.05) in gonads. Fullerene exposure significantly (P < 0.05) increased the mucous deposition with significant (P < 0.05) reduction in the weights of gonads and gonado-somatic index. The histopathological analysis showed prominent alterations in testis and ovary of treated fishes when compared to the control groups. After 60 d of sublethal exposure of fullerene C60, fish were left in the toxicant-free water for another 60 d, in which the changes in the activities of the gonadal antioxidant enzymes and histological alterations were not completely recovered. Hence, from the present study, it was illustrated that fullerene C60 caused oxidative imbalance in the gonads, which may possibly affect the reproductive potential of the fish, Anabas testudineus.
Collapse
Affiliation(s)
- N Sumi
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - K C Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India.
| |
Collapse
|
14
|
Abstract
The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
15
|
Houbrechts AM, Van Houcke J, Darras VM. Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. J Endocrinol 2019; 241:JOE-18-0549.R3. [PMID: 30817317 DOI: 10.1530/joe-18-0549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023]
Abstract
Thyroid hormones are crucial mediators of many aspects of vertebrate life, including reproduction. The key player is the biologically active 3,5,3'-triiodothyronine (T3), whose local bio-availability is strictly regulated by deiodinase enzymes. Deiodinase type 2 (Dio2) is present in many tissues and is the main enzyme for local T3 production. To unravel its role in different physiological processes, we generated a mutant zebrafish line, completely lacking Dio2 activity. Here we focus on the reproductive phenotype studied at the level of offspring production, gametogenesis, functioning of the hypothalamic-pituitary-gonadal axis and sex steroid production. Homozygous Dio2-deficient zebrafish were hypothyroid, displayed a delay in sexual maturity, and the duration of their reproductive period was substantially shortened. Fecundity and fertilization were also severely reduced. Gamete counts pointed to a delay in oogenesis at onset of sexual maturity and later on to an accumulation of oocytes in mutant ovaries due to inhibition of ovulation. Analysis of spermatogenesis showed a strongly decreased number of spermatogonia A at onset of sexual maturity. Investigation of the hypothalamic-pituitary-gonadal axis revealed that dysregulation was largely confined to the gonads with significant upregulation of igf3, and a strong decrease in sex steroid production concomitant with alterations in gene expression in steroidogenesis/steroid signaling pathways. Rescue of the phenotype by T3 supplementation starting at 4 weeks resulted in normalization of reproductive activity in both sexes. The combined results show that reproductive function in mutants is severely hampered in both sexes, thereby linking the loss of Dio2 activity and the resulting hypothyroidism to reproductive dysfunction.
Collapse
Affiliation(s)
- Anne M Houbrechts
- A Houbrechts, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Van Houcke
- J Van houcke, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- V Darras, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Akemann C, Meyer DN, Gurdziel K, Baker TR. Developmental Dioxin Exposure Alters the Methylome of Adult Male Zebrafish Gonads. Front Genet 2019; 9:719. [PMID: 30687390 PMCID: PMC6336703 DOI: 10.3389/fgene.2018.00719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/21/2018] [Indexed: 01/20/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental toxicant and endocrine disrupting compound with reproductive and developmental effects in humans and model organisms, including zebrafish. Our previous microarray and histological studies found defects in spermatogenesis and fertility of zebrafish in response to acute developmental TCDD exposure. These effects are apparent following exposure during reproductive development, modeling fetal basis of adult-onset disease. Some outcomes of these previous studies (reduced fertility, changes in sex ratio, transcriptomic alterations) are also transgenerational – persisting to unexposed generations – through the male germline. We hypothesized that DNA methylation could be a possible mechanism for these reproductive effects and performed whole genome bisulfite sequencing (WGBS), which identifies whole genome DNA methylation status at the base pair level, on testes of adult zebrafish exposed to TCDD (two separate hour-long exposures to 50 pg/mL TCDD at 3 and 7 weeks post fertilization). In response to TCDD exposure, multiple genes were differentially methylated; many of which are involved in reproductive processes or epigenetic modifications, suggesting a role of DNA methylation in later-life health outcomes. Additionally, several differentially methylated genes corresponded with gene expression changes identified in TCDD-exposed zebrafish testes, indicating a potential link between DNA methylation and gene expression. Ingenuity pathway analysis of WGBS and microarray data revealed genes involved in reproductive processes and development, RNA regulation, the cell cycle, and cellular morphology and development. We conclude that site-specific changes in DNA methylation of adult zebrafish testes occur in response to acute developmental TCDD exposure.
Collapse
Affiliation(s)
- Camille Akemann
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Danielle N Meyer
- Department of Pharmacology, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
17
|
Meyer DN, Baker BB, Baker TR. Ancestral TCDD Exposure Induces Multigenerational Histologic and Transcriptomic Alterations in Gonads of Male Zebrafish. Toxicol Sci 2018; 164:603-612. [PMID: 29788325 PMCID: PMC6061693 DOI: 10.1093/toxsci/kfy115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the classic aryl hydrocarbon receptor (AhR) agonist, is a potent environmental toxicant and endocrine-disrupting chemical (EDC) with known developmental toxicity in humans, rodents, and fish. Early life exposure to some EDCs, including TCDD, is linked to the occurrence of adult-onset and multigenerational disease. Previous work exposing juvenile F0 zebrafish (Danio rerio) to 50 ppt (parts per trillion) TCDD during reproductive development has shown male-mediated transgenerational decreases in fertility (F0-F2) and histologic and transcriptomic alterations in F0 testes. Here, we analyzed male germline alterations in F1 and F2 adult fish, looking for changes in testicular histology and gene expression inherited through the male lineage that could account for decreased reproductive capacity. Testes of TCDD-lineage F1 fish displayed an increase in spermatogonia (immature germ cells) and decrease in spermatozoa (mature germ cells). No histological changes were present in F2 fish. Transcriptomic analysis of exposed F1 and F2 testes revealed alterations in lipid and glucose metabolism, oxidation, xenobiotic response, and sperm cell development and maintenance genes, all of which are implicated in fertility outcomes. Overall, we found that differential expression of reproductive genes and reduced capacity of sperm cells to mature could account for the reproductive defects previously seen in TCDD-exposed male zebrafish and their descendants, providing insight into the distinct multigenerational effects of toxicant exposure.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan 48202
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors
| |
Collapse
|
18
|
Aluru N, Karchner SI, Glazer L. Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain. Toxicol Sci 2017; 160:386-397. [PMID: 28973690 PMCID: PMC5837202 DOI: 10.1093/toxsci/kfx192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, nonembryotoxic levels of 3,3',4,4',5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Lilah Glazer
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| |
Collapse
|
19
|
Gamse JT, Gorelick DA. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish. Zebrafish 2017; 13:377-8. [PMID: 27618129 DOI: 10.1089/zeb.2016.1370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals.
Collapse
Affiliation(s)
- Joshua T Gamse
- 1 Department of Reproductive Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb , New Brunswick, New Jersey
| | - Daniel A Gorelick
- 2 Department of Pharmacology and Toxicology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
20
|
Abstract
Zebrafish have been extensively used for studying vertebrate development and modeling human diseases such as cancer. In the last two decades, they have also emerged as an important model for developmental toxicology research and, more recently, for studying the developmental origins of health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the persistent effects of exposure to chemicals during sensitive windows of development. There is considerable interest in understanding the epigenetic mechanisms associated with DOHaD using zebrafish as a model system. This review summarizes our current knowledge on the effects of environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the context of DOHaD, and suggest some key considerations in designing experiments for characterizating the mechanisms of action.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
21
|
Carvan MJ, Kalluvila TA, Klingler RH, Larson JK, Pickens M, Mora-Zamorano FX, Connaughton VP, Sadler-Riggleman I, Beck D, Skinner MK. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS One 2017; 12:e0176155. [PMID: 28464002 PMCID: PMC5413066 DOI: 10.1371/journal.pone.0176155] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/06/2017] [Indexed: 01/10/2023] Open
Abstract
Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant, with human exposures predominantly resulting from fish consumption. Developmental exposure of zebrafish to MeHg is known to alter their neurobehavior. The current study investigated the direct exposure and transgenerational effects of MeHg, at tissue doses similar to those detected in exposed human populations, on sperm epimutations (i.e., differential DNA methylation regions [DMRs]) and neurobehavior (i.e., visual startle and spontaneous locomotion) in zebrafish, an established human health model. F0 generation embryos were exposed to MeHg (0, 1, 3, 10, 30, and 100 nM) for 24 hours ex vivo. F0 generation control and MeHg-exposed lineages were reared to adults and bred to yield the F1 generation, which was subsequently bred to the F2 generation. Direct exposure (F0 generation) and transgenerational actions (F2 generation) were then evaluated. Hyperactivity and visual deficit were observed in the unexposed descendants (F2 generation) of the MeHg-exposed lineage compared to control. An increase in F2 generation sperm epimutations was observed relative to the F0 generation. Investigation of the DMRs in the F2 generation MeHg-exposed lineage sperm revealed associated genes in the neuroactive ligand-receptor interaction and actin-cytoskeleton pathways being effected, which correlate to the observed neurobehavioral phenotypes. Developmental MeHg-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in F2 generation adult zebrafish. Therefore, mercury can promote the epigenetic transgenerational inheritance of disease in zebrafish, which significantly impacts its environmental health considerations in all species including humans.
Collapse
Affiliation(s)
- Michael J. Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Thomas A. Kalluvila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Rebekah H. Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Jeremy K. Larson
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Matthew Pickens
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Francisco X. Mora-Zamorano
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | | | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| |
Collapse
|