1
|
Macphee A, Oriowo TO, Sternberg N, Stange M. Comparison of whole genome sequencing performance from fish swabs and fin clips. BMC Res Notes 2025; 18:15. [PMID: 39815330 PMCID: PMC11734550 DOI: 10.1186/s13104-024-07075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE Fin clipping is the standard DNA sampling technique for whole genome sequencing (WGS) of small fish. The collection of fin clips requires anaesthesia or even euthanisation of the individual. Swabbing may be a less invasive, non-lethal alternative to fin-clipping. Whether skin and gill swabs are comparable to fin clips in terms of DNA extraction quality and sequence read mapping performance from WGS was tested here on Eurasian minnows (Phoxinus phoxinus). RESULTS Of 49 fin clips, all met the DNA concentration threshold of 20 ng/μl, whereas 43 of 88 swabs met this requirement. Preserving swabs in ATL buffer and treatment with Proteinase K during DNA extraction consistently raised skin swab DNA concentrations above the cut-off. All samples passed the A260/A280 absorbance ratio cut-off of 1.3. Ultimately, 93.88% of the fin clips, 30.61% of the skin, and 7.69% of the gill swabs were suitable for sequencing. Mapping performances of all three tissues were comparable in reads passing quality filtering, percentage of reads mapping to the P. phoxinus reference genome, and coverage. Overall, skin swabs treated with Proteinase K during extraction, can match fin clips in WGS performance and represent a viable non-invasive DNA sampling alternative.
Collapse
Affiliation(s)
- Annabell Macphee
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Centre for Molecular Biodiversity Research, Bonn, Germany
| | - Temitope Opeyemi Oriowo
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Centre for Molecular Biodiversity Research, Bonn, Germany
| | - Nils Sternberg
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Centre for Molecular Biodiversity Research, Bonn, Germany
| | - Madlen Stange
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Centre for Molecular Biodiversity Research, Bonn, Germany.
| |
Collapse
|
2
|
Chouljenko AV, Stanfield BA, Melnyk TO, Dutta O, Chouljenko VN. A Repetitive Acipenser gueldenstaedtii Genomic Region Aligning with the Acipenser baerii IGLV Gene Cluster Suggests a Role as a Transcription Termination Element Across Several Sturgeon Species. Int J Mol Sci 2024; 25:12685. [PMID: 39684396 DOI: 10.3390/ijms252312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
This study focuses on the common presence of repetitive sequences within the sturgeon genome that may contribute to enhanced immune responses against infectious diseases. A repetitive 675 bp VAC-2M sequence in Russian sturgeon DNA that aligns with the Siberian sturgeon IGLV gene cluster was identified. A specific 218 bp long portion of the sequence was found to be identical between Acipenser gueldenstaedtii, A. baerii and A. stellatus species, and NCBI blast analysis confirmed the presence of this DNA segment in the A. ruthenus genome. Multiple mutated copies of the same genomic region were detected by PCR analysis, indicating that different versions of this highly repetitive sequence exist simultaneously within the same organism. The selection toward specific genetic differences appears to be highly conserved based on the sequence variations within DNA originating from fish grown at distant geographical regions and individual caviar grains from the same fish. The corresponding A. baerii genomic region encompassing the 357 bp DNA sequence was cloned either ahead or after the human cytomegalovirus immediate early promoter (HCMV-IE) into a pBV-Luc reporter vector expressing the luciferase gene. The DNA segment significantly reduced luciferase expression in transient transfection/expression experiments. The results indicate that this genomic region functions as a transcription termination element that may affect antibody production in sturgeons.
Collapse
Affiliation(s)
- Alexander V Chouljenko
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Center for Marine Sciences and Technology, Morehead City, NC 28557, USA
| | - Brent A Stanfield
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Tetiana O Melnyk
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Ojasvi Dutta
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Ameen-Ali KE, Allen C. The 3Rs in zebrafish research. Zebrafish 2024:225-250. [DOI: 10.1079/9781800629431.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
4
|
Harboe M, Kjaer-Sorensen K, Füchtbauer EM, Fenton RA, Thomsen JS, Brüel A, Oxvig C. The metalloproteinase PAPP-A is required for IGF-dependent chondrocyte differentiation and organization. Sci Rep 2024; 14:20161. [PMID: 39215168 PMCID: PMC11364822 DOI: 10.1038/s41598-024-71062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Insulin-like growth factor (IGF) signaling is required for proper growth and skeletal development in vertebrates. Consequently, its dysregulation may lead to abnormalities of growth or skeletal structures. IGF is involved in the regulation of cell proliferation and differentiation of chondrocytes. However, the availability of bioactive IGF may be controlled by antagonizing IGF binding proteins (IGFBPs) in the circulation and tissues. As the metalloproteinase PAPP-A specifically cleaves members of the IGFBP family, we hypothesized that PAPP-A activity liberates bioactive IGF in cartilage. In PAPP-A knockout mice, the femur length was reduced and the mice showed a disorganized columnar organization of growth plate chondrocytes. Similarly, zebrafish lacking pappaa showed reduced length of Meckel's cartilage and disorganized chondrocytes, reminiscent of the mouse knockout phenotype. Expression of chondrocyte differentiation markers (sox9a, ihha, and col10a1) was markedly affected in Meckel's cartilage of pappaa knockout zebrafish, indicating that differentiation of chondrocytes was compromised. Additionally, the zebrafish pappaa knockout phenotype was mimicked by pharmacological inhibition of IGF signaling, and it could be rescued by treatment with exogenous recombinant IGF-I. In conclusion, our data suggests that IGF activity in the growing cartilage, and hence IGF signaling in chondrocytes, requires the presence of PAPP-A. The absence of PAPP-A causes aberrant chondrocyte organization and compromised growth in both mice and zebrafish.
Collapse
Affiliation(s)
- Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Tilley C, Barber I, Norton W. Skin swabbing protocol to collect DNA samples from small-bodied fish species. F1000Res 2024; 10:1064. [PMID: 39185076 PMCID: PMC11342036 DOI: 10.12688/f1000research.73115.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 08/27/2024] Open
Abstract
Fish species are commonly used as experimental models in the laboratory. DNA is routinely collected from these animals to permit identification of their genotype. The current standard procedure to sample DNA is fin clipping, which involves anaesthetising individuals and removing a portion of the caudal fin. While fin clipping reliably generates good quality DNA samples for downstream applications, there is evidence that it can alter health and welfare, and impact the fish's behaviour. This in turn can result in greater variation in the data collected. In a recent study we adapted a skin swabbing protocol to collect DNA from small-bodied fish, including sticklebacks and zebrafish, without the use of analgesics, anaesthetics or sharp instruments. A rayon-tipped swab was used to collect mucus from the flank of the fish, which was then used for DNA extraction. We subsequently demonstrated that compared to fin clipping, skin swabbing triggered fewer changes in stress axis activation and behaviour. We also found that gene expression and behaviour data collected from swabbed fish were less variable than similar data collected from fish that had been fin clipped. This potentially allows smaller sample sizes in experimental groups to be used after skin swabbing, thereby reducing animal use. Here we provide a detailed protocol explaining how to collect DNA samples from small laboratory fish using skin swabs.
Collapse
Affiliation(s)
- Ceinwen Tilley
- Genetics and Genome Biology, School of Biological Sciences, University of Leicester, Leicester, England, LE1 7RH, UK
- Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
| | - Iain Barber
- School of Animal and Rural Sciences, Nottingham Trent University, Nottingham, NG25 0QF, UK
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - William Norton
- Institute of Biology, Eotvos Lorand University, Budapest, Hungary
- Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
| |
Collapse
|
6
|
Sneddon LU, Schroeder P, Roque A, Finger-Baier K, Fleming A, Tinman S, Collet B. Pain management in zebrafish : Report from a FELASA Working Group. Lab Anim 2024; 58:261-276. [PMID: 38051824 PMCID: PMC11264547 DOI: 10.1177/00236772231198733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 12/07/2023]
Abstract
Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain. Therefore, this FELASA Working Group reviewed the evidence for pain in zebrafish, the indicators used to assess pain and the impact of a range of drugs with pain-relieving properties. We report that there are several behavioural indicators that can be used to determine pain, including reduced activity, space use and distance travelled. Pain-relieving drugs prevent these responses, and we highlight the dose and administration route. To minimise or avoid pain, several refinements are suggested for common laboratory procedures. Finally, practical suggestions are made for the management and alleviation of pain in laboratory zebrafish, including recommendations for analgesia. Pain management is an important refinement in experimental animal use and so our report has the potential to improve zebrafish welfare during and after invasive procedures in laboratories across the globe.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Paul Schroeder
- Red Kite Veterinary Consultants, 30 Upper High Street, Thame, Oxon, OX9 3EZ, UK
| | | | - Karin Finger-Baier
- Max Planck Institute of Neurobiology (now: Max Planck Institute for Biological Intelligence), Department Genes – Circuits – Behaviour, Martinsried, Germany
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Simon Tinman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| | | |
Collapse
|
7
|
Thomasen PB, Salasova A, Kjaer-Sorensen K, Woloszczuková L, Lavický J, Login H, Tranberg-Jensen J, Almeida S, Beel S, Kavková M, Qvist P, Kjolby M, Ovesen PL, Nolte S, Vestergaard B, Udrea AC, Nejsum LN, Chao MV, Van Damme P, Krivanek J, Dasen J, Oxvig C, Nykjaer A. SorCS2 binds progranulin to regulate motor neuron development. Cell Rep 2023; 42:113333. [PMID: 37897724 DOI: 10.1016/j.celrep.2023.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
Collapse
Affiliation(s)
- Pernille Bogetofte Thomasen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lucie Woloszczuková
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Josef Lavický
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Hande Login
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe Tranberg-Jensen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergio Almeida
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sander Beel
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Michaela Kavková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mads Kjolby
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Lund Ovesen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Stella Nolte
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Benedicte Vestergaard
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreea-Cornelia Udrea
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Moses V Chao
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Philip Van Damme
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Nykjaer
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Ignatavičienė I, Ragauskas A, Rakauskas V, Butkauskas D. Quality of DNA extracted from freshwater fish scales and mucus and its application in genetic diversity studies of Perca fluviatilis and Rutilus rutilus. Biol Methods Protoc 2023; 8:bpad022. [PMID: 37817807 PMCID: PMC10561993 DOI: 10.1093/biomethods/bpad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Studies on genetic diversity require biological material containing a reliable source of DNA that can be extracted and analyzed. Recently, non-invasive sampling has become a preferred sampling method of biological material. The suitability of a less invasive approach that involves obtaining samples by swabbing the fish skin (including live, non-anesthetized fish) should be considered. In this study, we compared the efficiency of DNA extraction, amplification, and sequencing of mtDNA fragments of two fish species Perca fluviatilis and Rutilus rutilus based on DNA collected from the scales and mucus using the modified Aljanabi and Martinez method. The results revealed a higher quality of DNA extracted from the mucus; however, the mean DNA concentration obtained from the scales of both fish species was higher. We verified the method suitable for amplification and sequencing of mtDNA fragments of both fish species using newly designed markers (D-loop, ATP6) and examined the potential risk of intraspecific cross-contamination. The DNA sequence alignment analysis revealed identical sequences attributed to the same individual when DNA, extracted from two different sources (scales and mucus), was used. We demonstrated that the quantity and quality of DNA extracted from the scales and mucus using the proposed method were high enough to carry out genetic diversity studies based on sampling of live fish with the possibility to release it after collecting samples.
Collapse
|
9
|
Chen HI, Turakhia Y, Bejerano G, Kingsley DM. Whole-genome Comparisons Identify Repeated Regulatory Changes Underlying Convergent Appendage Evolution in Diverse Fish Lineages. Mol Biol Evol 2023; 40:msad188. [PMID: 37739926 PMCID: PMC10516590 DOI: 10.1093/molbev/msad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Fins are major functional appendages of fish that have been repeatedly modified in different lineages. To search for genomic changes underlying natural fin diversity, we compared the genomes of 36 percomorph fish species that span over 100 million years of evolution and either have complete or reduced pelvic and caudal fins. We identify 1,614 genomic regions that are well-conserved in fin-complete species but missing from multiple fin-reduced lineages. Recurrent deletions of conserved sequences in wild fin-reduced species are enriched for functions related to appendage development, suggesting that convergent fin reduction at the organismal level is associated with repeated genomic deletions near fin-appendage development genes. We used sequencing and functional enhancer assays to confirm that PelA, a Pitx1 enhancer previously linked to recurrent pelvic loss in sticklebacks, has also been independently deleted and may have contributed to the fin morphology in distantly related pelvic-reduced species. We also identify a novel enhancer that is conserved in the majority of percomorphs, drives caudal fin expression in transgenic stickleback, is missing in tetraodontiform, syngnathid, and synbranchid species with caudal fin reduction, and alters caudal fin development when targeted by genome editing. Our study illustrates a broadly applicable strategy for mapping phenotypes to genotypes across a tree of vertebrate species and highlights notable new examples of regulatory genomic hotspots that have been used to evolve recurrent phenotypes across 100 million years of fish evolution.
Collapse
Affiliation(s)
- Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University School of Engineering, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Hiki K, Yamagishi T, Yamamoto H. Environmental RNA as a Noninvasive Tool for Assessing Toxic Effects in Fish: A Proof-of-concept Study Using Japanese Medaka Exposed to Pyrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12654-12662. [PMID: 37585234 DOI: 10.1021/acs.est.3c03737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Although environmental RNA (eRNA) is emerging as a noninvasive tool to assess the health status of aquatic macroorganisms, the potential of eRNA in assessing chemical hazards remain largely untested. In this study, we investigated the ability of eRNA to detect changes in gene expression in Japanese medaka fish (Oryzias latipes) in response to sublethal pyrene exposure, as a model toxic chemical. We performed standardized acute toxicity tests and collected eRNA from tank water and RNA from fish tissue after 96 h of exposure. Our results showed that over 1000 genes were detected in eRNA and the sequenced read counts of these genes correlated with those in fish tissue (r = 0.50). Moreover, eRNA detected 86 differentially expressed genes in response to pyrene, some of which were shared by fish RNA, including the suppression of collagen fiber genes. These results suggest that eRNA has the potential to detect changes in gene expression in fish in response to environmental stressors without the need for sacrificing or causing pain to fish. However, we also found that the majority of sequenced reads of eRNA (>99%) were not mapped to the reference medaka genome and they originated from bacteria and fungi, resulting in low sequencing depth. In addition, eRNA, in particular nuclear genes, was highly degraded with a median transcript integrity number (TIN) of <20. These limitations highlight the need for future studies to improve the analytical methods of eRNA application.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
| | - Takahiro Yamagishi
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
| |
Collapse
|
11
|
Coutinho CD, Ford CE, Trafford JD, Duarte A, Rebelo R, Rosa GM. Non-Lethal Detection of Ranavirus in Fish. Viruses 2023; 15:471. [PMID: 36851684 PMCID: PMC9964643 DOI: 10.3390/v15020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Emergent infectious diseases have an increasing impact on both farmed animals and wildlife. The ability to screen for pathogens is critical for understanding host-pathogen dynamics and informing better management. Ranavirus is a pathogen of concern, associated with disease outbreaks worldwide, affecting a broad range of fish, amphibian, and reptile hosts, but research has been limited. The traditional screening of internal tissues, such as the liver, has been regarded as the most effective for detecting and quantifying Ranavirus. However, such methodology imposes several limitations from ethical and conservation standpoints. Non-lethal sampling methods of viral detection were explored by comparing the efficacy of both buccal swabbing and fin clipping. The study was conducted on two Iberian, threatened freshwater fish (Iberochondrostoma lusitanicum and Cobitis paludica), and all samples were screened using qPCR. While for C. paludica both methods were reliable in detecting Ranavirus, on I. lusitanicum, there was a significantly higher detection rate in buccal swabs than in fin tissue. This study, therefore, reports that fin clipping may yield false Ranavirus negatives when in small-bodied freshwater fish. Overall, buccal swabbing is found to be good as an alternative to more invasive procedures, which is of extreme relevance, particularly when dealing with a threatened species.
Collapse
Affiliation(s)
- Catarina D. Coutinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Charlotte E. Ford
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Joseph D. Trafford
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ana Duarte
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), 2780-157 Oeiras, Portugal
| | - Rui Rebelo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Gonçalo M. Rosa
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
| |
Collapse
|
12
|
Chen HI, Turakhia Y, Bejerano G, Kingsley DM. Whole-genome comparisons identify repeated regulatory changes underlying convergent appendage evolution in diverse fish lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526059. [PMID: 36778215 PMCID: PMC9915506 DOI: 10.1101/2023.01.30.526059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fins are major functional appendages of fish that have been repeatedly modified in different lineages. To search for genomic changes underlying natural fin diversity, we compared the genomes of 36 wild fish species that either have complete or reduced pelvic and caudal fins. We identify 1,614 genomic regions that are well-conserved in fin-complete species but missing from multiple fin-reduced lineages. Recurrent deletions of conserved sequences (CONDELs) in wild fin-reduced species are enriched for functions related to appendage development, suggesting that convergent fin reduction at the organismal level is associated with repeated genomic deletions near fin-appendage development genes. We used sequencing and functional enhancer assays to confirm that PelA , a Pitx1 enhancer previously linked to recurrent pelvic loss in sticklebacks, has also been independently deleted and may have contributed to the fin morphology in distantly related pelvic-reduced species. We also identify a novel enhancer that is conserved in the majority of percomorphs, drives caudal fin expression in transgenic stickleback, is missing in tetraodontiform, s yngnathid, and synbranchid species with caudal fin reduction, and which alters caudal fin development when targeted by genome editing. Our study illustrates a general strategy for mapping phenotypes to genotypes across a tree of vertebrate species, and highlights notable new examples of regulatory genomic hotspots that have been used to evolve recurrent phenotypes during 100 million years of fish evolution.
Collapse
Affiliation(s)
- Heidi I. Chen
- Department of Developmental Biology, Stanford University School of Medicine, CA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University School of Medicine, CA
- Department of Biomedical Data Science, Stanford University School of Medicine, CA
- Department of Computer Science, Stanford University School of Engineering, CA
- Department of Pediatrics, Stanford University School of Medicine, CA
| | - David M. Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, CA
- Howard Hughes Medical Institute, Stanford University, CA
| |
Collapse
|
13
|
Venditti M, Pedalino C, Rosello M, Fasano G, Serafini M, Revenu C, Del Bene F, Tartaglia M, Lauri A. A minimally invasive fin scratching protocol for fast genotyping and early selection of zebrafish embryos. Sci Rep 2022; 12:22597. [PMID: 36585409 PMCID: PMC9803660 DOI: 10.1038/s41598-022-26822-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Current genetic modification and phenotyping methods in teleost fish allow detailed investigation of vertebrate mechanisms of development, modeling of specific aspects of human diseases and efficient testing of drugs at an organ/organismal level in an unparalleled fast and large-scale mode. Fish-based experimental approaches have boosted the in vivo verification and implementation of scientific advances, offering the quality guaranteed by animal models that ultimately benefit human health, and are not yet fully replaceable by even the most sophisticated in vitro alternatives. Thanks to highly efficient and constantly advancing genetic engineering as well as non-invasive phenotyping methods, the small zebrafish is quickly becoming a popular alternative to large animals' experimentation. This approach is commonly associated to invasive procedures and increased burden. Here, we present a rapid and minimally invasive method to obtain sufficient genomic material from single zebrafish embryos by simple and precise tail fin scratching that can be robustly used for at least two rounds of genotyping already from embryos within 48 h of development. The described protocol betters currently available methods (such as fin clipping), by minimizing the relative animal distress associated with biopsy at later or adult stages. It allows early selection of embryos with desired genotypes for strategizing culturing or genotype-phenotype correlation experiments, resulting in a net reduction of "surplus" animals used for mutant line generation.
Collapse
Affiliation(s)
- Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Catia Pedalino
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Malo Serafini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
| | - Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75005, Paris, France
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
14
|
Díez-Solinska A, Vegas O, Azkona G. Refinement in the European Union: A Systematic Review. Animals (Basel) 2022; 12:3263. [PMID: 36496784 PMCID: PMC9735736 DOI: 10.3390/ani12233263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Refining experiments and housing conditions so as to cause the minimum possible pain and distress is one of the three principles (3Rs) on which Directive 2010/63/EU is based. In this systematic review, we aimed to identify and summarize published advances in the refinement protocols made by European Union-based research groups from 2011 to 2021, and to determine whether or not said research was supported by European or national grants. We included 48 articles, the majority of which were related to improvements in experimental procedures (37/77.1%) for mice (26/54.2%) and were written by research groups belonging to universities (36/57.1%) and from the United Kingdom (21/33.9%). More than two thirds (35/72.9%) of the studies received financial support, 26 (mostly British) at a national level and 8 at a European level. Our results indicated a clear willingness among the scientific community to improve the welfare of laboratory animals, as although funding was not always available or was not specifically granted for this purpose, studies were published nonetheless. However, in addition to institutional support based on legislation, more financial support is needed. We believe that more progress would have been made in refinement during these years if there had been more specific financial support available at both the national and European Union levels since our data suggest that countries investing in refinement have the greatest productivity in successfully publishing refinements.
Collapse
Affiliation(s)
| | | | - Garikoitz Azkona
- Department of Basic Psychological Processes and Their Development, Euskal Herriko Unibertsitatea (UPV/EHU), Tolosa Hiribidea, 20018 Donostia, Spain
| |
Collapse
|
15
|
Kramp RD, Kohl KD, Stephenson JF. Skin bacterial microbiome diversity predicts lower activity levels in female, but not male, guppies, Poecilia reticulata. Biol Lett 2022; 18:20220167. [PMID: 35975629 PMCID: PMC9382456 DOI: 10.1098/rsbl.2022.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
While the link between the gut microbiome and host behaviour is well established, how the microbiomes of other organs correlate with behaviour remains unclear. Additionally, behaviour-microbiome correlations are likely sex-specific because of sex differences in behaviour and physiology, but this is rarely tested. Here, we tested whether the skin microbiome of the Trinidadian guppy, Poecilia reticulata, predicts fish activity level and shoaling tendency in a sex-specific manner. High-throughput sequencing revealed that the bacterial community richness on the skin (Faith's phylogenetic diversity) was correlated with both behaviours differently between males and females. Females with richer skin-associated bacterial communities spent less time actively swimming. Activity level was significantly correlated with community membership (unweighted UniFrac), with the relative abundances of 16 bacterial taxa significantly negatively correlated with activity level. We found no association between skin microbiome and behaviours among male fish. This sex-specific relationship between the skin microbiome and host behaviour may indicate sex-specific physiological interactions with the skin microbiome. More broadly, sex specificity in host-microbiome interactions could give insight into the forces shaping the microbiome and its role in the evolutionary ecology of the host.
Collapse
Affiliation(s)
- Rachael D. Kramp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
16
|
Jang JY, Liang T, Kim MK, Kang KW, Lee B, Choi SY. A Rapid and Noninvasive Method That Extracts Polymerase Chain Reaction-Ready Genomic DNA from Adult Zebrafish. Zebrafish 2022; 19:160-164. [PMID: 35877315 PMCID: PMC9419989 DOI: 10.1089/zeb.2022.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genotyping usually entails analysis of the products of polymerase chain reaction (PCR) carried out with genomic DNA (gDNA) as template, and is employed for validation of mutant or transgenic organisms. For genotyping of adult zebrafish, gDNA is often extracted from clipped caudal fin or skin mucus through either alkaline lysis using NaOH or proteinase K (PK) treatment. Further purification of the gDNA using ethanol precipitation was optional. To develop a rapid and noninvasive method that extracts PCR-ready gDNA from adult zebrafish, we combined skin swabbing with PK treatment and demonstrated its efficiency. This method could be applied to a wide range of fish.
Collapse
Affiliation(s)
- Ji Yun Jang
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Ting Liang
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea.,Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Republic of Korea
| |
Collapse
|
17
|
Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus. Viruses 2022; 14:v14040840. [PMID: 35458570 PMCID: PMC9025495 DOI: 10.3390/v14040840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
PCR-based DNA amplification has been one of the major methods in aquaculture research for decades, although its use outside the modern laboratory environment is limited due to the relatively complex methods and high costs. To this end, we investigated a swabbing and disc protocol for the collection of DNA samples from fish which could extract DNA from fish skin mucus by a non-invasion technique costing only $0.02 (USD) and requiring less than 30 seconds. The disc method that we chose could use the cheap filter paper to extract DNA from above 104 crucian carp blood cells, which is comparable to the commercial kit. By using skin mucus swabbing and the disc method, we can obtain amplification-ready DNA from mucus to distinguish different species from our smallest fish (medaka, ~2.5 cm and crucian carp, ~7 cm) to our biggest fish (tilapia, ~15 cm). Furthermore, the viral pathogen Carassius auratus herpesvirus (CaHV) of crucian carp was detected using our method, which would make performing molecular diagnostic assays achievable in limited-resource settings including aquafarms and aqua stores outside the laboratory environment.
Collapse
|
18
|
Canedo A, Saiki P, Santos AL, Carneiro KDS, Souza AMD, Qualhato G, Brito RDS, Mello-Andrade F, Rocha TL. Zebrafish (Danio rerio) meets bioethics: the 10Rs ethical principles in research. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v22e-70884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract Zebrafish (Danio rerio) is a tropical fish species widely used in research, worldwide. The development of genetically modified animals and the increasing number of zebrafish breeding facilities due to their emerging use in several research fields, opened room for new ethical challenges for research carried out with this species. It is necessary to raise the scientific community’s awareness of the ethical standards and laws in force, on animal research. Thus, the aim of the current study is to describe 10 Rs ethical principles by using zebrafish as model system in research. The classical 3 Rs concerning animal welfare, namely replacement, reduction and refinement; and the added 7 Rs related to scientific (registration, reporting, robustness, reproducibility and relevance) and conduct principles (responsibility, and respect) in zebrafish research are herein presented and critically discussed. The use of these 10 Rs by researchers, institutions and the Animal Ethics Committee is recommended to support regulations, decision-making about and the promotion of zebrafish health and welfare in research.
Collapse
|
19
|
Roberts Kingman GA, Lee D, Jones FC, Desmet D, Bell MA, Kingsley DM. Longer or shorter spines: Reciprocal trait evolution in stickleback via triallelic regulatory changes in Stanniocalcin2a. Proc Natl Acad Sci U S A 2021; 118:e2100694118. [PMID: 34321354 PMCID: PMC8346906 DOI: 10.1073/pnas.2100694118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Vertebrates have repeatedly modified skeletal structures to adapt to their environments. The threespine stickleback is an excellent system for studying skeletal modifications, as different wild populations have either increased or decreased the lengths of their prominent dorsal and pelvic spines in different freshwater environments. Here we identify a regulatory locus that has a major morphological effect on the length of stickleback dorsal and pelvic spines, which we term Maser (major spine enhancer). Maser maps in a closely linked supergene complex that controls multiple armor, feeding, and behavioral traits on chromosome IV. Natural alleles in Maser are differentiated between marine and freshwater sticklebacks; however, alleles found among freshwater populations are also differentiated, with distinct alleles found in short- and long-spined freshwater populations. The distinct freshwater alleles either increase or decrease expression of the bone growth inhibitor gene Stanniocalcin2a in developing spines, providing a simple genetic mechanism for either increasing or decreasing spine lengths in natural populations. Genomic surveys suggest many recurrently differentiated loci in sticklebacks are similarly specialized into three or more distinct alleles, providing multiple ancient standing variants in particular genes that may contribute to a range of phenotypes in different environments.
Collapse
Affiliation(s)
| | - David Lee
- Stanford University School of Humanities and Sciences, Stanford University, Stanford, CA 94305
| | - Felicity C Jones
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Danielle Desmet
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
20
|
Wheeler JR, Gao Z, Lagadic L, Salinas ER, Weltje L, Burden N. Hormone data collection in support of endocrine disruption (ED) assessment for aquatic vertebrates: Pragmatic and animal welfare considerations. ENVIRONMENT INTERNATIONAL 2021; 146:106287. [PMID: 33276311 DOI: 10.1016/j.envint.2020.106287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Affiliation(s)
- James R Wheeler
- Shell International B.V., Shell Health, Carel van Bylandtlaan 16, 2596 HR The Hague, the Netherlands.
| | - Zhenglei Gao
- Bayer AG Research and Development, Crop Science, Environmental Safety, Environmental Effects, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany.
| | - Laurent Lagadic
- Bayer AG Research and Development, Crop Science, Environmental Safety, Environmental Effects, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany.
| | - Edward R Salinas
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117 Limburgerhof, Germany.
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117 Limburgerhof, Germany.
| | - Natalie Burden
- NC3Rs, Gibbs Building, 215 Euston Road, London NW1 2BE, UK.
| |
Collapse
|
21
|
Skin swabbing is a refined technique to collect DNA from model fish species. Sci Rep 2020; 10:18212. [PMID: 33097784 PMCID: PMC7584585 DOI: 10.1038/s41598-020-75304-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Model fish species such as sticklebacks and zebrafish are frequently used in studies that require DNA to be collected from live animals. This is typically achieved by fin clipping, a procedure that is simple and reliable to perform but that can harm fish. An alternative procedure to sample DNA involves swabbing the skin to collect mucus and epithelial cells. Although swabbing appears to be less invasive than fin clipping, it still requires fish to be netted, held in air and handled—procedures that can cause stress. In this study we combine behavioural and physiological analyses to investigate changes in gene expression, behaviour and welfare after fin clipping and swabbing. Swabbing led to a smaller change in cortisol release and behaviour on the first day of analysis compared to fin clipping. It also led to less variability in data suggesting that fewer animals need to be measured after using this technique. However, swabbing triggered some longer term changes in zebrafish behaviour suggesting a delayed response to sample collection. Skin swabbing does not require the use of anaesthetics and triggers fewer changes in behaviour and physiology than fin clipping. It is therefore a more refined technique for DNA collection with the potential to improve fish health and welfare.
Collapse
|
22
|
Bello GL, Morais FCL, Wolf JM, Gehlen M, Soares TDS, Halon ML, Barcellos RB, Rossetti MLR. Improvement of Mycobacterium tuberculosis detection in sputum using DNA extracted by sonication. Braz J Infect Dis 2020; 24:398-404. [PMID: 32931759 PMCID: PMC9392136 DOI: 10.1016/j.bjid.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB) is one of the infectious diseases with high mortality in the world. DNA amplification techniques have been used to overcome barriers to the diagnosis of this disease. However, the success of these methodologies is highly dependent on the DNA obtained from the sample. This study was carried out to verify whether the DNA extracted by sonication (in house method) could yield suitable DNA for amplification by real-time PCR (qPCR). Sixty sputum samples were submitted to DNA extraction using sonication compared to a commercial method (Detect-TB kit, Labtest/MG-Brazil). All DNA samples were amplified by qPCR for IS6110 region (IS6110-qPCR/SYBR Green assay). Out of 60 samples, 40 were positive for TB; of these, all had positive results when extracted by sonication (100%) and 80% when extracted by the commercial method. The limit of detection (LOD) of Mycobacterium tuberculosis (H37Rv strain) by qPCR was 14 CFU/mL when the DNA was extracted by sonication, compared to countless colonies when extracted by commercial kit. In conclusion, the sonication protocol (without purification step) proved to be a simple, fast, and suitable method for obtaining DNA for use in qPCR from sputum samples.
Collapse
Affiliation(s)
- Graziele Lima Bello
- Universidade Luterana do Brasil (ULBRA), Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Franciele Costa Leite Morais
- Universidade Luterana do Brasil (ULBRA), Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Jonas Michel Wolf
- Universidade Luterana do Brasil (ULBRA), Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Mirela Gehlen
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Pneumologia, Porto Alegre, RS, Brasil
| | | | - Maria Laura Halon
- Secretaria do Estado do Rio Grande do Sul (SES/ RS), Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, RS, Brasil
| | - Regina Bones Barcellos
- Secretaria do Estado do Rio Grande do Sul (SES/ RS), Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, RS, Brasil; Universidade Federal do Rio de Janeiro (UFRJ), Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil
| | - Maria Lucia Rosa Rossetti
- Universidade Luterana do Brasil (ULBRA), Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil; Universidade Federal do Rio de Janeiro (UFRJ), Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
23
|
Coetzer WG, Coetzee LM, Cason ED, Grobler JP, Schneider SR, Boucher CE. A Preliminary Assessment of Skin Microbiome Diversity of Zebrafish ( Danio rerio): South African Pet Shop Fish. Indian J Microbiol 2020; 61:81-84. [PMID: 33505096 DOI: 10.1007/s12088-020-00900-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/15/2020] [Indexed: 01/23/2023] Open
Abstract
The zebrafish (Danio rerio) is a well-known model organism used in an array of scientific research fields. Many microbiome studies conducted on fishes have focused on gut microbiome diversity. To our knowledge, no investigations into the skin microbiome diversity of pet shop zebrafish have been performed. In this pilot study we aimed to assess the microbiome diversity composition of different groups of zebrafish housed at the Department of Genetics, University of the Free State, South Africa. These fish originated from pet shops located in Bloemfontein, South Africa. We investigated the skin microbiome diversity between wild-type zebrafish and the well-known leopard colour morph. The microbiome compositions between zebrafish sexes were also assessed. No significant differences were observed between colour morphs. A core microbiome was identified for the zebrafish housed at our laboratories. Cetobacterium was significantly more abundant in females compared to males, with Limnobacter more abundant in males. Both these genera are known components of fish microbiomes, including zebrafish. The precise reason for this link should be further investigated. This research adds to the growing knowledge base linked to aquatic microbiome structure in different habitats.
Collapse
Affiliation(s)
- Willem G Coetzer
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - L M Coetzee
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - E D Cason
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | - J P Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - S R Schneider
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - C E Boucher
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
24
|
Venta PJ, Nguyen AK, Senut MC, Poulos WG, Prukudom S, Cibelli JB. A 13-plex of tetra- and penta-STRs to identify zebrafish. Sci Rep 2020; 10:3851. [PMID: 32123258 PMCID: PMC7052278 DOI: 10.1038/s41598-020-60842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
The zebrafish species Danio rerio has become one of the major vertebrate model organisms used in biomedical research. However, there are aspects of the model that need to be improved. One of these is the ability to identify individual fish and fish lines by DNA profiling. Although many dinucleotide short tandem repeat (diSTR) markers are available for this and similar purposes, they have certain disadvantages such as an excessive polymerase slippage ("stutter") that causes difficulties in automated genotyping and cross-laboratory comparisons. Here we report on the development of a 13-plex of tetranucleotide and pentanucleotide STRs (tetraSTRs and pentaSTRs, respectively) that have low stutter. The system uses an inexpensive universal primer labelling system, which can easily be converted to a direct labeling system if desired. This 13-plex was examined in three zebrafish lines (NHGRI-1, kca33Tg, and kca66Tg, originally obtained from ZIRC). The average observed heterozygosity (Ho) and expected heterozygosity (He) in these highly inbred lines were 0.291 and 0.359, respectively, which is very similar to what has been found with diSTRs. The probability of identity (PI) for all fish tested was 2.1 × 10-5 and the PI for siblings (PIsib) was 6.4 × 10-3, as calculated by the Genalex package. Ninety percent of the fish tested were correctly identified with their respective strains. It is also demonstrated that this panel can be used to confirm doubled-haploid cell lines. This multiplex should find multiple uses for improving the accuracy and reproducibility of studies using the zebrafish model.
Collapse
Affiliation(s)
- Patrick J Venta
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA. .,Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| | - Anthony K Nguyen
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA
| | - Marie-Claude Senut
- Biomilab LLC, Lansing, MI, 48910, USA.,Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - William G Poulos
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - Sukumal Prukudom
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Jose B Cibelli
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA. .,Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
25
|
Espino-Saldaña AE, Rodríguez-Ortiz R, Pereida-Jaramillo E, Martínez-Torres A. Modeling Neuronal Diseases in Zebrafish in the Era of CRISPR. Curr Neuropharmacol 2020; 18:136-152. [PMID: 31573887 PMCID: PMC7324878 DOI: 10.2174/1570159x17666191001145550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Danio rerio is a powerful experimental model for studies in genetics and development. Recently, CRISPR technology has been applied in this species to mimic various human diseases, including those affecting the nervous system. Zebrafish offer multiple experimental advantages: external embryogenesis, rapid development, transparent embryos, short life cycle, and basic neurobiological processes shared with humans. This animal model, together with the CRISPR system, emerging imaging technologies, and novel behavioral approaches, lay the basis for a prominent future in neuropathology and will undoubtedly accelerate our understanding of brain function and its disorders. OBJECTIVE Gather relevant findings from studies that have used CRISPR technologies in zebrafish to explore basic neuronal function and model human diseases. METHODS We systematically reviewed the most recent literature about CRISPR technology applications for understanding brain function and neurological disorders in D. rerio. We highlighted the key role of CRISPR in driving forward our understanding of particular topics in neuroscience. RESULTS We show specific advances in neurobiology when the CRISPR system has been applied in zebrafish and describe how CRISPR is accelerating our understanding of brain organization. CONCLUSION Today, CRISPR is the preferred method to modify genomes of practically any living organism. Despite the rapid development of CRISPR technologies to generate disease models in zebrafish, more efforts are needed to efficiently combine different disciplines to find the etiology and treatments for many brain diseases.
Collapse
Affiliation(s)
- Angeles Edith Espino-Saldaña
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Av. de las Ciencias S/N, Querétaro, Mexico
| | - Roberto Rodríguez-Ortiz
- CONACYT - Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Qro., México
| | - Elizabeth Pereida-Jaramillo
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
| |
Collapse
|
26
|
Sloman KA, Bouyoucos IA, Brooks EJ, Sneddon LU. Ethical considerations in fish research. JOURNAL OF FISH BIOLOGY 2019; 94:556-577. [PMID: 30838660 DOI: 10.1111/jfb.13946] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Fishes are used in a wide range of scientific studies, from conservation research with potential benefits to the species used to biomedical research with potential human benefits. Fish research can take place in both laboratories and field environments and methods used represent a continuum from non-invasive observations, handling, through to experimental manipulation. While some countries have legislation or guidance regarding the use of fish in research, many do not and there exists a diversity of scientific opinions on the sentience of fish and how we determine welfare. Nevertheless, there is a growing pressure on the scientific community to take more responsibility for the animals they work with through maximising the benefits of their research to humans or animals while minimising welfare or survival costs to their study animals. In this review, we focus primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies. We consider the use of anaesthetics and analgesics and how we mark individuals for identification purposes. We highlight the main ethical concerns facing researchers in both laboratory and field environments and identify areas that need urgent future research. We hope that this review will help inform those who wish to refine their ethical practices and stimulate thought among fish researchers for further avenues of refinement. Improved ethics and welfare of fishes will inevitably lead to increased scientific rigour and is in the best interests of both fishes and scientists.
Collapse
Affiliation(s)
- Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Edward J Brooks
- Cape Eleuthera Island School, Rock Sound, Eleuthera, The Bahamas
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Díaz C, Böhle G, Wege F, Teigeler M, Eilebrecht E. Fast Multiplex real time PCR method for sex-identification of medaka ( Oryzias latipes) by non-invasive sampling. MethodsX 2019; 6:587-593. [PMID: 30976532 PMCID: PMC6441760 DOI: 10.1016/j.mex.2019.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Medaka fish (Oryzias latipes) has been widely used in fish screening and multi-generation tests to provide relevant data to assess impacts of endocrine disrupting chemicals (EDCs) in fish populations. The genotypic differentiation of Medaka sex allows diagnosing the sex reversal, and is required in current test guidelines (e.g. OECD TG 240, 2015). DNA isolation for genetic sex-identification requires sample collection, which has been normally conducted using invasive (fish sacrifice) or semi-invasive (fin-clip) procedures, which conflicts with the need for a fast, simple, and stress-free method. Swabbing skin mucus to collect DNA has been adopted in ecological studies of larger fish, however for smaller fish, it has to be established. To handle larger number of samples, real-time PCR represents a faster and sensitive method compared to conventional PCR. In this study, we aimed to develop a multiplex real-time PCR method for Medaka genetic sex-identification, using DNA sampled by swabbing as less invasive technique. In this approach, the male-determining gene DMY was used in combination with the cytochrome b housekeeping gene. The method developed is a robust, rapid and a sensitive multiplex real-time PCR for Medaka genetic sex-identification. This method allows the use of DNA isolated from fish by swabbing, as non-invasive sampling method.
Collapse
Affiliation(s)
- Cecilia Díaz
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Gisela Böhle
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Franziska Wege
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Matthias Teigeler
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392, Schmallenberg, Germany
| |
Collapse
|
28
|
Argus: An open-source and flexible software application for automated quantification of behavior during social interaction in adult zebrafish. Behav Res Methods 2018; 51:727-746. [PMID: 30105442 DOI: 10.3758/s13428-018-1083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zebrafish show great potential for behavioral neuroscience. Promising lines of research, however, require the development and validation of software tools that will allow automated and cost-effective behavioral analysis. Building on our previous work with the RealFishTracker (in-house-developed tracking system), we present Argus, a data extraction and analysis tool built in the open-source R language for behavioral researchers without any expertise in R. Argus includes a new, user-friendly, and efficient graphical user interface, instead of a command-line interface, and offers simplicity and flexibility in measuring complex zebrafish behavior through customizable parameters. In this article, we compare Argus with Noldus EthoVision and Noldus The Observer, to validate this new system. All three software applications were originally designed to quantify the behavior of a single subject. We first also performed an analysis of the movement of individual fish and compared the performance of the three software applications. Next we computed and quantified the behavioral variables that characterize dyadic interactions between zebrafish. We found that Argus and EthoVision extract similar absolute values and patterns of changes in these values for several behavioral measures, including speed, freezing, erratic movement, and interindividual distance. In contrast, the manual coding of behavior in The Observer showed weaker correlations with the two tracking methods (EthoVision and Argus). Thus, Argus is a novel, cost-effective, and customizable method for the analysis of adult zebrafish behavior that may be utilized for the behavioral quantification of both single and dyadic interacting subjects, but further sophistication will be needed for the proper identification of complex motor patterns, measures that a human observers can easily detect.
Collapse
|
29
|
Lidster K, Readman GD, Prescott MJ, Owen SF. International survey on the use and welfare of zebrafish Danio rerio in research. JOURNAL OF FISH BIOLOGY 2017; 90:1891-1905. [PMID: 28220489 DOI: 10.1111/jfb.13278] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
A survey was conducted regarding zebrafish Danio rerio use for scientific research with a focus on: anaesthesia and euthanasia; housing and husbandry; breeding and production; refinement opportunities. A total of 98 survey responses were received from laboratories in 22 countries in Europe, North America, South America, Asia and Australia. There appears a clear and urgent need to identify the most humane methods of anaesthesia and euthanasia. Aversive responses to MS-222 were widely observed raising concerns about the use of this anaesthetic for D. rerio. The use of anaesthesia in fin clipping for genetic identification is widely practised and there appears to be an opportunity to further develop less invasive methods and refine this process. Optimization (and potentially standardization) of feeding is an area for further investigation. Given that diet and body condition can have such profound effects on results of experiments, differences in practice could have significant scientific implications. Further research into transition between dark and light phases in the laboratory appears to represent an opportunity to establish best practice. Plants and gravel were not considered practical by many laboratories. The true value and benefits need to be established and communicated. Overproduction is a concern both from ethical and financial viewpoints. There is an opportunity to further reduce wastage of D. rerio. There are clear concerns and opportunities for the scientific community to work together to further improve the welfare of these important laboratory models.
Collapse
Affiliation(s)
- K Lidster
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, U.K
| | - G D Readman
- University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, U.K
| | - M J Prescott
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, U.K
| | - S F Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, U.K
| |
Collapse
|
30
|
Grécias L, Hébert FO, Berger CS, Barber I, Aubin-Horth N. Can the behaviour of threespine stickleback parasitized with Schistocephalus solidus be replicated by manipulating host physiology? J Exp Biol 2016; 220:237-246. [DOI: 10.1242/jeb.151456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 12/25/2022]
Abstract
Sticklebacks infected by the parasitic flatworm Schistocephalus solidus show dramatic changes in phenotype, including a loss of species-typical behavioural responses to predators. The timing of host behaviour change coincides with the development of infectivity of the parasite to the final host (a piscivorous bird), making it an ideal model for studying the mechanisms of infection-induced behavioural modification. However, whether the loss of host anti-predator behaviour results from direct manipulation by the parasite, or is a by-product (e.g. host immune response) or side-effect of infection (e.g. energetic loss), remains controversial. To understand the physiological mechanisms that generate these behavioural changes, we quantified the behavioural profiles of experimentally infected fish and attempted to replicate these in non-parasitized fish by exposing them to treatments including immunity activation and fasting, or by pharmacologically inhibiting the stress axis. All fish were screened for the following behaviours: activity, water depth preference, sociability, phototaxis, anti-predator response and latency to feed. We were able to change individual behaviours with certain treatments. Our results suggest that the impact of S. solidus on the stickleback might be of a multifactorial nature. The behaviour changes observed in infected fish may be due to the combined effects of modifying the serotonergic axis, the lack of energy, and the activation of the immune system.
Collapse
Affiliation(s)
- Lucie Grécias
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - François-Olivier Hébert
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Chloé Suzanne Berger
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Iain Barber
- Department of Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| |
Collapse
|