1
|
Hennes MM, Shrago E, Kissebah AH. Mechanism of Free Fatty Acid Effects on Hepatocyte Insulin Receptor Binding and Processing. ACTA ACUST UNITED AC 2012; 1:18-28. [PMID: 16353347 DOI: 10.1002/j.1550-8528.1993.tb00004.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We determined whether the palmitate effects on hepatocyte insulin receptor binding and post-receptor trafficking were mediated by accelerated mitochondrial beta-oxidation or accumulation of intracellular fatty acyl-CoA derivatives and possibly protein acylation. Preincubation of hepatocytes with moderate concentrations of palmitate (0.5 mM) resulted in a 23% decline in cell-surface binding and proportional decreases in receptor-mediated insulin internalization and degradation. Brief pretreatment of hepatocytes with the carnitine palmityltransferase-I inhibitor, methyl palmoxirate (MP), prevented 70% of the palmitate effects. At higher palmitate concentrations (2.0 mM), cell-surface binding was reduced by 34%, whereas internalization of the receptor complex was reduced by 78%. These effects were only partially prevented by MP pretreatment. Receptor-mediated insulin degradation increased by 34% and was uninfluenced by MP pretreatment. Octanoate, which is rapidly shunted into mitochondrial oxidation, produced a dose-dependent reduction in insulin binding, with proportional decreases in internalization and degradation. Similarly preincubation with 2.0 mM oleate, which, unlike palmitate, is not known to produce protein acylation, resulted in proportional decreases in insulin receptor binding and receptor-mediated internalization and degradation. High concentrations of octanoate or oleate (2.0 mM) did not reproduce the additive post-receptor effects of palmitate. We conclude that the receptor and post-receptor effects of moderate palmitate concentrations are closely linked to accelerated fatty acid oxidation. The post-receptor effects observed at higher concentrations involve other mechanisms, possibly relating to intracellular levels of palmityl-CoA derivatives.
Collapse
Affiliation(s)
- M M Hennes
- Dept. of Medicine and Clinical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
2
|
Coletta DK, Mandarino LJ. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab 2011; 301:E749-55. [PMID: 21862724 PMCID: PMC3214002 DOI: 10.1152/ajpendo.00363.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin resistance in skeletal muscle is a prominent feature of obesity and type 2 diabetes. The association between mitochondrial changes and insulin resistance is well known. More recently, there is growing evidence of a relationship between inflammation, extracellular remodeling, and insulin resistance. The intent of this review is to propose a potentially novel mechanism for the development of insulin resistance, focusing on the underappreciated connections among inflammation, extracellular remodeling, cytoskeletal interactions, mitochondrial function, and insulin resistance in human skeletal muscle. Several sources of inflammation, including expansion of adipose tissue resulting in increased lipolysis and alterations in pro- and anti-inflammatory cytokines, contribute to the insulin resistance observed in obesity and type 2 diabetes. In the experimental model of lipid oversupply, an inflammatory response in skeletal muscle leads to altered expression extracellular matrix-related genes as well as nuclear encoded mitochondrial genes. A similar pattern also is observed in "naturally" occurring insulin resistance in muscle of obese nondiabetic individuals and patients with type 2 diabetes mellitus. More recently, alterations in proteins (including α-actinin-2, desmin, proteasomes, and chaperones) involved in muscle structure and function have been observed in insulin-resistant muscle. Some of these cytoskeletal proteins are mechanosignal transducers that allow muscle fibers to sense contractile activity and respond appropriately. The ensuing alterations in expression of genes coding for mitochondrial proteins and cytoskeletal proteins may contribute to the mitochondrial changes observed in insulin-resistant muscle. These changes in turn may lead to a reduction in fat oxidation and an increase in intramyocellular lipid, which contributes to the defects in insulin signaling in insulin resistance.
Collapse
Affiliation(s)
- Dawn K Coletta
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287-3704, USA
| | | |
Collapse
|
3
|
Hirabara SM, Silveira LR, Abdulkader F, Carvalho CRO, Procopio J, Curi R. Time-dependent effects of fatty acids on skeletal muscle metabolism. J Cell Physiol 2006; 210:7-15. [PMID: 17013887 DOI: 10.1002/jcp.20811] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.
Collapse
Affiliation(s)
- Sandro M Hirabara
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
4
|
Clerk LH, Rattigan S, Clark MG. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes 2002; 51:1138-45. [PMID: 11916937 DOI: 10.2337/diabetes.51.4.1138] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Infusion of triglycerides and heparin causes insulin resistance in muscle. Because the vascular actions of insulin, particularly capillary recruitment, may contribute to the increase in glucose uptake by skeletal muscle, we investigated the effects of Intralipid/heparin infusion on the hemodynamic actions of insulin during clamp conditions. Saline or 10% Intralipid/heparin (33 U/ml) was infused into anesthetized rats at 20 microl/min for 6 h. At 4 h into the saline infusion, a 2-h hyperinsulinemic (3 mU. min(-1).kg(-1))-euglycemic clamp was conducted (Ins group). At 4 h into the lipid infusion, a 2-h saline control (Lip group) or 2-h hyperinsulinemic-euglycemic clamp (Lip + Ins group) was conducted. Arterial blood pressure, heart rate, femoral blood flow (FBF), hindleg vascular resistance, glucose infusion rate (GIR), hindleg glucose uptake (HGU), and muscle 2-deoxyglucose uptake (R'g) were measured. Capillary recruitment, as measured by metabolism of infused 1-methylxanthine (1-MX), was also assessed. When compared with either Lip or Lip + Ins, Ins had no effect on arterial blood pressure, heart rate, FBF, or vascular resistance but increased GIR, HGU, and R'g of soleus, plantaris, extensor digitorum longus, and gastrocnemius red muscles and hindlimb 1-MX metabolism. GIR, HGU, and R'g of soleus, plantaris, gastrocnemius red, and the combined muscles and 1-MX metabolism were less in Lip + Ins than in Ins rats. HGU correlated closely with hindleg capillary recruitment (r = 0.86, P < 0.001) but not total hindleg blood flow. In conclusion, acute elevation of plasma free fatty acids blocks insulin-mediated glucose uptake and capillary recruitment.
Collapse
Affiliation(s)
- Lucy H Clerk
- Department of Biochemistry, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | | |
Collapse
|
5
|
Meuillet EJ, Wiernsperger N, Mania-Farnell B, Hubert P, Cremel G. Metformin modulates insulin receptor signaling in normal and cholesterol-treated human hepatoma cells (HepG2). Eur J Pharmacol 1999; 377:241-52. [PMID: 10456437 DOI: 10.1016/s0014-2999(99)00386-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of the biguanide anti-hyperglycemic agent, metformin (N,N'-dimethyl-biguanide), on insulin signaling was studied in a human hepatoma cell line (HepG2). Cells were cultured in the absence (control cells) or in the presence of 100 microM of a cholesterol derivative, hemisuccinate of cholesterol. Cholesterol hemisuccinate-treatment alters cholesterol and lipid content of HepG2 and modulates membrane fluidity. Cholesterol hemisuccinate-treatment induces a decrease in insulin responsiveness and creates an 'insulin-resistant' state in these cells. Exposure to 100 microM of metformin resulted in a significant enhancement of insulin-stimulated lipogenesis in control and cholesterol hemisuccinate-treated cells. In control cells, metformin altered glycogenesis in a biphasic manner. In cholesterol hemisuccinate-treated cells, metformin inhibited basal glycogenesis but restored insulin-stimulated glycogenesis. Hence, to understand the mechanism of metformin action, we analyzed early steps in the insulin signaling pathway, including insulin receptor autophosphorylation, mitogen-activated-protein kinase and phosphatidylinositol 3-kinase activities, in both control and cholesterol hemisuccinate-treated cells. Overall, the results suggest that metformin may interact with the insulin receptor and/or a component involved in the early steps of insulin signal transduction.
Collapse
Affiliation(s)
- E J Meuillet
- Children's Memorial Hospital-CMIER, Pediatric Brain Tumor Research Program, Chicago, IL 60614, USA.
| | | | | | | | | |
Collapse
|
6
|
Meuillet EJ, Leray V, Hubert P, Leray C, Cremel G. Incorporation of exogenous lipids modulates insulin signaling in the hepatoma cell line, HepG2. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:38-48. [PMID: 10354513 DOI: 10.1016/s0925-4439(99)00023-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The lipid content of cultured cells can be experimentally modified by supplementing the culture medium with specific lipids or by the use of phospholipases. In the case of the insulin receptor, these methods have contributed to a better understanding of lipid disorder-related diseases. Previously, our laboratory demonstrated that experimental modification of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (ZHC) resulted in an alteration in insulin receptor binding and biological action (Bruneau et al., Biochim. Biophys. Acta 928 (1987) 287-296/297-304). In this paper, we have examined the effects of lipid modification in another hepatoma cell line, HepG2. Exogenous linoleic acid (LA, n-6), eicosapentaenoic acid (EPA, n-3) or hemisuccinate of cholesterol (CHS) was added to HepG2 cells, to create a cellular model in which membrane composition was modified. In this model, we have shown that: (1) lipids were incorporated in treated HepG2 cells, but redistributed differently when compared to treated ZHC cells; (2) that insulin signaling events, such as insulin receptor autophosphorylation and the phosphorylation of the major insulin receptor substrate (IRS-1) were altered in response to the addition of membrane lipids or cholesterol derived components; and (3) different lipids affected insulin receptor signaling differently. We have also shown that the loss of insulin receptor autophosphorylation in CHS-treated cells can be correlated with a decreased sensitivity to insulin. Overall, the results suggest that the lipid environment of the insulin receptor may play an important role in insulin signal transduction.
Collapse
Affiliation(s)
- E J Meuillet
- Children's Memorial Hospital, Pediatric Brain Tumor Research Program, CMIER Building, 2300 Children's Plaza, M/C 226, Chicago, IL 60614, USA.
| | | | | | | | | |
Collapse
|
7
|
Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103:253-9. [PMID: 9916137 PMCID: PMC407880 DOI: 10.1172/jci5001] [Citation(s) in RCA: 856] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To examine the mechanism by which free fatty acids (FFA) induce insulin resistance in human skeletal muscle, glycogen, glucose-6-phosphate, and intracellular glucose concentrations were measured using carbon-13 and phosphorous-31 nuclear magnetic resonance spectroscopy in seven healthy subjects before and after a hyperinsulinemic-euglycemic clamp following a five-hour infusion of either lipid/heparin or glycerol/heparin. IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity was also measured in muscle biopsy samples obtained from seven additional subjects before and after an identical protocol. Rates of insulin stimulated whole-body glucose uptake. Glucose oxidation and muscle glycogen synthesis were 50%-60% lower following the lipid infusion compared with the glycerol infusion and were associated with a approximately 90% decrease in the increment in intramuscular glucose-6-phosphate concentration, implying diminished glucose transport or phosphorylation activity. To distinguish between these two possibilities, intracellular glucose concentration was measured and found to be significantly lower in the lipid infusion studies, implying that glucose transport is the rate-controlling step. Insulin stimulation, during the glycerol infusion, resulted in a fourfold increase in PI 3-kinase activity over basal that was abolished during the lipid infusion. Taken together, these data suggest that increased concentrations of plasma FFA induce insulin resistance in humans through inhibition of glucose transport activity; this may be a consequence of decreased IRS-1-associated PI 3-kinase activity.
Collapse
Affiliation(s)
- A Dresner
- Department of Internal Medicine, Yale University, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fickova M, Hubert P, Crémel G, Leray C. Dietary (n-3) and (n-6) polyunsaturated fatty acids rapidly modify fatty acid composition and insulin effects in rat adipocytes. J Nutr 1998; 128:512-9. [PMID: 9482757 DOI: 10.1093/jn/128.3.512] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influence of dietary (n-3) compared with (n-6) polyunsatured fatty acids (PUFA) on the lipid composition and metabolism of adipocytes was evaluated in rats over a period of 1 week. Isocaloric diets comprised 16.3 g/100 g protein, 53.8 g/100 g carbohydrate and 21.4 g/100 g lipids, the latter containing either (n-3) PUFA (32.4 mol/100 mol) or (n-6) PUFA (37.8 mol/100 mol) but having identical contents of saturated, monounsaturated and total unsaturated fatty acids and identical polyunsaturated to saturated fatty acid ratios and double bond indexes. Despite comparable food intake, significantly smaller body weight increments and adipocyte size were observed in rats of the (n-3) diet group after feeding for 1 wk. Rats fed the (n-3) diet also had significantly lower concentrations of serum triglycerides, cholesterol and insulin compared with those fed the (n-6) diet, although levels of serum glucose and free fatty acids did not differ in the two dietary groups. In the (n-6) diet group, the (n-6) and (n-3) PUFA contents of plasma triglycerides, free fatty acids and phospholipids were 30-60% higher and 60-80% lower, respectively, than in the (n-3) diet group, whereas adipocyte plasma membrane phospholipids showed a significantly higher unsaturated to saturated fatty acid ratio and greater fluidity. Glycerol release in response to noradrenaline was significantly higher in the adipocytes of rats fed the (n-3) diet, whereas the antilipolytic effect of insulin generally did not differ in the two groups. Finally, insulin stimulated the transport of glucose and its incorporation into fatty acids to a lesser extent in adipocytes of (n-3) diet fed rats compared with (n-6) diet fed rats. This reduction in the metabolic effects of insulin in rats fed a (n-3) diet for 1 wk could be related to smaller numbers and a lower binding capacity of the insulin receptors on adipocytes and/or to a lesser degree of phosphorylation of the 95 kDa beta subunit of the receptor. In conclusion, dietary intake for 1 wk of (n-3) rather than (n-6) PUFA is sufficient to induce significant differences in the lipid composition and metabolic responses to insulin of rat adipocytes.
Collapse
Affiliation(s)
- M Fickova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, 83306 Bratislava, Slovakia
| | | | | | | |
Collapse
|
9
|
Arnold RS, Newton AC. Inhibition of the insulin receptor tyrosine kinase by phosphatidic acid. J Cell Biochem 1996; 62:516-28. [PMID: 8891897 DOI: 10.1002/(sici)1097-4644(19960915)62:4%3c516::aid-jcb9%3e3.0.co;2-p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The lipid second messenger, phosphatidic acid, inhibits the intrinsic tyrosine kinase activity of the insulin receptor in detergent-lipid mixed micelles or in reconstituted membranes. Enzymatic studies revealed that this lipid second messenger inhibits the catalytic activity of partially purified insulin receptor without affecting the affinity of the receptor for insulin. Selectivity in the protein-lipid interaction is suggested by the inability of several other acidic lipids to affect the kinase activity of the receptor and by the relative insensitivity of the inhibition to increasing ionic strength and, in some cases, micelle surface charge. Lysophosphatidic acid and phosphatidic acids with short acyl chains do not affect significantly the receptor's kinase activity, suggesting that hydrophobic interactions are involved in the inhibition. Thus, both a high affinity interaction of the insulin receptor with the phosphate headgroup and a stabilizing hydrophobic interaction with the acyl chains contribute to the inhibitory protein-lipid interaction. The selective sensitivity of the insulin receptor to phosphatidic acid suggests that the receptor-mediated generation of this lipid in the plasma membrane could negatively modulate insulin receptor function.
Collapse
Affiliation(s)
- R S Arnold
- Department of Pharmacology, University of California at San Diego, La Jolla 92093-0640, USA
| | | |
Collapse
|
10
|
|
11
|
Gumbiner B, Mucha JF, Lindstrom JE, Rekhi I, Livingston JN. Differential effects of acute hypertriglyceridemia on insulin action and insulin receptor autophosphorylation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:E424-9. [PMID: 8638688 DOI: 10.1152/ajpendo.1996.270.3.e424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimentally induced hypertriglyceridemia (HTG) and high plasma free fatty acid (FFA) levels impair in vivo insulin action. To determine if this is a consequence of impaired in vivo insulin receptor autophosphorylation and related to defective receptor signaling, hyperinsulinemic euglycemic clamps, indirect calorimetry, and skeletal muscle biopsies were performed in nine healthy subjects. In vivo insulin action was determined from the glucose infusion rate (GINF) and glucose oxidation (Glcox) during 40 and 120 mU/m2 /min clamps with (HTG clamp) and without (control clamp) a triglyceride emulsion infusion. The percentage of receptors autophosphorylated in vivo was determined by 125I-labeled insulin tracer binding in skeletal muscle immunoprecipitates of insulin receptors and phosphorylated receptors. Compared with the control clamps, plasma triglycerides and FFA increased four- and twofold, whereas GINF and Glcox decreased 15 and 35%, respectively, during the HTG clamps (all P<0.05). However, the percentages of receptors phosphorylated after the 40 and 120 mU/m2/min HTG clamps (9.2 +/- 1.5 and 21.1 +/- 2.6%, respectively) were similar to the control clamps (9.0 +/- 0.6 and 18.6 +/- 2.2%, respectively). These results indicate that, if impaired insulin signal transduction is a mechanism by which HTG and FFA impair insulin action, it occurs at a site downstream from insulin receptor autophosphorylation.
Collapse
Affiliation(s)
- B Gumbiner
- Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14620, USA
| | | | | | | | | |
Collapse
|
12
|
Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts CT, LeRoith D, Zick Y. Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats. Biochem J 1994; 298 ( Pt 2):443-50. [PMID: 8135754 PMCID: PMC1137960 DOI: 10.1042/bj2980443] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Insulin resistance is very common in the elderly, and may be associated with glucose intolerance or frank diabetes. In previous studies we demonstrated that insulin resistance in old Wistar rats is associated with decreased autophosphorylation and activation of the hepatic insulin receptor kinase (IRK) in vivo. We now show that this defect can be reproduced in vitro, where the extent of insulin-induced activation of IRK in liver membranes of old rats was decreased by approximately 50% compared with young controls. The defect could be largely abolished after solubilization of the membranes with Triton X-100. We also show that: (a) the viscosity of membranes from the old rats was significantly (P < 0.001, n = 4) higher (by 15%) compared with young controls; (b) incubation of plasma membranes from old animals with lecithin liposomes, which lowered their cholesterol levels, partially abolished the defect in IRK activation; and (c) Triton extracts of liver membranes prepared from old rats did not interfere with the activation of IRK derived from young controls. Additionally, non-membrane components did contribute to the development of this defect. We observed a significant (approximately 30%) (P < 0.001, n = 18) elevation of cytosolic protein tyrosine phosphatase (PTP) activity directed against the beta subunit of the insulin receptor in livers of old rats. No such elevation of PTP activity could be demonstrated with synthetic substrates. Our findings are consistent with a model in which increased membrane viscosity as well as enhancement of a cytosolic PTP activity both markedly inhibit the activation in vivo of the hepatic IRK in old animals.
Collapse
Affiliation(s)
- O Nadiv
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
13
|
Crémel G, Ficková M, Klimes I, Leray C, Leray V, Meuillet E, Roques M, Staedel C, Hubert P. Lipid modulation of insulin receptor tyrosine kinase activity in cultured cells, animals, and reconstituted systems. Ann N Y Acad Sci 1993; 683:164-71. [PMID: 8394663 DOI: 10.1111/j.1749-6632.1993.tb35702.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- G Crémel
- INSERM U. 338, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Leray V, Hubert P, Burgun C, Staedel C, Crémel G. Reconstitution studies of lipid effects on insulin-receptor kinase activation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:277-84. [PMID: 8386623 DOI: 10.1111/j.1432-1033.1993.tb17760.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Insulin receptors extracted from human placenta were reconstituted by dialysis into well-characterized lipid vesicles. For all types of lipids studied, vesicles were shown to be unilamellar, about 120 nm in diameter. The incorporation of lectin-purified insulin receptors was assessed by cosedimentation of 125I-insulin binding and [32P]phospholipids in a sucrose gradient. The insulin-binding activity was not modified by the composition of the lipid vesicles. However, tyrosine kinase activation appeared to be more sensitive to its lipid environment. Mixtures of phosphatidylcholine/phosphatidylserine or phospholipids/phosphatidylserine, in ratios of 1-4, increased the insulin-induced tyrosine kinase activation in a dose-dependent manner. In contrast, experiments performed in the presence of phosphatidylinositol showed a decrease in the enzyme stimulation. These results indicate an opposing involvement of these two anionic phospholipids in the kinase activation. Inclusion of cholesterol (10-30%) into phosphatidylcholine vesicles reduced kinase activation, which was drastically inhibited by 30% cholesterol. The effect of a total extract of brain gangliosides was biphasic, stimulatory at low concentration (5-10%), but with a reverse effect at higher concentrations. These results stress the importance of the lipid environment for insulin-receptor signaling, particularly for the insulin-induced activation of its beta-subunit kinase.
Collapse
Affiliation(s)
- V Leray
- Institut National de la Santé et de la Recherche Médicale, Unité 338, Centre de Neurochimie, Strasbourg, France
| | | | | | | | | |
Collapse
|
15
|
Leray V, Hubert P, Crémel G, Staedel C. Detergents affect insulin binding, tyrosine kinase activity and oligomeric structure of partially purified insulin receptors. Arch Biochem Biophys 1992; 294:22-9. [PMID: 1312805 DOI: 10.1016/0003-9861(92)90131-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin receptor activities, i.e., insulin binding and tyrosine kinase activation depend on the lipid environment of the receptor. As detergent may disrupt or interfere with this environment, we investigated the effect of various common detergents on insulin receptor properties. Experiments were carried out (i) on solubilized and partially purified insulin receptor and (ii) on the receptor reconstituted into phosphatidylcholine vesicles. The detergents tested, Triton X-100, octyl-beta-D-glucopyranoside, octyl-beta-D-thioglucopyranoside, 3[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid (Chaps), and Na deoxycholate affected the insulin receptor properties differently when compared with the control receptor in the absence of detergent. On the partially purified insulin receptor, Na deoxycholate inhibited both insulin receptor activities; octyl-beta-D-glucopyranoside and octyl-beta-D-thioglucopyranoside decreased insulin binding and kinase activation as their concentration increased, particularly above their respective critical micellar concentration (CMC). Triton X-100 was the only detergent which allowed an increase of insulin binding and kinase activation throughout the whole range of concentrations assayed. Reconstitution of the receptor into phosphatidylcholine vesicles protected the receptor from the direct effects of the detergents, for both the stimulation observed with Triton X-100 and the inhibition produced by the other detergents. In order to determine the effect of detergents on the oligomeric forms of the soluble insulin receptor, we investigated a new rapid sucrose gradient centrifugation technique. Insulin receptors were detected on the gradient by 125I insulin binding. For low concentrations of detergent, i.e., near the CMC, octylglucoside, Chaps, and Triton X-100 favored the (alpha 2 beta 2)2 oligomeric form of the receptor. Higher concentrations of Triton X-100 did not modify the polymeric state of the receptor. In contrast, octylglucoside and Chaps induced an increase in the sedimentation coefficient of the receptor which appeared as (alpha 2 beta 2)3 and (alpha 2 beta 2)4 forms. These alterations in the oligomerization status of the insulin receptor may explain the deleterious effects observed with both Chaps and octylglucoside at higher concentrations.
Collapse
Affiliation(s)
- V Leray
- INSERM U.338, Centre de Neurochimie, Strasbourg, France
| | | | | | | |
Collapse
|