1
|
Poopanitpan N, Piampratom S, Viriyathanit P, Lertvatasilp T, Horiuchi H, Fukuda R, Kiatwuthinon P. SNF1 plays a crucial role in the utilization of n-alkane and transcriptional regulation of the genes involved in it in the yeast Yarrowia lipolytica. Heliyon 2024; 10:e32886. [PMID: 38975102 PMCID: PMC11226914 DOI: 10.1016/j.heliyon.2024.e32886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Yarrowia lipolytica is an ascomycetous yeast that can assimilate hydrophobic carbon sources including oil and n-alkane. The sucrose non-fermenting 1/AMP-activated protein kinase (Snf1/AMPK) complex is involved in the assimilation of non-fermentable carbon sources in various yeasts. However, the role of the Snf1/AMPK complex in n-alkane assimilation in Y. lipolytica has not yet been elucidated. This study aimed to clarify the role of Y. lipolytica SNF1 (YlSNF1) in the utilization of n-alkane. The deletion mutant of YlSNF1 (ΔYlsnf1) exhibited substantial growth defects on n-alkanes of various lengths (C10, C12, C14, and C16), and its growth was restored through the introduction of YlSNF1. Microscopic observations revealed that YlSnf1 tagged with enhanced green fluorescence protein showed dot-like distribution patterns in some cells cultured in the medium containing n-decane, which were not observed in cells cultured in the medium containing glucose or glycerol. The RNA sequencing analysis of ΔYlsnf1 cultured in the medium containing n-decane exhibited 302 downregulated and 131 upregulated genes compared with the wild-type strain cultured in the same medium. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that a significant fraction of the downregulated genes functioned in peroxisomes or were involved in the metabolism of n-alkane and fatty acids. Quantitative real-time PCR analysis confirmed the downregulation of 12 genes involved in the metabolism of n-alkane and fatty acid, ALK1-ALK3, ALK5, ADH7, PAT1, POT1, POX2, PEX3, PEX11, YAS1, and HFD3. Furthermore, ΔYlsnf1 exhibited growth defects on the medium containing the metabolites of n-alkane (fatty alcohol and fatty aldehyde). These findings suggest that YlSNF1 plays a crucial role in the utilization of n-alkane in Y. lipolytica. This study provides important insights into the advanced biotechnological applications of this yeast, including the bioconversion of n-alkane to useful chemicals and the bioremediation of petroleum-contaminated environments.
Collapse
Affiliation(s)
- Napapol Poopanitpan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Sorawit Piampratom
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Patthanant Viriyathanit
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Threesara Lertvatasilp
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Pichamon Kiatwuthinon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
2
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
3
|
Deb R, Nagotu S. The nexus between peroxisome abundance and chronological ageing in Saccharomyces cerevisiae. Biogerontology 2023; 24:81-97. [PMID: 36209442 DOI: 10.1007/s10522-022-09992-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Ageing is characterized by changes in several cellular processes, with dysregulation of peroxisome function being one of them. Interestingly, the most conserved function of peroxisomes, ROS homeostasis, is strongly associated with ageing and age-associated pathologies. Previous studies have identified a role for peroxisomes in the regulation of chronological lifespan in yeast. In this study, we report the effect of altered peroxisome number on the chronological lifespan of yeast in two different growth media conditions. Three mutants, pex11, pex25 and pex27, defective in peroxisome fission, have been thoroughly investigated for the chronological lifespan. Reduced chronological lifespan of all the mutants was observed in peroxisome-inducing growth conditions. Furthermore, the combined deletion pex11pex25 exhibited the most prominent reduction in lifespan. Interestingly altered peroxisomal phenotype upon ageing was observed in all the cells. Increased ROS accumulation and reduced catalase activity was exhibited by chronologically aged mutant cells. Interestingly, mutants with reduced number of peroxisomes concomitantly also exhibited an accumulation of free fatty acids and increased number of lipid droplets. Taken together, our results reveal a previously unrealized effect of fission proteins in the chronological lifespan of yeast.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Molotkovsky RJ, Kuzmin PI. Fusion of Peroxisome and Lipid Droplet Membranes: Expansion of a π-Shaped Structure. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822050105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Deori NM, Nagotu S. Peroxisome biogenesis and inter-organelle communication: an indispensable role for Pex11 and Pex30 family proteins in yeast. Curr Genet 2022; 68:537-550. [PMID: 36242632 DOI: 10.1007/s00294-022-01254-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
Peroxisomes are highly dynamic organelles present in most eukaryotic cells. They also play an important role in human health and the optimum functioning of cells. An extensive repertoire of proteins is associated with the biogenesis and function of these organelles. Two protein families that are involved in regulating peroxisome number in a cell directly or indirectly are Pex11 and Pex30. Interestingly, these proteins are also reported to regulate the contact sites between peroxisomes and other cell organelles such as mitochondria, endoplasmic reticulum and lipid droplets. In this manuscript, we review our current knowledge of the role of these proteins in peroxisome biogenesis in various yeast species. Further, we also discuss in detail the role of these protein families in the regulation of inter-organelle contacts in yeast.
Collapse
Affiliation(s)
- Nayan Moni Deori
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
6
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
7
|
Burkhart SE, Llinas RJ, Bartel B. PEX16 contributions to peroxisome import and metabolism revealed by viable Arabidopsis pex16 mutants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:853-870. [PMID: 30761735 PMCID: PMC6613983 DOI: 10.1111/jipb.12789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Peroxisomes rely on peroxins (PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum (ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX16 action. The only reported pex16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable, complicating analysis of PEX16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels. Both mutants displayed impaired peroxisome function - slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover, one pex16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX16 gene, these viable pex16 alleles allow assessment of the importance of Arabidopsis PEX16 and its functional domains.
Collapse
|
8
|
Jansen RLM, Klei IJ. The peroxisome biogenesis factors Pex3 and Pex19: multitasking proteins with disputed functions. FEBS Lett 2019; 593:457-474. [DOI: 10.1002/1873-3468.13340] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Renate L. M. Jansen
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| | - Ida J. Klei
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| |
Collapse
|
9
|
Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 2017; 7:16542-66. [PMID: 26918729 PMCID: PMC4941334 DOI: 10.18632/oncotarget.7665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.
Collapse
|
10
|
Hua R, Kim PK. Multiple paths to peroxisomes: Mechanism of peroxisome maintenance in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:881-91. [DOI: 10.1016/j.bbamcr.2015.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/19/2022]
|
11
|
Motley AM, Galvin PC, Ekal L, Nuttall JM, Hettema EH. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis. J Cell Biol 2016; 211:1041-56. [PMID: 26644516 PMCID: PMC4674274 DOI: 10.1083/jcb.201412066] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Analysis of Pex1 and dynamin-related protein function indicates peroxisomes multiply mainly by growth and division in Saccharomyces cerevisiae, whereas no evidence was found for the previously proposed role for Pex1 in peroxisome formation by fusion of ER-derived preperoxisomal vesicles. A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division.
Collapse
Affiliation(s)
- Alison M Motley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Paul C Galvin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - James M Nuttall
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| |
Collapse
|
12
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 4534] [Impact Index Per Article: 453.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:870-80. [PMID: 26392202 DOI: 10.1016/j.bbamcr.2015.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The importance of peroxisomes is highlighted by severe inherited human disorders linked to impaired peroxisomal biogenesis. Besides the simple architecture of these ubiquitous and dynamic organelles, their biogenesis is surprisingly complex and involves specialized proteins, termed peroxins, which mediate targeting and insertion of peroxisomal membrane proteins (PMPs) into the peroxisomal bilayer, and the import of soluble proteins into the protein-dense matrix of the organelle. The long-standing paradigm that all peroxisomal proteins are imported directly into preexisting peroxisomes has been challenged by the detection of PMPs inside the endoplasmic reticulum (ER). New models propose that the ER originates peroxisomal biogenesis by mediating PMP trafficking to the peroxisomes via budding vesicles. However, the relative contribution of this ER-derived pathway to the total peroxisome population in vivo, and the detailed mechanisms of ER entry and exit of PMPs are controversially discussed. This review aims to summarize present knowledge about how PMPs are targeted to the ER, instead of being inserted directly into preexisting peroxisomes. Moreover, molecular mechanisms that facilitate bilayer insertion of PMPs among different species are discussed.
Collapse
|
14
|
No peroxisome is an island - Peroxisome contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1061-9. [PMID: 26384874 DOI: 10.1016/j.bbamcr.2015.09.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
In order to optimize their multiple cellular functions, peroxisomes must collaborate and communicate with the surrounding organelles. A common way of communication between organelles is through physical membrane contact sites where membranes of two organelles are tethered, facilitating exchange of small molecules and intracellular signaling. In addition contact sites are important for controlling processes such as metabolism, organelle trafficking, inheritance and division. How peroxisomes rely on contact sites for their various cellular activities is only recently starting to be appreciated and explored and the extent of peroxisomal communication, their contact sites and their functions are less characterized. In this review we summarize the identified peroxisomal contact sites, their tethering complexes and their potential physiological roles. Additionally, we highlight some of the preliminary evidence that exists in the field for unexplored peroxisomal contact sites.
Collapse
|
15
|
Chang J, Klute MJ, Tower RJ, Mast FD, Dacks JB, Rachubinski RA. An ancestral role in peroxisome assembly is retained by the divisional peroxin Pex11 in the yeast Yarrowia lipolytica. J Cell Sci 2015; 128:1327-40. [PMID: 25663700 DOI: 10.1242/jcs.157743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The peroxin Pex11 has a recognized role in peroxisome division. Pex11p remodels and elongates peroxisomal membranes prior to the recruitment of dynamin-related GTPases that act in membrane scission to divide peroxisomes. We performed a comprehensive comparative genomics survey to understand the significance of the evolution of the Pex11 protein family in yeast and other eukaryotes. Pex11p is highly conserved and ancestral, and has undergone numerous lineage-specific duplications, whereas other Pex11 protein family members are fungal-specific innovations. Functional characterization of the in-silico-predicted Pex11 protein family members of the yeast Yarrowia lipolytica, i.e. Pex11p, Pex11Cp and Pex11/25p, demonstrated that Pex11Cp and Pex11/25p have a role in the regulation of peroxisome size and number characteristic of Pex11 protein family members. Unexpectedly, deletion of PEX11 in Y. lipolytica produces cells that lack morphologically identifiable peroxisomes, mislocalize peroxisomal matrix proteins and preferentially degrade peroxisomal membrane proteins, i.e. they exhibit the classical pex mutant phenotype, which has not been observed previously in cells deleted for the PEX11 gene. Our results are consistent with an unprecedented role for Pex11p in de novo peroxisome assembly.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mary J Klute
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robert J Tower
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
16
|
Williams C. Going against the flow: A case for peroxisomal protein export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1386-92. [DOI: 10.1016/j.bbamcr.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
17
|
Wang E, Zhao E, Hong Y, Lam JWY, Tang BZ. A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. J Mater Chem B 2014; 2:2013-2019. [DOI: 10.1039/c3tb21675f] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An aggregation-induced emission fluorogen, TPE-AmAl, is reported to selectively image lipid droplets in live cells and green algae with high selectivity, high specificity, excellent photostability and low cytotoxicity.
Collapse
Affiliation(s)
- Erjing Wang
- HKUST-Shenzhen Research Institute
- Shenzhen, China
- Department of Chemistry
- Division of Biomedical Engineering
- Division of Life Science, State Key laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials and Institute for Advanced Study
| | - Engui Zhao
- HKUST-Shenzhen Research Institute
- Shenzhen, China
- Department of Chemistry
- Division of Biomedical Engineering
- Division of Life Science, State Key laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials and Institute for Advanced Study
| | - Yuning Hong
- HKUST-Shenzhen Research Institute
- Shenzhen, China
- Department of Chemistry
- Division of Biomedical Engineering
- Division of Life Science, State Key laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials and Institute for Advanced Study
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute
- Shenzhen, China
- Department of Chemistry
- Division of Biomedical Engineering
- Division of Life Science, State Key laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials and Institute for Advanced Study
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute
- Shenzhen, China
- Department of Chemistry
- Division of Biomedical Engineering
- Division of Life Science, State Key laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials and Institute for Advanced Study
| |
Collapse
|
18
|
Sheibani S, Richard VR, Beach A, Leonov A, Feldman R, Mattie S, Khelghatybana L, Piano A, Greenwood M, Vali H, Titorenko VI. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from "liponecrosis", a previously unknown form of programmed cell death. Cell Cycle 2013; 13:138-47. [PMID: 24196447 DOI: 10.4161/cc.26885] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We identified a form of cell death called "liponecrosis." It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities-namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis.
Collapse
Affiliation(s)
- Sara Sheibani
- Department of Anatomy and Cell Biology; McGill University; Montreal, Quebec, Canada; Department of Chemistry and Chemical Engineering; Royal Military College of Canada; Kingston, Ontario, Canada
| | - Vincent R Richard
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Adam Beach
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Anna Leonov
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Rachel Feldman
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Sevan Mattie
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | | | - Amanda Piano
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Michael Greenwood
- Department of Chemistry and Chemical Engineering; Royal Military College of Canada; Kingston, Ontario, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology; McGill University; Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Thoms S, Debelyy MO, Connerth M, Daum G, Erdmann R. The putative Saccharomyces cerevisiae hydrolase Ldh1p is localized to lipid droplets. EUKARYOTIC CELL 2011; 10:770-5. [PMID: 21478430 PMCID: PMC3127662 DOI: 10.1128/ec.05038-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022]
Abstract
Here, we report the identification of a novel hydrolase in Saccharomyces cerevisiae. Ldh1p (systematic name, Ybr204cp) comprises the typical GXSXG-type lipase motif of members of the α/β-hydrolase family and shares some features with the peroxisomal lipase Lpx1p. Both proteins carry a putative peroxisomal targeting signal type1 (PTS1) and can be aligned with two regions of homology. While Lpx1p is known as a peroxisomal enzyme, subcellular localization studies revealed that Ldh1p is predominantly localized to lipid droplets, the storage compartment of nonpolar lipids. Ldh1p is not required for the function and biogenesis of peroxisomes, and targeting of Ldh1p to lipid droplets occurs independently of the PTS1 receptor Pex5p.
Collapse
Affiliation(s)
- Sven Thoms
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Mykhaylo O. Debelyy
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Melanie Connerth
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
20
|
Chang J, Mast FD, Fagarasanu A, Rachubinski DA, Eitzen GA, Dacks JB, Rachubinski RA. Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. ACTA ACUST UNITED AC 2009; 187:233-46. [PMID: 19822674 PMCID: PMC2768826 DOI: 10.1083/jcb.200902117] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pex3 links peroxisome formation and inheritance. By binding to class V myosin, biogenesis protein Pex3 also directs the organelles into daughter cells. In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Goldberg AA, Bourque SD, Kyryakov P, Gregg C, Boukh-Viner T, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S, Cyr D, Milijevic S, Titorenko VI. Effect of calorie restriction on the metabolic history of chronologically aging yeast. Exp Gerontol 2009; 44:555-71. [PMID: 19539741 DOI: 10.1016/j.exger.2009.06.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/30/2009] [Accepted: 06/05/2009] [Indexed: 11/30/2022]
Abstract
Aging is a highly complex, multifactorial process. We use the yeast Saccharomyces cerevisiae as a model to study the mechanisms of cellular aging in multicellular eukaryotes. To address the inherent complexity of aging from a systems perspective and to build an integrative model of aging process, we investigated the effect of calorie restriction (CR), a low-calorie dietary regimen, on the metabolic history of chronologically aging yeast. We examined how CR influences the age-related dynamics of changes in the intracellular levels of numerous proteins and metabolites, carbohydrate and lipid metabolism, interorganellar metabolic flow, concentration of reactive oxygen species, mitochondrial morphology, essential oxidation-reduction processes in mitochondria, mitochondrial proteome, cardiolipin in the inner mitochondrial membrane, frequency of mitochondrial DNA mutations, dynamics of mitochondrial nucleoid, susceptibility to mitochondria-controlled apoptosis, and stress resistance. Based on the comparison of the metabolic histories of long-lived CR yeast and short-lived non-CR yeast, we propose that yeast define their long-term viability by designing a diet-specific pattern of metabolism and organelle dynamics prior to reproductive maturation. Thus, our data suggest that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization they developed, in a diet-specific fashion, prior to entry into a non-proliferative state.
Collapse
|
22
|
Titorenko VI, Rachubinski RA. Spatiotemporal dynamics of the ER-derived peroxisomal endomembrane system. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 272:191-244. [PMID: 19121819 DOI: 10.1016/s1937-6448(08)01605-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recent studies have provided evidence that peroxisomes constitute a multicompartmental endomembrane system. The system begins to form with the targeting of certain peroxisomal membrane proteins to the ER and their exit from the ER via preperoxisomal carriers. These carriers undergo a multistep maturation into metabolically active peroxisomes containing the entire complement of peroxisomal membrane and matrix proteins. At each step, the import of a subset of proteins and the uptake of certain membrane lipids result in the formation of a distinct, more mature compartment of the peroxisomal endomembrane system. Individual peroxisomal compartments proliferate by undergoing one or several rounds of division. Herein, we discuss various strategies that evolutionarily diverse organisms use to coordinate compartment formation, maturation, and division in the peroxisomal endomembrane system. We also critically evaluate the molecular and cellular mechanisms governing these processes, outline the most important unanswered questions, and suggest directions for future research.
Collapse
|
23
|
Affiliation(s)
- Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9041, USA.
| |
Collapse
|
24
|
Abstract
PEX genes encode proteins, termed peroxins, that are required for the biogenesis and proliferation of microbodies (peroxisomes). We have screened the available protein and DNA databases to identify putative peroxin orthologs in 17 fungal species (yeast and filamentous fungi) and in humans. This analysis demonstrated that most peroxins are present in all fungi under study. Only Pex16p is absent in most yeast species, with the exception of Yarrowia lipolytica, but this peroxin is present in all filamentous fungi. Furthermore, we found that the Y. lipolytica PEX9 gene, a putative orphan gene, might encode a Pex26p ortholog. In addition, in the genomes of Saccharomyces cerevisiae and Candida glabrata, several PEX genes appear to have been duplicated, exemplified by the presence of paralogs of the peroxins Pex5p and Pex21p, which were absent in other organisms. In all organisms, we observed multiple paralogs of the peroxins involved in organelle proliferation. These proteins belong to two groups of peroxins that we propose to designate the Pex11p and Pex23p families. This redundancy may complicate future studies on peroxisome biogenesis and proliferation in fungal species.
Collapse
Affiliation(s)
- Jan A K W Kiel
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
25
|
Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M. Import of peroxisomal membrane proteins: The interplay of Pex3p- and Pex19p-mediated interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1639-46. [PMID: 17069900 DOI: 10.1016/j.bbamcr.2006.09.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/07/2006] [Accepted: 09/20/2006] [Indexed: 02/01/2023]
Abstract
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
26
|
Boukh-Viner T, Titorenko VI. Lipids and lipid domains in the peroxisomal membrane of the yeast Yarrowia lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1688-96. [PMID: 17023063 DOI: 10.1016/j.bbamcr.2006.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/10/2006] [Accepted: 08/18/2006] [Indexed: 11/26/2022]
Abstract
Biological membranes have unique and highly diverse compositions of their lipid constituents. At present, we have only partial understanding of how membrane lipids and lipid domains regulate the structural integrity and functionality of cellular organelles, maintain the unique molecular composition of each organellar membrane by orchestrating the intracellular trafficking of membrane-bound proteins and lipids, and control the steady-state levels of numerous signaling molecules generated in biological membranes. Similar to other organellar membranes, a single lipid bilayer enclosing the peroxisome, an organelle known for its essential role in lipid metabolism, has a unique lipid composition and organizes some of its lipid and protein components into distinctive assemblies. This review highlights recent advances in our knowledge of how lipids and lipid domains of the peroxisomal membrane regulate the processes of peroxisome assembly and maintenance in the yeast Yarrowia lipolytica. We critically evaluate the molecular mechanisms through which lipid constituents of the peroxisomal membrane control these multistep processes and outline directions for future research in this field.
Collapse
Affiliation(s)
- Tatiana Boukh-Viner
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-9, Montreal, Quebec, Canada H4B 1R6
| | | |
Collapse
|
27
|
Browman DT, Resek ME, Zajchowski LD, Robbins SM. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 2006; 119:3149-60. [PMID: 16835267 DOI: 10.1242/jcs.03060] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our laboratory was interested in characterizing the molecular composition of non-caveolar lipid rafts. Thus, we generated monoclonal antibodies to lipid raft proteins of human myelomonocytic cells. Two of these proteins, KE04p and C8orf2, were found to be highly enriched in the detergent-insoluble, buoyant fraction of sucrose gradients in a cholesterol-dependent manner. They contain an evolutionarily conserved domain placing them in the prohibitin family of proteins. In contrast to other family members, these two proteins localized to the ER. Furthermore, the extreme N-termini of KE04p and C8orf2 were found to be sufficient for heterologous targeting of GFP to the ER in the absence of classical ER retrieval motifs. We also demonstrate that all prohibitin family members rely on sequences in their extreme N-termini for their distinctive subcellular distributions including the mitochondria, plasma membrane and Golgi vesicles. Owing to their subcellular localization and their presence in lipid rafts, we have named KE04p and C8orf2, ER lipid raft protein (erlin)-1 and erlin-2, respectively. Interestingly, the ER contains relatively low levels of cholesterol and sphingolipids compared with other organelles. Thus, our data support the existence of lipid-raft-like domains within the membranes of the ER.
Collapse
Affiliation(s)
- Duncan T Browman
- Southern Alberta Cancer Research Institute, Departments of Oncology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
28
|
Titorenko VI, Mullen RT. Peroxisome biogenesis: the peroxisomal endomembrane system and the role of the ER. ACTA ACUST UNITED AC 2006; 174:11-7. [PMID: 16801391 PMCID: PMC2064154 DOI: 10.1083/jcb.200604036] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes have long been viewed as semiautonomous, static, and homogenous organelles that exist outside the secretory and endocytic pathways of vesicular flow. However, growing evidence supports the view that peroxisomes actually constitute a dynamic endomembrane system that originates from the endoplasmic reticulum. This review highlights the various strategies used by evolutionarily diverse organisms for coordinating the flow of membrane-enclosed carriers through the peroxisomal endomembrane system and critically evaluates the dynamics and molecular mechanisms of this multistep process.
Collapse
|
29
|
Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RGW, Goodman JM. An intimate collaboration between peroxisomes and lipid bodies. ACTA ACUST UNITED AC 2006; 173:719-31. [PMID: 16735577 PMCID: PMC2063889 DOI: 10.1083/jcb.200511125] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although peroxisomes oxidize lipids, the metabolism of lipid bodies and peroxisomes is thought to be largely uncoupled from one another. In this study, using oleic acid-cultured Saccharomyces cerevisiae as a model system, we provide evidence that lipid bodies and peroxisomes have a close physiological relationship. Peroxisomes adhere stably to lipid bodies, and they can even extend processes into lipid body cores. Biochemical experiments and proteomic analysis of the purified lipid bodies suggest that these processes are limited to enzymes of fatty acid beta oxidation. Peroxisomes that are unable to oxidize fatty acids promote novel structures within lipid bodies ("gnarls"), which may be organized arrays of accumulated free fatty acids. However, gnarls are suppressed, and fatty acids are not accumulated in the absence of peroxisomal membranes. Our results suggest that the extensive physical contact between peroxisomes and lipid bodies promotes the coupling of lipolysis within lipid bodies with peroxisomal fatty acid oxidation.
Collapse
Affiliation(s)
- Derk Binns
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Estrada de Martin P, Novick P, Ferro-Novick S. The organization, structure, and inheritance of the ER in higher and lower eukaryotes. Biochem Cell Biol 2006; 83:752-61. [PMID: 16333327 DOI: 10.1139/o05-159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endoplasmic reticulum (ER) is a fundamental organelle required for protein assembly, lipid biosynthesis, and vesicular traffic, as well as calcium storage and the controlled release of calcium from the ER lumen into the cytosol. Membranes functionally linked to the ER by vesicle-mediated transport, such as the Golgi complex, endosomes, vacuoles-lysosomes, secretory vesicles, and the plasma membrane, originate largely from proteins and lipids synthesized in the ER. In this review we will discuss the structural organization of the ER and its inheritance.
Collapse
Affiliation(s)
- Paula Estrada de Martin
- Department of Cell Biology, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06519, USA
| | | | | |
Collapse
|
31
|
Haan GJ, Baerends RJS, Krikken AM, Otzen M, Veenhuis M, van der Klei IJ. Reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p involves the nuclear envelope. FEMS Yeast Res 2006; 6:186-94. [PMID: 16487342 DOI: 10.1111/j.1567-1364.2006.00037.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p was examined. Using a Pex3-green fluorescent protein (Pex3-GFP) fusion protein, expressed under the control of an inducible promoter, it was observed that, initially on induction of Pex3-GFP synthesis, GFP fluorescence was localized to the endoplasmic reticulum and the nuclear envelope. Subsequently, a single organelle developed per cell that increased in size and multiplied by division. At these stages, GFP fluorescence was confined to peroxisomes. Fractionation experiments on homogenates of pex3 cells, in which the endoplasmic reticulum and nuclear envelope were marked with GFP, identified a small amount of GFP in peroxisomes present in the initial stage of peroxisome reassembly. Our data suggest a crucial role for the endoplasmic reticulum/nuclear envelope in peroxisome reintroduction on complementation of pex3 cells by the PEX3 gene.
Collapse
Affiliation(s)
- Gert-Jan Haan
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, the Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Kragt A, Voorn-Brouwer T, van den Berg M, Distel B. Endoplasmic Reticulum-directed Pex3p Routes to Peroxisomes and Restores Peroxisome Formation in a Saccharomyces cerevisiae pex3Δ Strain. J Biol Chem 2005; 280:34350-7. [PMID: 16100114 DOI: 10.1074/jbc.m505432200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies on the sorting of peroxisomal membrane proteins challenge the long-standing model in which peroxisomes are considered to be autonomous organelles that multiply by growth and division. Here, we present data lending support to the idea that the endoplasmic reticulum (ER) is involved in sorting of the peroxisomal membrane protein Pex3p, a protein required early in peroxisome biogenesis. First, we show that the introduction of an artificial glycosylation site into the N terminus of Pex3p leads to partial N-linked core glycosylation, indicative of insertion into the ER membrane. Second, when FLAG-tagged Pex3p is equipped with an ER targeting signal, it can restore peroxisome formation in pex3Delta cells. Importantly, FLAG antibodies that specifically recognize the processed Pex3p show that the signal peptide of the fusion protein is efficiently cleaved off and that the processed protein localizes to peroxisomes. In contrast, a Pex3p construct in which cleavage of the signal peptide is blocked by a mutation localizes to the ER and the cytosol and cannot complement pex3Delta cells. Together, these results strongly suggest that ER-targeted Pex3p indeed routes via the ER to peroxisomes, and we hypothesize that this pathway is also used by endogenous Pex3p.
Collapse
Affiliation(s)
- Astrid Kragt
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
33
|
Hoepfner D, Schildknegt D, Braakman I, Philippsen P, Tabak HF. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 2005; 122:85-95. [PMID: 16009135 DOI: 10.1016/j.cell.2005.04.025] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/15/2005] [Accepted: 04/25/2005] [Indexed: 01/07/2023]
Abstract
How peroxisomes are formed in eukaryotic cells is unknown but important for insight into a variety of diseases. Both human and yeast cells lacking peroxisomes due to mutations in PEX3 or PEX19 genes regenerate the organelles upon reintroduction of the corresponding wild-type version. To evaluate how and from where new peroxisomes are formed, we followed the trafficking route of newly made YFP-tagged Pex3 and Pex19 proteins by real-time fluorescence microscopy in Saccharomyces cerevisiae. Remarkably, Pex3 (an integral membrane protein) could first be observed in the endoplasmic reticulum (ER), where it concentrates in foci that then bud off in a Pex19-dependent manner and mature into fully functional peroxisomes. Pex19 (a farnesylated, mostly cytosolic protein) enriches first at the Pex3 foci on the ER and then on the maturing peroxisomes. This trafficking route of Pex3-YFP is the same in wild-type cells. These results demonstrate that peroxisomes are generated from domains in the ER.
Collapse
Affiliation(s)
- Dominic Hoepfner
- Department of Cellular Protein Chemistry, University of Utrecht, Padualaan 8, NL-3548 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Tam YYC, Fagarasanu A, Fagarasanu M, Rachubinski RA. Pex3p initiates the formation of a preperoxisomal compartment from a subdomain of the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem 2005; 280:34933-9. [PMID: 16087670 DOI: 10.1074/jbc.m506208200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Peroxisomes are dynamic organelles that often proliferate in response to compounds that they metabolize. Peroxisomes can proliferate by two apparent mechanisms, division of preexisting peroxisomes and de novo synthesis of peroxisomes. Evidence for de novo peroxisome synthesis comes from studies of cells lacking the peroxisomal integral membrane peroxin Pex3p. These cells lack peroxisomes, but peroxisomes can assemble upon reintroduction of Pex3p. The source of these peroxisomes has been the subject of debate. Here, we show that the amino-terminal 46 amino acids of Pex3p of Saccharomyces cerevisiae target to a subdomain of the endoplasmic reticulum and initiate the formation of a preperoxisomal compartment for de novo peroxisome synthesis. In vivo video microscopy showed that this preperoxisomal compartment can import both peroxisomal matrix and membrane proteins leading to the formation of bona fide peroxisomes through the continued activity of full-length Pex3p. Peroxisome formation from the preperoxisomal compartment depends on the activity of the genes PEX14 and PEX19, which are required for the targeting of peroxisomal matrix and membrane proteins, respectively. Our findings support a direct role for the endoplasmic reticulum in de novo peroxisome formation.
Collapse
Affiliation(s)
- Yuen Yi C Tam
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
35
|
Marelli M, Smith JJ, Jung S, Yi E, Nesvizhskii AI, Christmas RH, Saleem RA, Tam YYC, Fagarasanu A, Goodlett DR, Aebersold R, Rachubinski RA, Aitchison JD. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol 2004; 167:1099-112. [PMID: 15596542 PMCID: PMC2172632 DOI: 10.1083/jcb.200404119] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 11/10/2004] [Indexed: 11/22/2022] Open
Abstract
We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis.
Collapse
|
36
|
Abstract
Pex3p and Pex19p are key players in the post-translational import of peroxisomal membrane proteins. New data suggest that these peroxins act in tandem, Pex19p as a cytosolic chaperone and import receptor for peroxisomal membrane proteins, and Pex3p as docking factor at the peroxisomal membrane.
Collapse
Affiliation(s)
- Wolfgang Schliebs
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | |
Collapse
|
37
|
Otzen M, Perband U, Wang D, Baerends RJS, Kunau WH, Veenhuis M, Van der Klei IJ. Hansenula polymorpha Pex19p Is Essential for the Formation of Functional Peroxisomal Membranes. J Biol Chem 2004; 279:19181-90. [PMID: 14981078 DOI: 10.1074/jbc.m314275200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized the Hansenula polymorpha PEX19 gene. In cells of a pex19 disruption strain (Hppex19), induced on methanol, peroxisome structures were not detectable; peroxisomal matrix proteins accumulated in the cytosol, whereas peroxisomal membrane proteins (PMPs) were mislocalized to the cytosol (Pex3p) and mitochondria (Pex14p) or strongly reduced to undetectable levels (Pex10p). The defect in peroxisome formation in Hppex19 cells was largely suppressed upon overproduction of HpPex3p or a fusion protein that consisted of the first 50 N-terminal amino acids of Pex3p and GFP. In these cells PMPs were again correctly sorted to peroxisomal structures, which also harbored peroxisomal matrix proteins. In Saccharomyces cerevisiae pex19 cells overproduction of ScPex3p led to the formation of numerous vesicles that contained PMPs but lacked the major matrix protein thiolase. Taken together, our data are consistent with a function of Pex19p in membrane protein assembly and function.
Collapse
Affiliation(s)
- Marleen Otzen
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P. O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Hunt JE, Trelease RN. Sorting pathway and molecular targeting signals for the Arabidopsis peroxin 3. Biochem Biophys Res Commun 2004; 314:586-96. [PMID: 14733948 DOI: 10.1016/j.bbrc.2003.12.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peroxin 3 (Pex3p) has been identified and characterized as a peroxisomal membrane protein in yeasts and mammals. We identified two putative homologs in Arabidopsis (AtPex3p, forms 1 and 2), both with an identical cluster of positively charged amino acid residues (RKHRRK) immediately preceding one of the two predicted transmembrane domains (TMD1). In transiently transformed Arabidopsis and tobacco BY-2 suspension-cultured cells, epitope-tagged AtPex3p (form 2) sorted post-translationally from the cytosol directly to peroxisomes, the first sorting pathway described for any peroxin in plants. TMD1 and RKHRRK were necessary for targeting form 2 to peroxisomes and sufficient for directing chloramphenicol acetyltransferase to peroxisomes in both cell types. The N and C termini of AtPex3p (form 2) extend into the peroxisomal matrix, different from mammal and yeast Pex3 proteins. Thus, two authentic peroxisomal membrane-bound Pex3p homologs possessing a membrane peroxisomal targeting signal, the first one defined for a plant peroxin and for any Pex3p homolog, exist in plant cells.
Collapse
Affiliation(s)
- Joanne E Hunt
- School of Life Sciences, Cellular and Molecular Biosciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | |
Collapse
|
39
|
Abstract
Peroxisomes belong to the ubiquitous organelle repertoire of eukaryotic cells. They contribute to cellular metabolism in various ways depending on species, but a consistent feature is the presence of enzymes to degrade fatty acids. Due to the pioneering work of DeDuve and coworkers, peroxisomes were in the limelight of cell biology in the sixties with a focus on their metabolic role. During the last decade, interest in peroxisomes has been growing again, this time with focus on their origin and maintenance. This has resulted in our understanding how peroxisomal proteins are targeted to the organelle and imported into the organellar matrix or recruited into the single membrane surrounding it. With respect to the formation of peroxisomes, the field is divided. The long-held view formulated in 1985 by Lazarow and Fujiki (Lazarow PB, Fujiki Y. Biogenesis of peroxisomes. Annu Rev Cell Biol 1985; 1: 489-530) is that we are dealing with autonomous organelles multiplying by growth and division. This view is being challenged by various observations that call attention to a more active contribution of the ER to peroxisome formation. Our contribution to this debate consists of recent observations using immuno-electronmicroscopy and electron tomography in mouse dendritic cells that show the peroxisomal membrane to be derived from the ER.
Collapse
Affiliation(s)
- Henk F Tabak
- Laboratory of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
40
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2003. [DOI: 10.1002/yea.947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|