1
|
Turmel-Couture S, Martel PO, Beaulieu L, Lechasseur X, Fotso Dzuna LV, Narbonne P. Bidirectional transfer of a small membrane-impermeable molecule between the Caenorhabditis elegans intestine and germline. J Biol Chem 2024; 300:107963. [PMID: 39510179 DOI: 10.1016/j.jbc.2024.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) is a positive regulator of cell proliferation often upregulated in cancer. Its Caenorhabditis elegans ortholog MPK-1 stimulates germline stem cell (GSC) proliferation nonautonomously from the intestine or somatic gonad. How MPK-1 can perform this task from either of these two tissues however remains unclear. We reasoned that somatic MPK-1 activity could lead to the generation of proproliferative small molecules that could transfer from the intestine and/or somatic gonad to the germline. Here, in support of this hypothesis, we demonstrate that a significant fraction of the small membrane-impermeable fluorescent molecule, 5-carboxyfluorescein, transfers to the germline after its microinjection in the animal's intestine. The larger part of this transfer targets oocytes and requires the germline receptor mediated endocytosis 2 (RME-2) yolk receptor. A minor quantity of the dye is however distributed independently from RME-2 and more widely in the animal, including the distal germline, gonadal sheath, coelomocytes, and hypodermis. We further show that the intestine-to-germline transfer efficiency of this RME-2 independent fraction does not vary together with GSC proliferation rates or MPK-1 activity. Therefore, if germline proliferation was influenced by small membrane-impermeable molecules generated in the intestine, it is unlikely that proliferation would be regulated at the level of molecule transfer rate. Finally, we show that conversely, a similar fraction of germline injected 5-carboxyfluorescein transfers to the intestine, demonstrating transfer bidirectionality. Altogether, our results establish the possibility of an intestine-to-germline signaling axis mediated by small membrane-impermeable molecules that could promote GSC proliferation cell nonautonomously downstream of MPK-1 activity.
Collapse
Affiliation(s)
- Sarah Turmel-Couture
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Pier-Olivier Martel
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Lucie Beaulieu
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Xavier Lechasseur
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | | | - Patrick Narbonne
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.
| |
Collapse
|
2
|
Sherman D, Harel D. Deciphering the underlying mechanisms of the pharyngeal pumping motions in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2302660121. [PMID: 38315866 PMCID: PMC10873627 DOI: 10.1073/pnas.2302660121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
The pharynx of the nematode Caenorhabditis elegans is a neuromuscular organ that exhibits typical pumping motions, which result in the intake of food particles from the environment. In-depth inspection reveals slightly different dynamics at the various pharyngeal areas, rather than synchronous pumping motions of the whole organ, which are important for its effective functioning. While the different pumping dynamics are well characterized, the underlying mechanisms that generate them are not known. In this study, the C. elegans pharynx was modeled in a bottom-up fashion, including all of the underlying biological processes that lead to, and including, its end function, food intake. The mathematical modeling of all processes allowed performing comprehensive, quantitative analyses of the system as a whole. Our analyses provided detailed explanations for the various pumping dynamics generated at the different pharyngeal areas; a fine-resolution description of muscle dynamics, both between and within different pharyngeal areas; a quantitative assessment of the values of many parameters of the system that are unavailable in the literature; and support for a functional role of the marginal cells, which are currently assumed to mainly have a structural role in the pharynx. In addition, our model predicted that in tiny organisms such as C. elegans, the generation of long-lasting action potentials must involve ions other than calcium. Our study exemplifies the power of mathematical models, which allow a more accurate, higher-resolution inspection of the studied system, and an easier and faster execution of in silico experiments than feasible in the lab.
Collapse
Affiliation(s)
- Dana Sherman
- Department of Computer Science and Applied Mathematics, Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot76100, Israel
| | - David Harel
- Department of Computer Science and Applied Mathematics, Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot76100, Israel
| |
Collapse
|
3
|
Kovács IA, Barabási DL, Barabási AL. Uncovering the genetic blueprint of the C. elegans nervous system. Proc Natl Acad Sci U S A 2020; 117:33570-33577. [PMID: 33318182 PMCID: PMC7777131 DOI: 10.1073/pnas.2009093117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite rapid advances in connectome mapping and neuronal genetics, we lack theoretical and computational tools to unveil, in an experimentally testable fashion, the genetic mechanisms that govern neuronal wiring. Here we introduce a computational framework to link the adjacency matrix of a connectome to the expression patterns of its neurons, helping us uncover a set of genetic rules that govern the interactions between neurons in contact. The method incorporates the biological realities of the system, accounting for noise from data collection limitations, as well as spatial restrictions. The resulting methodology allows us to infer a network of 19 innexin interactions that govern the formation of gap junctions in Caenorhabditis elegans, five of which are already supported by experimental data. As advances in single-cell gene expression profiling increase the accuracy and the coverage of the data, the developed framework will allow researchers to systematically infer experimentally testable connection rules, offering mechanistic predictions for synapse and gap junction formation.
Collapse
Affiliation(s)
- István A Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
- Department of Data and Network Science, Central European University, Budapest 1051, Hungary
- Network Science Institute, Northeastern University, Boston, MA 02115
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, Budapest 1121, Hungary
| | | | - Albert-László Barabási
- Department of Data and Network Science, Central European University, Budapest 1051, Hungary;
- Network Science Institute, Northeastern University, Boston, MA 02115
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Jin EJ, Park S, Lyu X, Jin Y. Gap junctions: historical discoveries and new findings in the Caenorhabditiselegans nervous system. Biol Open 2020; 9:bio053983. [PMID: 32883654 PMCID: PMC7489761 DOI: 10.1242/bio.053983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gap junctions are evolutionarily conserved structures at close membrane contacts between two cells. In the nervous system, they mediate rapid, often bi-directional, transmission of signals through channels called innexins in invertebrates and connexins in vertebrates. Connectomic studies from Caenorhabditis elegans have uncovered a vast number of gap junctions present in the nervous system and non-neuronal tissues. The genome also has 25 innexin genes that are expressed in spatial and temporal dynamic pattern. Recent findings have begun to reveal novel roles of innexins in the regulation of multiple processes during formation and function of neural circuits both in normal conditions and under stress. Here, we highlight the diverse roles of gap junctions and innexins in the C. elegans nervous system. These findings contribute to fundamental understanding of gap junctions in all animals.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seungmee Park
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaohui Lyu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Choi MK, Liu H, Wu T, Yang W, Zhang Y. NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nat Commun 2020; 11:3467. [PMID: 32651378 PMCID: PMC7351742 DOI: 10.1038/s41467-020-17218-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Modulation of gap junction-mediated electrical synapses is a common form of neural plasticity. However, the behavioral consequence of the modulation and the underlying molecular cellular mechanisms are not understood. Here, using a C. elegans circuit of interneurons that are connected by gap junctions, we show that modulation of the gap junctions facilitates olfactory learning. Learning experience weakens the gap junctions and induces a repulsive sensory response to the training odorants, which together decouple the responses of the interneurons to the training odorants to generate learned olfactory behavior. The weakening of the gap junctions results from downregulation of the abundance of a gap junction molecule, which is regulated by cell-autonomous function of the worm homologs of a NMDAR subunit and CaMKII. Thus, our findings identify the function of a gap junction modulation in an in vivo model of learning and a conserved regulatory pathway underlying the modulation.
Collapse
Affiliation(s)
- Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. .,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Abstract
BACKGROUND Gap junctions (GJ) are one of the most common forms of intercellular communication. GJs are assembled from proteins that form channels connecting the cytoplasm of adjacent cells. They are considered to be the main or the only type of intercellular channels and the universal feature of all multicellular animals. Two unrelated protein families are currently considered to be involved in this function, namely, connexins and pannexins (pannexins/innexins). Pannexins were hypothesized to be the universal GJ proteins of multicellular animals, distinct from connexins that are characteristic of chordates only. Here we have revised this supposition by applying growing high throughput sequencing data from diverse metazoan species. RESULTS Pannexins were found in Chordates, Ctenophores, Cnidarians, and in the most major groups of bilateral protostomes. Yet some metazoans appear to have neither connexins nor pannexins in their genomes. We detected no connexins or pannexins/innexins homologues in representatives of all five classes of echinoderms and their closest relatives hemichordates with available genomic sequences. Despite this, our intracellular recordings demonstrate direct electrical coupling between blastomeres at the 2-cell embryo of the echinoderm (starfish Asterias rubens). In these experiments, carboxyfluorescein fluorescent dye did not diffuse between electrically coupled cells. This excludes the possibility that the observed electrical coupling is mediated by incomplete cytoplasm separation during cleavage. CONCLUSION Functional GJs are present in representatives of the clade that lack currently recognized GJ protein families. New undiscovered protein families utilized for intercellular channels are predicted. It is possible that the new type(s) of intercellular channels are present in parallel to pannexin and connexin gap junctions in animal groups, other than Echinodermata.
Collapse
Affiliation(s)
- Georgy A Slivko-Koltchik
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
| | - Victor P Kuznetsov
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
| | - Yuri V Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994.
- A.N. Belozersky Institute of Physico-Chemical Biology Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
7
|
Plasticity of the Electrical Connectome of C. elegans. Cell 2019; 176:1174-1189.e16. [PMID: 30686580 PMCID: PMC10064801 DOI: 10.1016/j.cell.2018.12.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022]
Abstract
The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.
Collapse
|
8
|
Pandey R, Sharma M, Saluja D. SIN-3 as a key determinant of lifespan and its sex dependent differential role on healthspan in C aenorhabditis elegans. Aging (Albany NY) 2018; 10:3910-3937. [PMID: 30541942 PMCID: PMC6326684 DOI: 10.18632/aging.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023]
Abstract
Aging/senescence includes not just decline in lifespan but also etiologies of age associated morbidities which are inadequately understood. Extensive research has been undertaken to delineate the pathways and generate mutants with extended lifespan. However, little is known about the health status of these long lived mutants in the background of important genetic perturbations. Caenorhabditis elegans is one of the leading in vivo model organisms to study aging. Deletion of SIN-3, a transcription coregulator in C. elegans has been shown to reduce the lifespan of the mutant worms by half as compared to the wild-type and isogenic controls. The current study focuses on the effect of SIN-3 deletion on the healthspan of the worms. We find that not only are sin-3 mutants more susceptible to stress, but the overall stress intolerance and physiological decline is sex dependent. The severity of the phenotype is more pronounced in hermaphrodites as compared to the males carrying the same mutation with respect to the controls. The results further suggest that genetic perturbation along with the gender play an important role in determining the lifespan, healthspan and overall fitness of an organism.
Collapse
Affiliation(s)
- Renu Pandey
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi -07, India
| | - Meenakshi Sharma
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi -07, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi -07, India
| |
Collapse
|
9
|
Güiza J, Barría I, Sáez JC, Vega JL. Innexins: Expression, Regulation, and Functions. Front Physiol 2018; 9:1414. [PMID: 30364195 PMCID: PMC6193117 DOI: 10.3389/fphys.2018.01414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023] Open
Abstract
The innexin (Inx) proteins form gap junction channels and non-junctional channels (named hemichannels) in invertebrates. These channels participate in cellular communication playing a relevant role in several physiological processes. Pioneer studies conducted mainly in worms and flies have shown that innexins participate in embryo development and behavior. However, recent studies have elucidated new functions of innexins in Arthropoda, Nematoda, Annelida, and Cnidaria, such as immune response, and apoptosis. This review describes emerging data of possible new roles of innexins and summarizes the data available to date.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Iván Barría
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
10
|
Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E1263-E1272. [PMID: 28143932 DOI: 10.1073/pnas.1621274114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9-based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.
Collapse
|
11
|
Oshima A, Tani K, Fujiyoshi Y. Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat Commun 2016; 7:13681. [PMID: 27905396 PMCID: PMC5146279 DOI: 10.1038/ncomms13681] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023] Open
Abstract
Innexins, a large protein family comprising invertebrate gap junction channels, play an essential role in nervous system development and electrical synapse formation. Here we report the cryo-electron microscopy structures of Caenorhabditis elegans innexin-6 (INX-6) gap junction channels at atomic resolution. We find that the arrangements of the transmembrane helices and extracellular loops of the INX-6 monomeric structure are highly similar to those of connexin-26 (Cx26), despite the lack of significant sequence similarity. The INX-6 gap junction channel comprises hexadecameric subunits but reveals the N-terminal pore funnel, consistent with Cx26. The helix-rich cytoplasmic loop and C-terminus are intercalated one-by-one through an octameric hemichannel, forming a dome-like entrance that interacts with N-terminal loops in the pore. These observations suggest that the INX-6 cytoplasmic domains are cooperatively associated with the N-terminal funnel conformation, and an essential linkage of the N-terminal with channel activity is presumably preserved across gap junction families.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Trojanowski NF, Raizen DM, Fang-Yen C. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Sci Rep 2016; 6:22940. [PMID: 26976078 PMCID: PMC4791602 DOI: 10.1038/srep22940] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 02/02/2023] Open
Abstract
Rhythmic movements are ubiquitous in animal locomotion, feeding, and circulatory systems. In some systems, the muscle itself generates rhythmic contractions. In others, rhythms are generated by the nervous system or by interactions between the nervous system and muscles. In the nematode Caenorhabditis elegans, feeding occurs via rhythmic contractions (pumping) of the pharynx, a neuromuscular feeding organ. Here, we use pharmacology, optogenetics, genetics, and electrophysiology to investigate the roles of the nervous system and muscle in generating pharyngeal pumping. Hyperpolarization of the nervous system using a histamine-gated chloride channel abolishes pumping, and optogenetic stimulation of pharyngeal muscle in these animals causes abnormal contractions, demonstrating that normal pumping requires nervous system function. In mutants that pump slowly due to defective nervous system function, tonic muscle stimulation causes rapid pumping, suggesting tonic neurotransmitter release may regulate pumping. However, tonic cholinergic motor neuron stimulation, but not tonic muscle stimulation, triggers pumps that electrophysiologically resemble typical rapid pumps. This suggests that pharyngeal cholinergic motor neurons are normally rhythmically, and not tonically active. These results demonstrate that the pharynx generates a myogenic rhythm in the presence of tonically released acetylcholine, and suggest that the pharyngeal nervous system entrains contraction rate and timing through phasic neurotransmitter release.
Collapse
Affiliation(s)
- Nicholas F Trojanowski
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
13
|
Simonsen KT, Moerman DG, Naus CC. Gap junctions in C. elegans. Front Physiol 2014; 5:40. [PMID: 24575048 PMCID: PMC3920094 DOI: 10.3389/fphys.2014.00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/20/2014] [Indexed: 11/26/2022] Open
Abstract
As in other multicellular organisms, the nematode Caenorhabditis elegans uses gap junctions to provide direct cell-to-cell contact. The nematode gap junctions are formed by innexins (invertebrate analogs of the connexins); a family of proteins that surprisingly share no primary sequence homology, but do share structural and functional similarity with connexins. The model organism C. elegans contains 25 innexin genes and innexins are found in virtually all cell types and tissues. Additionally, many innexins have dynamic expression patterns during development, and several innexins are essential genes in the nematode. C. elegans is a popular invertebrate model due to several features including a simple anatomy, a complete cell lineage, sequenced genome and an array of genetic resources. Thus, the worm has potential to offer valuable insights into the various functions of gap junction mediated intercellular communication.
Collapse
Affiliation(s)
- Karina T. Simonsen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouver, BC, Canada
| | - Donald G. Moerman
- Department of Zoology and Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
14
|
Liu P, Chen B, Altun ZF, Gross MJ, Shan A, Schuman B, Hall DH, Wang ZW. Six innexins contribute to electrical coupling of C. elegans body-wall muscle. PLoS One 2013; 8:e76877. [PMID: 24130800 PMCID: PMC3793928 DOI: 10.1371/journal.pone.0076877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/29/2013] [Indexed: 11/23/2022] Open
Abstract
C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling. Here we analyzed junctional current (Ij) for mutants of additional innexins to identify the remaining innexin(s) important to the coupling. The results suggest that a total of six innexins contribute to the coupling, including UNC-9, INX-1, INX-10, INX-11, INX-16, and INX-18. The Ij deficiency in each mutant was rescued completely by expressing the corresponding wild-type innexin specifically in muscle, suggesting that the innexins function cell-autonomously. Comparisons of Ij between various single, double, and triple mutants suggest that the six innexins probably form two distinct populations of gap junctions with one population consisting of UNC-9 and INX-18 and the other consisting of the remaining four innexins. Consistent with their roles in muscle electrical coupling, five of the six innexins showed punctate localization at muscle intercellular junctions when expressed as GFP- or epitope-tagged proteins, and muscle expression was detected for four of them when assessed by expressing GFP under the control of innexin promoters. The results may serve as a solid foundation for further explorations of structural and functional properties of gap junctions in C. elegans body-wall muscle.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Zeynep F. Altun
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maegan J. Gross
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alan Shan
- Undergraduate Summer Research Internship Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Benjamin Schuman
- Undergraduate Summer Research Internship Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
In Caenorhabditis elegans, satiety quiescence mimics behavioral aspects of satiety and postprandial sleep in mammals. On the basis of calcium-imaging, genetics, and behavioral studies, here we report that a pair of amphid neurons, ASI, is activated by nutrition and regulates worms' behavioral states specifically promoting satiety quiescence; ASI inhibits the switch from quiescence to dwelling (a browsing state) and accelerates the switch from dwelling to quiescence. The canonical TGFβ pathway, whose ligand is released from ASI, regulates satiety quiescence. The mutants of a ligand, a receptor and SMADs in the TGFβ pathway all eat more and show less quiescence than wild-type. The TGFβ receptor in downstream neurons RIM and RIC is sufficient for worms to exhibit satiety quiescence, suggesting neuronal connection from ASI to RIM and RIC is essential for feeding regulation through the TGFβ pathway. ASI also regulates satiety quiescence partly through cGMP signaling; restoring cGMP signaling in ASI rescues the satiety quiescence defect of cGMP signaling mutants. From these results, we propose that TGFβ and cGMP pathways in ASI connect nutritional status to promotion of satiety quiescence, a sleep-like behavioral state.
Collapse
|
16
|
Oshima A, Matsuzawa T, Nishikawa K, Fujiyoshi Y. Oligomeric structure and functional characterization of Caenorhabditis elegans Innexin-6 gap junction protein. J Biol Chem 2013; 288:10513-21. [PMID: 23460640 DOI: 10.1074/jbc.m112.428383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
17
|
Abstract
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.
Collapse
|
18
|
Abstract
Polydnaviruses are double-stranded DNA viruses associated with some subfamilies of ichneumonoid parasitoid wasps. Polydnavirus virions are delivered during wasp parasitization of a host, and virus gene expression in the host induces alterations of host physiology. Infection of susceptible host caterpillars by the polydnavirus Campoletis sonorensis ichnovirus (CsIV) leads to expression of virus genes, resulting in immune and developmental disruptions. CsIV carries four homologues of insect gap junction genes (innexins) termed vinnexins, which are expressed in multiple tissues of infected caterpillars. Previously, we demonstrated that two of these, VinnexinD and VinnexinG, form functional gap junctions in paired Xenopus oocytes. Here we show that VinnexinQ1 and VinnexinQ2, likewise, form junctions in this heterologous system. Moreover, we demonstrate that the vinnexins interact differentially with the Innexin2 orthologue of an ichnovirus host, Spodoptera frugiperda. Cell pairs coexpressing a vinnexin and Innexin2 or pairs in which one cell expresses a vinnexin and the neighboring cell Innexin2 assemble functional junctions with properties that differ from those of junctions composed of Innexin2 alone. These data suggest that altered gap junctional intercellular communication may underlie certain cellular pathologies associated with ichnovirus infection of caterpillar hosts.
Collapse
|
19
|
Bouhours M, Po MD, Gao S, Hung W, Li H, Georgiou J, Roder JC, Zhen M. A co-operative regulation of neuronal excitability by UNC-7 innexin and NCA/NALCN leak channel. Mol Brain 2011; 4:16. [PMID: 21489288 PMCID: PMC3102621 DOI: 10.1186/1756-6606-4-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/13/2011] [Indexed: 11/10/2022] Open
Abstract
Gap junctions mediate the electrical coupling and intercellular communication between neighboring cells. Some gap junction proteins, namely connexins and pannexins in vertebrates, and innexins in invertebrates, may also function as hemichannels. A conserved NCA/Dmα1U/NALCN family cation leak channel regulates the excitability and activity of vertebrate and invertebrate neurons. In the present study, we describe a genetic and functional interaction between the innexin UNC-7 and the cation leak channel NCA in Caenorhabditis elegans neurons. While the loss of the neuronal NCA channel function leads to a reduced evoked postsynaptic current at neuromuscular junctions, a simultaneous loss of the UNC-7 function restores the evoked response. The expression of UNC-7 in neurons reverts the effect of the unc-7 mutation; moreover, the expression of UNC-7 mutant proteins that are predicted to be unable to form gap junctions also reverts this effect, suggesting that UNC-7 innexin regulates neuronal activity, in part, through gap junction-independent functions. We propose that, in addition to gap junction-mediated functions, UNC-7 innexin may also form hemichannels to regulate C. elegans' neuronal activity cooperatively with the NCA family leak channels.
Collapse
Affiliation(s)
- Magali Bouhours
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The innexin family of gap junction proteins has 25 members in Caenorhabditis elegans. Here, we describe the first high-resolution expression map of all members through analysis of live worms transformed with green fluorescent protein under the control of entire promoter regions. Our analyses show that innexins have dynamic expression patterns throughout development and are found in virtually all cell types and tissues. Complex tissues, such as the pharynx, intestine, gonad, as well as scaffolding tissues and guidepost cells express a variety of innexins in overlapping or complementary patterns, suggesting they may form heteromeric and heterotypic channels. Innexin expression occurs in several types of cells that are not known to form gap junctions as well as in a pair of migrating cells, suggesting they may have hemichannel function. Therefore, innexins likely play roles in almost all body functions, including embryonic development, cell fate determination, oogenesis, egg laying, pharyngeal pumping, excretion, and locomotion.
Collapse
Affiliation(s)
- Zeynep F Altun
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
In a genetic screen for active zone defective mutants in Caenorhabditis elegans, we isolated a loss-of-function allele of unc-7, a gene encoding an innexin/pannexin family gap junction protein. Innexin UNC-7 regulates the size and distribution of active zones at C. elegans neuromuscular junctions. Loss-of-function mutations in another innexin, UNC-9, cause similar active zone defects as unc-7 mutants. In addition to presumptive gap junction localizations, both UNC-7 and UNC-9 are also localized perisynaptically throughout development and required in presynaptic neurons to regulate active zone differentiation. Our mosaic analyses, electron microscopy, as well as expression studies suggest a novel and likely nonjunctional role of specific innexins in active zone differentiation in addition to gap junction formations.
Collapse
|
22
|
Ouellet J, Li S, Roy R. Notch signalling is required for both dauer maintenance and recovery in C. elegans. Development 2008; 135:2583-92. [PMID: 18599512 DOI: 10.1242/dev.012435] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Notch signalling pathway is conserved among higher metazoans and is used repeatedly throughout development to specify distinct cell fates among populations of equipotent cells. Mounting evidence suggests that Notch signalling may also be crucial in neuronal function in postmitotic, differentiated neurons. Here, we demonstrate a novel role for the canonical Notch signalling pathway in postmitotic neurons during a specialised ;diapause-like' post-embryonic developmental stage in C. elegans called dauer. Our data suggest that cell signalling downstream of the developmental decision to enter dauer leads to the activation of Notch-responding genes in postmitotic neurons. Consistent with this, we demonstrate that glp-1, one of the two C. elegans Notch receptors, and its ligand lag-2 are expressed in neurons during the dauer stage, and both genes are required to maintain this stage in a daf-7/TGFbeta dauer constitutive background. Our genetic data also suggest that a second Notch receptor, lin-12, functions upstream of, or in parallel with, insulin-like signalling components in response to replete growth conditions to promote dauer recovery. Based on our findings, cues associated with the onset of dauer ultimately trigger a glp-1-dependent Notch signalling cascade in neurons to maintain this developmental state. Then, as growth conditions improve, activation of the LIN-12 Notch receptor cooperates with the insulin-like signalling pathway to signal recovery from the dauer stage.
Collapse
Affiliation(s)
- Jimmy Ouellet
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
23
|
Ray P, Schnabel R, Okkema PG. Behavioral and synaptic defects in C. elegans lacking the NK-2 homeobox gene ceh-28. Dev Neurobiol 2008; 68:421-33. [PMID: 18161854 DOI: 10.1002/dneu.20599] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
C. elegans pharyngeal behavior consists of two distinct types of muscle contractions, termed pumping and peristalsis. Pumping ingests and concentrates bacteria in the anterior pharyngeal lumen, and it is occasionally followed by a transient peristaltic contraction that carries ingested bacteria through the posterior pharyngeal isthmus. These behaviors are controlled by a small pharyngeal nervous system consisting of 20 neurons that is almost completely independent of the extra-pharyngeal nervous system. The cholinergic motor neuron M4 controls peristalsis via synapses with the posterior isthmus muscles. Here we show that the NK-2 family homeobox gene ceh-28 is expressed in M4, where it regulates synapse assembly and peristalsis. ceh-28 mutants exhibit frequent and prolonged peristalses, and treatment with agonists or antagonists of muscarinic acetylcholine receptors can phenocopy or suppress ceh-28 mutant defects, respectively. Synapses in ceh-28 mutant M4 cells are irregularly spaced and sized, and they are abnormally located along the full length of the isthmus. We suggest that CEH-28 inhibits synaptogenesis, and that ceh-28 mutant behavioral defects result from excessive or ectopic stimulation of muscarinic acetylcholine receptors in the isthmus muscles.
Collapse
Affiliation(s)
- Paramita Ray
- Department of Biological Sciences and Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
24
|
Abstract
Gap junctions mediate intercellular communication and are critical for development and nervous system function. Initially thought to function solely as stand-alone molecules, it has now been shown that a stomatin-like protein regulates a gap junction channel in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Kenneth R Norman
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | |
Collapse
|
25
|
Scemes E, Suadicani SO, Dahl G, Spray DC. Connexin and pannexin mediated cell-cell communication. NEURON GLIA BIOLOGY 2007; 3:199-208. [PMID: 18634611 PMCID: PMC2588549 DOI: 10.1017/s1740925x08000069] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we briefly summarize what is known about the properties of the three families of gap junction proteins, connexins, innexins and pannexins, emphasizing their importance as intercellular channels that provide ionic and metabolic coupling and as non-junctional channels that can function as a paracrine signaling pathway. We discuss that two distinct groups of proteins form gap junctions in deuterostomes (connexins) and protostomes (innexins), and that channels formed of the deuterostome homologues of innexins (pannexins) differ from connexin channels in terms of important structural features and activation properties. These differences indicate that the two families of gap junction proteins serve distinct, complementary functions in deuterostomes. In several tissues, including the CNS, both connexins and pannexins are involved in intercellular communication, but have different roles. Connexins mainly contribute by forming the intercellular gap junction channels, which provide for junctional coupling and define the communication compartments in the CNS. We also provide new data supporting the concept that pannexins form the non-junctional channels that play paracrine roles by releasing ATP and, thus, modulating the range of the intercellular Ca(2+)-wave transmission between astrocytes in culture.
Collapse
Affiliation(s)
- Eliana Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, NY, 10461, USA.
| | | | | | | |
Collapse
|
26
|
Chuang CF, Vanhoven MK, Fetter RD, Verselis VK, Bargmann CI. An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell 2007; 129:787-99. [PMID: 17512411 DOI: 10.1016/j.cell.2007.02.052] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/27/2007] [Accepted: 02/26/2007] [Indexed: 02/03/2023]
Abstract
Gap junctions are widespread in immature neuronal circuits, but their functional significance is poorly understood. We show here that a transient network formed by the innexin gap-junction protein NSY-5 coordinates left-right asymmetry in the developing nervous system of Caenorhabditis elegans. nsy-5 is required for the left and right AWC olfactory neurons to establish stochastic, asymmetric patterns of gene expression during embryogenesis. nsy-5-dependent gap junctions in the embryo transiently connect the AWC cell bodies with those of numerous other neurons. Both AWCs and several other classes of nsy-5-expressing neurons participate in signaling that coordinates left-right AWC asymmetry. The right AWC can respond to nsy-5 directly, but the left AWC requires nsy-5 function in multiple cells of the network. NSY-5 forms hemichannels and intercellular gap-junction channels in Xenopus oocytes, consistent with a combination of cell-intrinsic and network functions. These results provide insight into gap-junction activity in developing circuits.
Collapse
Affiliation(s)
- Chiou-Fen Chuang
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
27
|
Franks CJ, Holden-Dye L, Bull K, Luedtke S, Walker RJ. Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system. INVERTEBRATE NEUROSCIENCE : IN 2006; 6:105-22. [PMID: 16862440 DOI: 10.1007/s10158-006-0023-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/26/2006] [Indexed: 12/31/2022]
Abstract
Invertebrate neuroscience has provided a number of very informative model systems that have been extensively utilized in order to define the neurobiological bases of animal behaviours (Sattelle and Buckingham in Invert Neurosci 6:1-3, 2006). Most eminent among these are a number of molluscs, including Aplysia californica, Lymnaea stagnalis and Helix aspersa, crustacean systems such as the crab stomatogastric ganglion and a wide-range of other arthropods. All of these have been elegantly exploited to shed light on the very important phenomenon of the molecular and cellular basis for synaptic regulation that underpins behavioural plasticity. Key to the successful use of these systems has been the ability to study well-defined, relatively simple neuronal circuits that direct and regulate a quantifiable animal behaviour. Here we describe the pharyngeal system of the nematode C. elegans and its utility as a model for defining the genetic basis of behaviour. The circuitry of the nervous system in this animal is uniquely well-defined. Furthermore, the feeding behaviour of the worm is controlled by the activity of the pharynx and this in turn is regulated in a context-dependent manner by a simple nervous system that integrates external signals, e.g. presence or absence of food, and internal signals, e.g. the nutritional status of the animal to direct an appropriate response. The genetics of C. elegans is being effectively exploited to provide novel insight into genes that function to regulate the neuronal network that controls the pharynx. Here we summarise the progress to date and highlight topics for future research. Two main themes emerge. First, although the anatomy of the pharyngeal system is very well-defined, there is a much poorer understanding of its neurochemistry. Second, it is evident that the neurochemistry is remarkably complex for such a simple circuit/behaviour. This suggests that the pharyngeal activity may be subject to exquisitely precise regulation depending on the animal's environment and status. This therefore provides a very tractable genetic model to investigate neural mechanisms for signal integration and synaptic plasticity in a well-defined neuronal network that directs a quantifiable behaviour, feeding.
Collapse
Affiliation(s)
- Christopher J Franks
- School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton, SO16 7PX, UK
| | | | | | | | | |
Collapse
|
28
|
Barbe MT, Monyer H, Bruzzone R. Cell-cell communication beyond connexins: the pannexin channels. Physiology (Bethesda) 2006; 21:103-14. [PMID: 16565476 DOI: 10.1152/physiol.00048.2005] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direct cell-to-cell communication through specialized intercellular channels is a characteristic feature of virtually all multi-cellular organisms. The remarkable functional conservation of cell-to-cell coupling throughout the animal kingdom, however, is not matched at the molecular level of the structural protein components. Thus protostomes (including nematodes and flies) and deuterostomes (including all vertebrates) utilize two unrelated families of gap-junction genes, innexins and connexins, respectively. The recent discovery that pannexins, a novel group of proteins expressed by several organisms, are able to form intercellular channels has started a quest to understand their evolutionary relationship and functional contribution to cell communication in vivo. There are three pannexin genes in mammals, two of which are co-expressed in the developing and adult brain. Of note, pannexin1 can also form Ca2+-activated hemichannels that open at physiological extracellular Ca2+ concentrations and exhibit distinct pharmacological properties.
Collapse
Affiliation(s)
- Michael T Barbe
- Department of Clinical Neurobiology and Interdisciplinary Center for Neuroscience, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Liu Q, Chen B, Gaier E, Joshi J, Wang ZW. Low Conductance Gap Junctions Mediate Specific Electrical Coupling in Body-wall Muscle Cells of Caenorhabditis elegans. J Biol Chem 2006; 281:7881-9. [PMID: 16434400 DOI: 10.1074/jbc.m512382200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invertebrate innexins and their mammalian homologues, the pannexins, are gap junction proteins. Although a large number of such proteins have been identified, few of the gap junctions that they form have been characterized to provide combined information of biophysical properties, coupling pattern, and molecular compositions. We adapted the dual whole cell voltage clamp technique to in situ analysis of electrical coupling in Caenorhabditis elegans body-wall muscle. We found that body-wall muscle cells were electrically coupled in a highly organized and specific pattern. The coupling was characterized by small (350 pS or less) junctional conductance (G(j)), which showed a bell-shaped relationship with junctional potential (V(j)) but was independent of membrane potential (V(m)). Injection of currents comparable to the junctional current (I(j)) into body-wall muscle cells caused significant depolarization, suggesting important functional relevance. The innexin UNC-9 appeared to be a key component of the gap junctions. Both Myc- and green fluorescent protein-tagged UNC-9 was localized to muscle intercellular junctions. G(j) was greatly inhibited in unc-9(fc16), a putative null mutant. Specific inhibition of UNC-9 function in muscle cells reduced locomotion velocity. Despite UNC-9 expression in both motor neurons and body-wall muscle cells, analyses of miniature and evoked postsynaptic currents in the unc-9 mutant showed normal neuromuscular transmission. These analyses provide a relatively detailed description of innexin-based gap junctions in a native tissue and suggest that innexin-based small conductance gap junctions can play an important role in processes such as locomotion.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neuroscience, University of Connecticut Health Center, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
30
|
Norman KR, Fazzio RT, Mellem JE, Espelt MV, Strange K, Beckerle MC, Maricq AV. The Rho/Rac-family guanine nucleotide exchange factor VAV-1 regulates rhythmic behaviors in C. elegans. Cell 2005; 123:119-32. [PMID: 16213217 DOI: 10.1016/j.cell.2005.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 06/04/2005] [Accepted: 08/05/2005] [Indexed: 11/27/2022]
Abstract
Rhythmic behaviors are a fundamental feature of all organisms. Pharyngeal pumping, the defecation cycle, and gonadal-sheath-cell contractions are three well-characterized rhythmic behaviors in the nematode C. elegans. The periodicities of the rhythms range from subsecond (pharynx) to seconds (gonadal sheath) to minutes (defecation). However, the molecular mechanisms underlying these rhythmic behaviors are not well understood. Here, we show that the C. elegans Rho/Rac-family guanine nucleotide exchange factor, VAV-1, which is homologous to the mammalian Vav proto-oncogene, has a crucial role in all three behaviors. vav-1 mutants die as larvae because VAV-1 function is required in the pharynx for synchronous contraction of the musculature. In addition, ovulation and the defecation cycle are abnormal and arrhythmic. We show that Rho/Rac-family GTPases and the signaling molecule inositol triphosphate (IP(3)) act downstream of VAV-1 signaling and that the VAV-1 pathway modulates rhythmic behaviors by dynamically regulating the concentration of intracellular Ca(2+).
Collapse
Affiliation(s)
- Kenneth R Norman
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Phelan P. Innexins: members of an evolutionarily conserved family of gap-junction proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1711:225-45. [PMID: 15921654 DOI: 10.1016/j.bbamem.2004.10.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/12/2004] [Accepted: 10/14/2004] [Indexed: 11/20/2022]
Abstract
Gap junctions are clusters of intercellular channels that provide cells, in all metazoan organisms, with a means of communicating directly with their neighbours. Surprisingly, two gene families have evolved to fulfil this fundamental, and highly conserved, function. In vertebrates, gap junctions are assembled from a large family of connexin proteins. Innexins were originally characterized as the structural components of gap junctions in Drosophila, an arthropod, and the nematode Caenorhabditis elegans. Since then, innexin homologues have been identified in representatives of the other major invertebrate phyla and in insect-associated viruses. Intriguingly, functional innexin homologues have also been found in vertebrate genomes. These studies have informed our understanding of the molecular evolution of gap junctions and have greatly expanded the numbers of model systems available for functional studies. Genetic manipulation of innexin function in relatively simple cellular systems should speed progress not only in defining the importance of gap junctions in a variety of biological processes but also in elucidating the mechanisms by which they act.
Collapse
Affiliation(s)
- Pauline Phelan
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
32
|
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE. Environmentally Induced Foregut Remodeling by PHA-4/FoxA and DAF-12/NHR. Science 2004; 305:1743-6. [PMID: 15375261 DOI: 10.1126/science.1102216] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Growth and development of the Caenorhabditis elegans foregut (pharynx) depends on coordinated gene expression, mediated by pharynx defective (PHA)-4/FoxA in combination with additional, largely unidentified transcription factors. Here, we used whole genome analysis to establish clusters of genes expressed in different pharyngeal cell types. We created an expectation maximization algorithm to identify cis-regulatory elements that activate expression within the pharyngeal gene clusters. One of these elements mediates the response to environmental conditions within pharyngeal muscles and is recognized by the nuclear hormone receptor (NHR) DAF-12. Our data suggest that PHA-4 and DAF-12 endow the pharynx with transcriptional plasticity to respond to diverse developmental and physiological cues. Our combination of bioinformatics and in vivo analysis has provided a powerful means for genome-wide investigation of transcriptional control.
Collapse
Affiliation(s)
- Wanyuan Ao
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|