1
|
Yamazaki H, Furuichi M, Katagiri M, Kajitani R, Itoh T, Chiba K. Recycling of Uridylated mRNAs in Starfish Embryos. Biomolecules 2024; 14:1610. [PMID: 39766317 PMCID: PMC11674185 DOI: 10.3390/biom14121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation. In oocytes, uridylated maternal cyclin B mRNAs are stable without decay, and they are polyadenylated to be translated after hormonal stimulation to resume meiosis, whereas they are deadenylated and re-uridylated at the blastula stage, followed by decay. Similarly, deadenylated and uridylated maternal ribosomal protein mRNAs, Rps29 and Rpl27a, were stable and inactive after hormonal stimulation, but they had been polyadenylated and active before hormonal stimulation. At the morula stage, uridylated maternal ribosomal protein mRNAs were re-polyadenylated, rendering them translationally active. These results indicate that uridylated mRNAs in starfish exist in a poised state, allowing them to be recycled or decayed.
Collapse
Affiliation(s)
- Haruka Yamazaki
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Megumi Furuichi
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Mikoto Katagiri
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Rei Kajitani
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan; (R.K.); (T.I.)
| | - Takehiko Itoh
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan; (R.K.); (T.I.)
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| |
Collapse
|
2
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Maryu G, Yang Q. Nuclear-cytoplasmic compartmentalization of cyclin B1-Cdk1 promotes robust timing of mitotic events. Cell Rep 2022; 41:111870. [PMID: 36577372 DOI: 10.1016/j.celrep.2022.111870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase (Cdk1) oscillator is widely characterized in homogenized cytosolic extracts, leaving unclear the impact of nucleocytoplasmic compartmentalization. Here, by developing a Förster resonance energy transfer (FRET) biosensor, we track Cdk1 spatiotemporal dynamics in reconstituted cells with or without side by side and find compartmentalization significantly modulates clock properties previously found in bulk studies. Although nucleus-absent cells display highly tunable frequency, the nucleus-present cells maintain constant frequency against cyclin B1 variations. Despite high expression variability, cyclin degraded within the same duration, enabling a robust mitotic phase. Moreover, Cdk1 and cyclin B1 cycle rigorously out-of-phase, ensuring wide phase-plane orbits, essential for oscillation robustness. Although Cdk1 in homogeneous extracts is well known for delayed switch-like activation, we find active cyclin B1-Cdk1 accumulates in nuclei, without delay, until the nuclear envelope breakdown (NEB) when another abrupt activation triggers anaphase. Cdk1 biphasic activation and spatial compartmentalization may together coordinate the accurate ordering of different downstream events.
Collapse
Affiliation(s)
- Gembu Maryu
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Hiraoka D, Hosoda E, Chiba K, Kishimoto T. SGK phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation at the meiotic G2/M transition. J Cell Biol 2019; 218:3597-3611. [PMID: 31537708 PMCID: PMC6829662 DOI: 10.1083/jcb.201812122] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
The kinase cyclin B-Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B-Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1 and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A-Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B-Cdk1 activation, cyclin A-Cdk1 is nonessential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation in starfish oocytes. Upon hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gβγ-PI3K pathway and an unidentified pathway downstream of Gβγ, called the atypical Gβγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.
Collapse
Affiliation(s)
- Daisaku Hiraoka
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| | - Enako Hosoda
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takeo Kishimoto
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
RNA localization mechanisms have been intensively studied and include localized protection of mRNA from degradation, diffusion-coupled local entrapment of mRNA, and directed transport of mRNAs along the cytoskeleton. While it is well understood how cells utilize these three mechanisms to organize mRNAs within the cytoplasm, a newly appreciated mechanism of RNA localization has emerged in recent years in which mRNAs phase-separate and form liquid-like droplets. mRNAs both contribute to condensation of proteins into liquid-like structures and are themselves regulated by being incorporated into membraneless organelles. This ability to condense into droplets is in many instances contributing to previously appreciated mRNA localization phenomena. Here we review how phase separation enables mRNAs to selectively and efficiently colocalize and be coregulated, allowing control of gene expression in time and space.
Collapse
Affiliation(s)
- Erin M Langdon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
6
|
Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019; 17:1163-1170. [PMID: 30679989 PMCID: PMC6327549 DOI: 10.3892/etm.2018.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of paclitaxel (PTX), at a non-cytotoxic concentration, on pulmonary vascular remodeling (PVR) in rats with pulmonary hypertension (PAH), and to explore the mechanisms underlying the PTX-mediated reversal of PVR in PAH. A total of 36 rats were divided into control group (n=12), model group (n=12) receiving a subcutaneous injection of monocrotaline (60 mg/kg) in the back on day 7 following left pneumonectomy and PTX group (n=12) with PTX (2 mg/kg) injection via the caudal vein 3 weeks following establishing the model. The degree of PVR among all groups, as well as the expression levels of Ki67, p27Kip1 and cyclin B1, were compared. The mean pulmonary artery pressure, right ventricular hypertrophy index [right ventricle/(left ventricle + septum) ratio] and the thickness of the pulmonary arterial tunica media in the model group were 58.34±2.01 mmHg, 0.64±0.046 and 65.3±3.3%, respectively, which were significantly higher when compared with 23.30±1.14 mmHg, 0.32±0.028 and 16.2±1.3% in the control group, respectively (P<0.01). The mean pulmonary artery pressure, right ventricular hypertrophy index and thickness of the pulmonary arterial tunica media in the PTX group were 42.35±1.53 mmHg, 0.44±0.029 and 40.5±2.6%, respectively, which were significantly lower when compared with the model group (P<0.01). Compared with the control group, the expression levels of Ki67 and cyclin B1 in the model group were significantly increased (P<0.01), while p27Kip1 expression was significantly reduced (P<0.01). Following PTX intervention, the expression levels of Ki67 and cyclin B1 were significantly reduced when compared with the model group (P<0.01), while p27Kip1 expression was significantly increased (P<0.01). The results of the present study suggest that PTX, administered at a non-cytotoxic concentration, may reduce PAH in rats, and prevent the effects of PVR in PAH. These effects of PTX may be associated with increased expression of p27Kip1 and decreased expression of cyclin B1.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meifang Yang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xindan Wu
- Department of Pediatrics, Chengdu Women and Children's Central Hospital, Chengdu, Sichuan 610091, P.R. China
| | - Zhangya Yang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Peng Jia
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqin Sun
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Xie
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Bin Liu
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanmin Liu
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Bischof J, Brand CA, Somogyi K, Májer I, Thome S, Mori M, Schwarz US, Lénárt P. A cdk1 gradient guides surface contraction waves in oocytes. Nat Commun 2017; 8:849. [PMID: 29021609 PMCID: PMC5636809 DOI: 10.1038/s41467-017-00979-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Surface contraction waves (SCWs) in oocytes and embryos lead to large-scale shape changes coupled to cell cycle transitions and are spatially coordinated with the cell axis. Here, we show that SCWs in the starfish oocyte are generated by a traveling band of myosin II-driven cortical contractility. At the front of the band, contractility is activated by removal of cdk1 inhibition of the RhoA/RhoA kinase/myosin II signaling module, while at the rear, contractility is switched off by negative feedback originating downstream of RhoA kinase. The SCW's directionality and speed are controlled by a spatiotemporal gradient of cdk1-cyclinB. This gradient is formed by the release of cdk1-cyclinB from the asymmetrically located nucleus, and progressive degradation of cyclinB. By combining quantitative imaging, biochemical and mechanical perturbations with mathematical modeling, we demonstrate that the SCWs result from the spatiotemporal integration of two conserved regulatory modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.Surface contraction waves (SCWs) are prominent shape changes coupled to cell cycle transitions in oocytes. Here the authors show that SCWs are patterned by the spatiotemporal integration of two conserved modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.
Collapse
Affiliation(s)
- Johanna Bischof
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Christoph A Brand
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Kálmán Somogyi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Imre Májer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sarah Thome
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Masashi Mori
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
8
|
Han K, Dai Y, Zou Z, Fu M, Wang Y, Zhang Z. Molecular characterization and expression profiles of cdc2 and cyclin B during oogenesis and spermatogenesis in green mud crab (Scylla paramamosain). Comp Biochem Physiol B Biochem Mol Biol 2012; 163:292-302. [PMID: 22841647 DOI: 10.1016/j.cbpb.2012.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
The maturation promoting factor (MPF) is a key regulator of controlling G2/M phase transition in the meiotic maturation of oocyte and spermatocyte in animals, which is a complex of CDC2 (CDK1) and cyclin B. To better understand the molecular mechanism of oocyte and spermatocyte maturation in mud crab (Scylla paramamosain), the full length cDNA of cdc2 (Sp-cdc2) and cyclin B (Sp-cyclin B) were cloned and characterized. The full length cDNA of Sp-cdc2 gene is of 1593 bp encoding a protein of 299 amino acids. Real-time quantitative PCR analysis revealed that the expression level of Sp-cdc2 in the ovary was higher than in other tissues (P<0.01); and its expression level was not significantly different in different stages of ovary development (P>0.05), meanwhile there was higher expression in T3 stage than in T1 and T2 stages (P<0.05). The full length cDNA of Sp-cyclin B is 1492 bp encoding a protein of 391 amino acids. The real-time PCR results showed that its expression level in the ovary was the highest in all examined tissues (P<0.01), and the gonad expression level in O5 stage was significantly higher than in previous 4 stages and the testis (P<0.05), and was also significantly higher in T2 stage than in T1 stage (P<0.05). In situ hybridization analysis showed that the expressions of Sp-cdc2 and Sp-cyclin B transcripts were presented in similar distribution patterns in different developing stages of ovary and testis. The positive signals of Sp-cdc2 and Sp-cyclin B mRNA were detected in the oocytoplasm of oogonia and pre-vitellogenic and primary vitellogenic oocytes, while these two genes had higher expression level in the spermatid and secondary spermatocyte following primary spermatocyte. These results suggested that Sp-cdc2 and Sp-cyclin B may play essential roles in the oogenesis and spermatogenesis of the crab.
Collapse
Affiliation(s)
- Kunhuang Han
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | | | | | | | | | | |
Collapse
|
9
|
Terasaki M, Runft L. Two-stage dependence for 1-methyladenine induced reinitiation of meiotic maturation in starfish oocytes. Exp Cell Res 2010; 316:2654-63. [DOI: 10.1016/j.yexcr.2010.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/07/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
|
10
|
Holt JE, Weaver J, Jones KT. Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes. Development 2010; 137:1297-304. [PMID: 20223764 DOI: 10.1242/dev.047555] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Within the mammalian ovary, oocytes remain arrested at G2 for several years. Then a peri-ovulatory hormonal cue triggers meiotic resumption by releasing an inhibitory phosphorylation on the kinase Cdk1. G2 arrest, however, also requires control in the concentrations of the Cdk1-binding partner cyclin B1, a process achieved by anaphase-promoting complex (APC(Cdh1)) activity, which ubiquitylates and so targets cyclin B1 for degradation. Thus, APC(Cdh1) activity prevents precocious meiotic entry by promoting cyclin B1 degradation. However, it remains unresolved how cyclin B1 levels are suppressed sufficiently to maintain arrest but not so low that they make oocytes hormonally insensitive. Here, we examined spatial control of this process by determining the intracellular location of the proteins involved and using nuclear-targeted cyclin B1. We found that raising nuclear cyclin B1 concentrations, an event normally observed in the minutes before nuclear envelope breakdown, was a very effective method of inducing the G2/M transition. Oocytes expressed only the alpha-isoform of Cdh1, which was predominantly nuclear, as were Cdc27 and Psmd11, core components of the APC and the 26S proteasome, respectively. Furthermore, APC(Cdh1) activity appeared higher in the nucleus, as nuclear-targeted cyclin B1 was degraded at twice the rate of wild-type cyclin B1. We propose a simple spatial model of G2 arrest in which nuclear APC(Cdh1)-proteasomal activity guards against any cyclin B1 accumulation mediated by nuclear import.
Collapse
Affiliation(s)
- Janet E Holt
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
11
|
Corsino P, Horenstein N, Ostrov D, Rowe T, Law M, Barrett A, Aslanidi G, Cress WD, Law B. A novel class of cyclin-dependent kinase inhibitors identified by molecular docking act through a unique mechanism. J Biol Chem 2009; 284:29945-55. [PMID: 19710018 DOI: 10.1074/jbc.m109.055251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclin-dependent kinase (Cdk) family is emerging as an important therapeutic target in the treatment of cancer. Cdks 1, 2, 4, and 6 are the key members that regulate the cell cycle, as opposed to Cdks that control processes such as transcription (Cdk7 and Cdk9). For this reason, Cdks 1, 2, 4, and 6 have been the subject of extensive cell cycle-related research, and consequently many inhibitors have been developed to target these proteins. However, the compounds that comprise the current list of Cdk inhibitors are largely ATP-competitive. Here we report the identification of a novel structural site on Cdk2, which is well conserved between the cell cycle Cdks. Small molecules identified by a high throughput in silico screen of this pocket exhibit cytostatic effects and act by reducing the apparent protein levels of cell cycle Cdks. Drug-induced cell cycle arrest is associated with decreased Rb phosphorylation and decreased expression of E2F-dependent genes. Multiple lines of evidence indicate that the primary mechanism of action of these compounds is the direct induction of Cdk1, Cdk2, and Cdk4 protein aggregation.
Collapse
Affiliation(s)
- Patrick Corsino
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Fliorida 32610-3633, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hölzenspies JJ, Stoorvogel W, Colenbrander B, Roelen BAJ, Gutknecht DR, van Haeften T. CDC2/SPDY transiently associates with endoplasmic reticulum exit sites during oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2009; 9:8. [PMID: 19187565 PMCID: PMC2644288 DOI: 10.1186/1471-213x-9-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/03/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mammalian oocytes acquire competence to be fertilized during meiotic maturation. The protein kinase CDC2 plays a pivotal role in several key maturation events, in part through controlled changes in CDC2 localization. Although CDC2 is involved in initiation of maturation, a detailed analysis of CDC2 localization at the onset of maturation is lacking. In this study, the subcellular distribution of CDC2 and its regulatory proteins cyclin B and SPDY in combination with several organelle markers at the onset of pig oocyte maturation has been investigated. RESULTS Our results demonstrate that CDC2 transiently associates with a single domain, identified as a cluster of endoplasmic reticulum (ER) exit sites (ERES) by the presence of SEC23, in the cortex of maturing porcine oocytes prior to germinal vesicle break down. Inhibition of meiosis resumption by forskolin treatment prevented translocation of CDC2 to this ERES cluster. Phosphorylated GM130 (P-GM130), which is a marker for fragmented Golgi, localized to ERES in almost all immature oocytes and was not affected by forskolin treatment. After removal of forskolin from the culture media, the transient translocation of CDC2 to ERES was accompanied by a transient dispersion of P-GM130 into the ER suggesting a role for CDC2 in redistributing Golgi components that have collapsed into ERES further into the ER during meiosis. Finally, we show that SPDY, rather than cyclin B, colocalizes with CDC2 at ERES, suggesting a role for the CDC2/SPDY complex in regulating the secretory pathway during oocyte maturation. CONCLUSION Our data demonstrate the presence of a novel structure in the cortex of porcine oocytes that comprises ERES and transiently accumulates CDC2 prior to germinal vesicle breakdown. In addition, we show that SPDY, but not cyclin B, localizes to this ERES cluster together with CDC2.
Collapse
Affiliation(s)
- Jurriaan J Hölzenspies
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Willem Stoorvogel
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ben Colenbrander
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bernard AJ Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Dagmar R Gutknecht
- Department of Reproductive Medicine, University Medical Centre, Utrecht, the Netherlands
| | - Theo van Haeften
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
13
|
Qiu GF, Ramachandra RK, Rexroad CE, Yao J. Molecular characterization and expression profiles of cyclin B1, B2 and Cdc2 kinase during oogenesis and spermatogenesis in rainbow trout (Oncorhynchus mykiss). Anim Reprod Sci 2008; 105:209-25. [PMID: 17399922 DOI: 10.1016/j.anireprosci.2007.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/01/2007] [Indexed: 11/17/2022]
Abstract
The meiotic maturation of oocyte and spermatocyte in animals is controlled by the maturation promotion factor (MPF), a complex of Cdc2 and cyclin B proteins. To better understand the mechanism of oocyte and spermatocyte maturation in fish, the expression of cyclin B1 (CB1), B2 (CB2) and Cdc2 kinase during oogenesis and spermatogenesis in rainbow trout were examined at both the mRNA and protein levels. Quantitative real-time PCR analysis showed that the amount of CB1 and CB2 mRNA was greater at previtellogenesis and late vitellogenesis stages, but less at early vitellogenesis stage and during early embryogenesis. Cdc2 mRNA was continuously present throughout the processes of oogenesis and early embryogenesis except for a decline at early vitellogenesis. In situ hybridization analysis indicated that CB1, CB2 and Cdc2 transcripts were present in oocytes of different developmental stages as well as in all spermatogenic cells except for spermatogonia. Immunohistochemical analysis revealed that CB1 protein was absent in vitellogenic oocytes, but present in young previtellogenic and mature oocytes. In contrast, CB2 and Cdc2 proteins were present at all stages oocyte development. Similarly, CB2 and Cdc2 proteins were present throughout spermatogenesis, whereas CB1 protein was only detected in spermatogonia and spermatocytes, but not in spermatids. Thus, it appears that CB1, CB2 and Cdc2 transcripts have similar expression patterns during oogenesis and spermatogenesis, but CB1 protein varies in amount during these processes. These data suggest that CB1 may have a leading role in the regulation of meiotic maturation of oocytes and spermotocytes.
Collapse
Affiliation(s)
- Gao-Feng Qiu
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | |
Collapse
|
14
|
Bentley AM, Normand G, Hoyt J, King RW. Distinct sequence elements of cyclin B1 promote localization to chromatin, centrosomes, and kinetochores during mitosis. Mol Biol Cell 2007; 18:4847-58. [PMID: 17881737 PMCID: PMC2096604 DOI: 10.1091/mbc.e06-06-0539] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitotic cyclins promote cell division by binding and activating cyclin-dependent kinases (CDKs). Each cyclin has a unique pattern of subcellular localization that plays a vital role in regulating cell division. During mitosis, cyclin B1 is known to localize to centrosomes, microtubules, and chromatin. To determine the mechanisms of cyclin B1 localization in M phase, we imaged full-length and mutant versions of human cyclin B1-enhanced green fluorescent protein in live cells by using spinning disk confocal microscopy. In addition to centrosome, microtubule, and chromatin localization, we found that cyclin B1 also localizes to unattached kinetochores after nuclear envelope breakdown. Kinetochore recruitment of cyclin B1 required the kinetochore proteins Hec1 and Mad2, and it was stimulated by microtubule destabilization. Mutagenesis studies revealed that cyclin B1 is recruited to kinetochores through both CDK1-dependent and -independent mechanisms. In contrast, localization of cyclin B1 to chromatin and centrosomes is independent of CDK1 binding. The N-terminal domain of cyclin B1 is necessary and sufficient for chromatin association, whereas centrosome recruitment relies on sequences within the cyclin box. Our data support a role for cyclin B1 function at unattached kinetochores, and they demonstrate that separable and distinct sequence elements target cyclin B1 to kinetochores, chromatin, and centrosomes during mitosis.
Collapse
Affiliation(s)
- Anna M. Bentley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Guillaume Normand
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Jonathan Hoyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Randall W. King
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Portier N, Audhya A, Maddox PS, Green RA, Dammermann A, Desai A, Oegema K. A microtubule-independent role for centrosomes and aurora a in nuclear envelope breakdown. Dev Cell 2007; 12:515-29. [PMID: 17419991 PMCID: PMC2973840 DOI: 10.1016/j.devcel.2007.01.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/08/2007] [Accepted: 01/31/2007] [Indexed: 12/19/2022]
Abstract
Aurora A kinase localizes to centrosomes and is required for centrosome maturation and spindle assembly. Here we describe a microtubule-independent role for Aurora A and centrosomes in nuclear envelope breakdown (NEBD) during the first mitotic division of the C. elegans embryo. Aurora A depletion does not alter the onset or kinetics of chromosome condensation, but dramatically lengthens the interval between the completion of condensation and NEBD. Inhibiting centrosome assembly by other means also lengthens this interval, albeit to a lesser extent than Aurora A depletion. By contrast, centrosomally nucleated microtubules and the nuclear envelope-associated motor dynein are not required for timely NEBD. These results indicate that mitotic centrosomes generate a diffusible factor, which we propose is activated Aurora A, that promotes NEBD. A positive feedback loop, in which an Aurora A-dependent increase in centrosome size promotes Aurora A activation, may temporally couple centrosome maturation to NEBD during mitotic entry.
Collapse
Affiliation(s)
- Nathan Portier
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | | | | | - Rebecca A. Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Alexander Dammermann
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
16
|
Wu JQ, Sirotkin V, Kovar DR, Lord M, Beltzner CC, Kuhn JR, Pollard TD. Assembly of the cytokinetic contractile ring from a broad band of nodes in fission yeast. ACTA ACUST UNITED AC 2006; 174:391-402. [PMID: 16864655 PMCID: PMC2064235 DOI: 10.1083/jcb.200602032] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We observed live fission yeast expressing pairs of functional fluorescent fusion proteins to test the popular model that the cytokinetic contractile ring assembles from a single myosin II progenitor or a Cdc12p-Cdc15p spot. Under our conditions, the anillin-like protein Mid1p establishes a broad band of small dots or nodes in the cortex near the nucleus. These nodes mature by the addition of conventional myosin II (Myo2p, Cdc4p, and Rlc1p), IQGAP (Rng2p), pombe Cdc15 homology protein (Cdc15p), and formin (Cdc12p). The nodes coalesce laterally into a compact ring when Cdc12p and profilin Cdc3p stimulate actin polymerization. We did not observe assembly of contractile rings by extension of a leading cable from a single spot or progenitor. Arp2/3 complex and its activators accumulate in patches near the contractile ring early in anaphase B, but are not concentrated in the contractile ring and are not required for assembly of the contractile ring. Their absence delays late steps in cytokinesis, including septum formation and cell separation.
Collapse
Affiliation(s)
- Jian-Qiu Wu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
18
|
Rabut G, Lénárt P, Ellenberg J. Dynamics of nuclear pore complex organization through the cell cycle. Curr Opin Cell Biol 2005; 16:314-21. [PMID: 15145357 DOI: 10.1016/j.ceb.2004.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In eukaryotic cells, all macromolecules that traffic between the nucleus and the cytoplasm cross the double nuclear membrane through nuclear pore complexes (NPCs). NPCs are elaborate gateways that allow efficient, yet selective, translocation of many different macromolecules. Their protein composition has been elucidated, but how exactly these nucleoporins come together to form the pore is largely unknown. Recent data suggest that NPCs are composed of an extremely stable scaffold on which more dynamic, exchangeable parts are assembled. These could be targets for molecular rearrangements that change nuclear pore transport properties and, ultimately, the state of the cell.
Collapse
Affiliation(s)
- Gwénaël Rabut
- Gene Expression and Cell Biology/Biophysics Programmes, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Terasaki M. Quantification of fluorescence in thick specimens, with an application to cyclin B-GFP expression in starfish oocytes. Biol Cell 2005; 98:245-52. [PMID: 16092917 DOI: 10.1042/bc20050040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Fluorescence imaging of living cells is widely used in cell biology. It is now being extended to thick specimens such as large cells or tissues where it is important to establish methods for obtaining quantitative fluorescence data due to the increasing importance of computational and systems biology approaches. RESULTS Fluorescent solutions were used as a calibration standard for determining cellular fluorescence concentrations from z series image sequences. The accuracy of the measurements was evaluated using quantitatively injected cells. Different fluorescence attenuation rates of the cytoplasm and nucleoplasm were documented, and autofluorescence levels were determined. This method was used to characterize the effect of cyclin B overexpression on cell-cycle timing in starfish oocytes. The time interval between application of maturation hormone and germinal vesicle breakdown decreased with increasing cyclin B-GFP (green fluorescent protein) concentration to a level of 100-300 nM, beyond which there was no effect. CONCLUSIONS Conditions for determining fluorescent probe concentrations in large cells or multicellular tissues were established, which will facilitate the collection of data for quantitative studies. This method was used to characterize the effect of cyclin B-GFP expression levels on cell-cycle timing in starfish oocytes.
Collapse
Affiliation(s)
- Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06032, USA.
| |
Collapse
|
20
|
Marangos P, Carroll J. The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes. Reproduction 2004; 128:153-62. [PMID: 15280554 DOI: 10.1530/rep.1.00192] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cdk1-cyclin B1 kinase activity drives oocytes through meiotic maturation. It is regulated by the phosphorylation status of cdk1 and by its spatial organisation. Here we used a cyclin B1-green fluorescent protein (GFP) fusion protein to examine the dynamics of cdk1-cyclin B1 distribution during meiosis I (MI) in living mouse oocytes. Microinjection of cyclin B1-GFP accelerated germinal vesicle breakdown (GVBD) and, as previously described, overrides cAMP-mediated meiotic arrest. GVBD was pre-empted by a translocation of cyclin B1-GFP from the cytoplasm to the germinal vesicle (GV). After nuclear accumulation, cyclin B1-GFP localised to the chromatin. The localisation of cyclin B1-GFP is governed by nuclear import and export. In GV intact oocytes, cyclin export was demonstrated by showing that cyclin B1-GFP injected into the GV is exported to the cytoplasm while a similar size dextran is retained. Import was revealed by the finding that cyclin B1-GFP accumulated in the GV when export was inhibited using leptomycin B. These studies show that GVBD in mouse oocytes is sensitive to cyclin B1 abundance and that the changes in distribution of cyclin B1 contribute to progression through MI.
Collapse
Affiliation(s)
- Petros Marangos
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
21
|
Hiraoka D, Hori-Oshima S, Fukuhara T, Tachibana K, Okumura E, Kishimoto T. PDK1 is required for the hormonal signaling pathway leading to meiotic resumption in starfish oocytes. Dev Biol 2004; 276:330-6. [PMID: 15581868 DOI: 10.1016/j.ydbio.2004.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 08/17/2004] [Accepted: 08/23/2004] [Indexed: 12/31/2022]
Abstract
Meiotic resumption is generally under the control of an extracellular maturation-inducing hormone. It is equivalent to the G2-M phase transition in somatic cell mitosis and is regulated by cyclin B-Cdc2 kinase. However, the complete signaling pathway from the hormone to cyclin B-Cdc2 is yet unclear in any organism. A model system to analyze meiotic resumption is the starfish oocyte, in which Akt/protein kinase B (PKB) plays a key mediator in hormonal signaling that leads to cyclin B-Cdc2 activation. Here we show in starfish oocytes that when PDK1 activity is inhibited by a neutralizing antibody, maturation-inducing hormone fails to induce cyclin B-Cdc2 activation at the meiotic G2-M phase transition, even though PDK2 activity becomes detectable. These observations assign a novel role to PDK1 for a hormonal signaling intermediate toward meiotic resumption. They further support that PDK2 is a molecule distinct from PDK1 and Akt, and that PDK2 activity is not sufficient for the full activation of Akt in the absence of PDK1 activity.
Collapse
Affiliation(s)
- Daisaku Hiraoka
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Matsuura RK, Chiba K. Unequal cell division regulated by the contents of germinal vesicles. Dev Biol 2004; 273:76-86. [PMID: 15302599 DOI: 10.1016/j.ydbio.2004.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/23/2004] [Accepted: 04/29/2004] [Indexed: 11/20/2022]
Abstract
Fertilization occurs during meiosis in many animals, when maternal centrosomes participate in the formation of spindles at the animal pole, which results in polar body formation. Paternal centrosomes do not participate in cell division during oocyte maturation. After meiosis, they form the spindles while the maternal centrosomes are discarded. It is unknown why paternal centrosomes do not form spindles during meiosis. Here, we show that the artificial incorporation of sperm at the animal pole of immature starfish oocytes causes unequal cell division and the formation of polar body-like fragments. The removal of germinal vesicles from the animal pole blocks the formation of polar body-like fragments. Furthermore, translocation of germinal vesicles to the vegetal pole by centrifugation induces the extrusion of polar body-like fragments from the vegetal pole, where sperm penetration is prerequisite. After germinal vesicle breakdown, cyclin B is localized in the maternal and paternal asters and spindles near the germinal vesicle. These results suggest that germinal vesicle components such as the cdc2-cyclin B complex interact with asters and spindles and can induce unequal cell division. During normal fertilization, paternal centrosomes are likely kept away from the germinal vesicle components, resulting in the inhibition of unequal paternal centrosome-dependent cell division.
Collapse
Affiliation(s)
- Ri-ko Matsuura
- Department of Biology, Ochanomizu University, Bunkyo, Tokyo, Japan
| | | |
Collapse
|
23
|
Abstract
Ideas of how a system of interacting enzymes can act as a switch are based on the concept of bistability of a biochemical network. This means that, because of the very structure of a signaling pathway, the system can be in one of two stable steady states: active or inactive. Switching from one state to another may then occur in response to external stimuli or as a result of internal development. However, the bistability of a biochemical network might not be robust enough to be the sole mechanism behind bio-switching. On the basis of recent experimental data on the cell-cycle G2/M transition during starfish oocyte meiotic maturation, it is shown that cooperative phenomena--such as phase changes associated with clustering, dissolution of aggregates and so on--may play central roles in providing a decisive and irreversible transition.
Collapse
Affiliation(s)
- Boris M Slepchenko
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-1507, USA.
| | | |
Collapse
|
24
|
Abstract
I discuss advances in the cell cycle in the 21 years since cyclin was discovered. The surprising redundancy amongst the classical cyclins (A, B, and E) and cyclin-dependent kinases (Cdk1 and Cdk2) show that the important differences between these proteins are when and where they are expressed rather than the proteins they phosphorylate. Although the broad principles of the cell cycle oscillator are widely accepted, we are surprisingly ignorant of its detailed mechanism. This is especially true of the anaphase promoting complex (APC), the machine that triggers chromosome segregation and the exit of mitosis by targeting securin and mitotic cyclins for destruction. I discuss how a cyclin/Cdk-based engine could have evolved to assume control of the cell cycle from other, older protein kinases.
Collapse
Affiliation(s)
- Andrew W Murray
- Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|