1
|
Gräf R, Batsios P, Grafe M, Meyer I, Mitic K. Nuclear Envelope Dynamics in Dictyostelium Amoebae. Cells 2025; 14:186. [PMID: 39936978 PMCID: PMC11816917 DOI: 10.3390/cells14030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
In the last decades, the study of many nuclear envelope components in Dictyostelium amoebae has revealed conserved mechanisms of nuclear envelope dynamics that root back unexpectedly deep into the eukaryotic tree of life. In this review, we describe the state of the art in nuclear envelope research in this organism starting from early work on nuclear pore complexes to characterization of the first true lamin in a non-metazoan organism and its associated nuclear envelope transmembrane proteins, such as the HeH-family protein Src1 and the LINC complex protein Sun1. We also describe the dynamic processes during semi-closed mitosis, including centrosome insertion into the nuclear envelope, and processes involved in the restoration of nuclear envelope permeability around mitotic exit and compare them to the situation in cells with open or fully closed mitosis.
Collapse
Affiliation(s)
- Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Petros Batsios
- Sigma-Aldrich Chemie GmbH, Eschenstraße 5, 82024 Taufkirchen, Germany;
| | - Marianne Grafe
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| | - Kristina Mitic
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (M.G.); (I.M.); (K.M.)
| |
Collapse
|
2
|
Hanna SM, Tavafoghi B, Chen JS, Howard I, Ren L, Willet AH, Gould KL. New mutations in the core Schizosaccharomyces pombe spindle pole body scaffold Ppc89 reveal separable functions in regulating cell division. G3 (BETHESDA, MD.) 2025; 15:jkae249. [PMID: 39471327 PMCID: PMC11708228 DOI: 10.1093/g3journal/jkae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and also serve as signaling platforms. In the fission yeast Schizosaccharomyces pombe, genetic ablation and high-resolution imaging indicate that the α-helical Ppc89 is central to SPB structure and function. Here, we developed and characterized conditional and truncation mutants of ppc89. Alleles with mutations in 2 predicted α-helices near the C-terminus were specifically defective in anchoring Sid4, the scaffold for the septation initiation network (SIN), and proteins dependent on Sid4 (Cdc11, Dma1, Mto1, and Mto2). Artificial tethering of Sid4 to the SPB fully rescued these ppc89 mutants. Another ppc89 allele had mutations located throughout the coding region. While this mutant was also defective in Sid4 anchoring, it displayed additional defects including fragmented SPBs and forming and constricting a second cytokinetic ring in 1 daughter cell. These defects were shared with a ppc89 allele truncated of the most C-terminal predicted α-helices that is still able to recruit Sid4 and the SIN. We conclude that Ppc89 not only tethers the SIN to the SPB but is also necessary for the integrity of the SPB and faithful coordination of cytokinesis with mitosis.
Collapse
Affiliation(s)
- Sarah M Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Bita Tavafoghi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Isaac Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Chen JS, Igarashi MG, Ren L, Hanna SM, Turner LA, McDonald NA, Beckley JR, Willet AH, Gould KL. The core spindle pole body scaffold Ppc89 links the pericentrin orthologue Pcp1 to the fission yeast spindle pole body via an evolutionarily conserved interface. Mol Biol Cell 2024; 35:ar112. [PMID: 38985524 PMCID: PMC11321043 DOI: 10.1091/mbc.e24-05-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sarah M. Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R. Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
4
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
5
|
Bestul AJ, Yu Z, Unruh JR, Jaspersen SL. Redistribution of centrosomal proteins by centromeres and Polo kinase controls partial nuclear envelope breakdown in fission yeast. Mol Biol Cell 2021; 32:1487-1500. [PMID: 34133218 PMCID: PMC8351742 DOI: 10.1091/mbc.e21-05-0239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proper mitotic progression in Schizosaccharomyces pombe requires partial nuclear envelope breakdown (NEBD) and insertion of the spindle pole body (SPB—yeast centrosome) to build the mitotic spindle. Linkage of the centromere to the SPB is vital to this process, but why that linkage is important is not well understood. Utilizing high-resolution structured illumination microscopy, we show that the conserved Sad1-UNC-84 homology-domain protein Sad1 and other SPB proteins redistribute during mitosis to form a ring complex around SPBs, which is a precursor for localized NEBD and spindle formation. Although the Polo kinase Plo1 is not necessary for Sad1 redistribution, it localizes to the SPB region connected to the centromere, and its activity is vital for redistribution of other SPB ring proteins and for complete NEBD at the SPB to allow for SPB insertion. Our results lead to a model in which centromere linkage to the SPB drives redistribution of Sad1 and Plo1 activation that in turn facilitate partial NEBD and spindle formation through building of a SPB ring structure.
Collapse
Affiliation(s)
- Andrew J Bestul
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
6
|
Jaspersen SL. Anatomy of the fungal microtubule organizing center, the spindle pole body. Curr Opin Struct Biol 2020; 66:22-31. [PMID: 33113389 DOI: 10.1016/j.sbi.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
The fungal kingdom is large and diverse, representing extremes of ecology, life cycles and morphology. At a cellular level, the diversity among fungi is particularly apparent at the spindle pole body (SPB). This nuclear envelope embedded structure, which is essential for microtubule nucleation, shows dramatically different morphologies between different fungi. However, despite phenotypic diversity, many SPB components are conserved, suggesting commonalities in structure, function and duplication. Here, I review the organization of the most well-studied SPBs and describe how advances in genomics, genetics and cell biology have accelerated knowledge of SPB architecture in other fungi, providing insights into microtubule nucleation and other processes conserved across eukaryotes.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
7
|
Niimi T, Nakamura T. The fission yeast SPB component Dms1 is required to initiate forespore membrane formation and maintain meiotic SPB components. PLoS One 2018; 13:e0197879. [PMID: 29813128 PMCID: PMC5973557 DOI: 10.1371/journal.pone.0197879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022] Open
Abstract
The spindle pole body (SPB) plays a central role in spore plasma membrane formation in addition to its recognized role in microtubule organization. During meiosis, a biomembrane called the forespore membrane (FSM) is newly formed at the SPB. Although several SPB proteins essential for the initiation of FSM formation (meiotic SPB components) have been identified, the molecular mechanism is still unknown. Here, we report the isolation and functional characterization of Dms1 as a component of the SPB. We show that FSM formation does not initiate in dms1Δ cells. Dms1 protein is constitutively expressed throughout the life cycle and localizes to the SPB and the nuclear envelope. The predicted Dms1 protein has a transmembrane domain, which is required for correct localization at the SPB. Dms1 is essential for the proper localization of three meiotic SPB components, Spo15, Spo2, and Spo13, but these components do not affect localization of Dms1. Collectively, these results suggest that Dms1 anchors these meiotic SPB components to the SPB, thereby facilitating the initiation of FSM formation.
Collapse
Affiliation(s)
- Touko Niimi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| |
Collapse
|
8
|
Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body. Cells 2018; 7:cells7050042. [PMID: 29748517 PMCID: PMC5981266 DOI: 10.3390/cells7050042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.
Collapse
|
9
|
Cavanaugh AM, Jaspersen SL. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annu Rev Genet 2017; 51:361-383. [PMID: 28934593 DOI: 10.1146/annurev-genet-120116-024733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
10
|
Bestul AJ, Yu Z, Unruh JR, Jaspersen SL. Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J Cell Biol 2017; 216:2409-2424. [PMID: 28619713 PMCID: PMC5551712 DOI: 10.1083/jcb.201701041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/06/2023] Open
Abstract
Microtubule-organizing centers (MTOCs), known as centrosomes in animals and spindle pole bodies (SPBs) in fungi, are important for the faithful distribution of chromosomes between daughter cells during mitosis as well as for other cellular functions. The cytoplasmic duplication cycle and regulation of the Schizosaccharomyces pombe SPB is analogous to centrosomes, making it an ideal model to study MTOC assembly. Here, we use superresolution structured illumination microscopy with single-particle averaging to localize 14 S. pombe SPB components and regulators, determining both the relationship of proteins to each other within the SPB and how each protein is assembled into a new structure during SPB duplication. These data enabled us to build the first comprehensive molecular model of the S. pombe SPB, resulting in structural and functional insights not ascertained through investigations of individual subunits, including functional similarities between Ppc89 and the budding yeast SPB scaffold Spc42, distribution of Sad1 to a ring-like structure and multiple modes of Mto1 recruitment.
Collapse
Affiliation(s)
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
11
|
Abstract
The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. Centrosomes and SPBs duplicate exactly once per cell cycle by mechanisms that use the mother structure as a platform for the assembly of the daughter. The conserved Sfi1 and centrin proteins are essential components of the SPB duplication process. Sfi1 is an elongated molecule that has, in its center, 20 to 23 binding sites for the Ca(2+)-binding protein centrin. In the yeastSaccharomyces cerevisiae, all Sfi1 N termini are in contact with the mother SPB whereas the free C termini are distal to it. During S phase and early mitosis, cyclin-dependent kinase 1 (Cdk1) phosphorylation of mainly serine residues in the Sfi1 C termini blocks the initiation of SPB duplication ("off" state). Upon anaphase onset, the phosphatase Cdc14 dephosphorylates Sfi1 ("on" state) to promote antiparallel and shifted incorporation of cytoplasmic Sfi1 molecules into the half-bridge layer, which thereby elongates into the bridge. The Sfi1 C termini of the two Sfi1 layers localize in the bridge center, whereas the N termini of the newly assembled Sfi1 molecules are distal to the mother SPB. These free Sfi1 N termini then assemble the new SPB in G1phase. Recruitment of Sfi1 molecules into the anaphase SPB and bridge formation were also observed inSchizosaccharomyces pombe, suggesting that the Sfi1 bridge cycle is conserved between the two organisms. Thus, restricting SPB duplication to one event per cell cycle requires only an oscillation between Cdk1 kinase and Cdc14 phosphatase activities. This clockwork regulates the "on"/"off" state of the Sfi1-centrin receiver.
Collapse
|
12
|
Mizuguchi T, Barrowman J, Grewal SIS. Chromosome domain architecture and dynamic organization of the fission yeast genome. FEBS Lett 2015; 589:2975-86. [PMID: 26096785 PMCID: PMC4598268 DOI: 10.1016/j.febslet.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Advanced techniques including the chromosome conformation capture (3C) methodology and its derivatives are complementing microscopy approaches to study genome organization, and are revealing new details of three-dimensional (3D) genome architecture at increasing resolution. The fission yeast Schizosaccharomyces pombe (S. pombe) comprises a small genome featuring organizational elements of more complex eukaryotic systems, including conserved heterochromatin assembly machinery. Here we review key insights into genome organization revealed in this model system through a variety of techniques. We discuss the predominant role of Rabl-like configuration for interphase chromosome organization and the dynamic changes that occur during mitosis and meiosis. High resolution Hi-C studies have also revealed the presence of locally crumpled chromatin regions called "globules" along chromosome arms, and implicated a critical role for pericentromeric heterochromatin in imposing fundamental constraints on the genome to maintain chromosome territoriality and stability. These findings have shed new light on the connections between genome organization and function. It is likely that insights gained from the S. pombe system will also broadly apply to higher eukaryotes.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jemima Barrowman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Bouhlel IB, Scheffler K, Tran PT, Paoletti A. Monitoring SPB biogenesis in fission yeast with high resolution and quantitative fluorescent microscopy. Methods Cell Biol 2015; 129:383-392. [PMID: 26175449 DOI: 10.1016/bs.mcb.2015.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Like centrosomes, yeast spindle pole bodies (SPBs) undergo a tightly controlled duplication cycle in order to restrict their number to one or two per cell and promote the assembly of a bipolar spindle at mitotic entry. This conservative duplication cycle is tightly coordinated with cell cycle progression although the mechanisms that ensure this coordination remain largely unknown. In this chapter, we describe simple high resolution microscopy- and quantitative light microscopy-based methods that allow to monitor SPB biogenesis in fission yeast and may be useful to study the molecular pathways controlling the successive phases of the duplication cycle.
Collapse
Affiliation(s)
- Imène B Bouhlel
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| | - Kathleen Scheffler
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| | - Phong T Tran
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| | - Anne Paoletti
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| |
Collapse
|
14
|
Lee IJ, Wang N, Hu W, Schott K, Bähler J, Giddings TH, Pringle JR, Du LL, Wu JQ. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast. Mol Biol Cell 2014; 25:2735-49. [PMID: 25031431 PMCID: PMC4161509 DOI: 10.1091/mbc.e13-11-0699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A previous model suggested doubling of Sfi1 as the first step of SPB assembly. Here it is shown that Sfi1 is gradually recruited to SPBs throughout the cell cycle. Conserved tryptophans in Sfi1 are required for its equal partitioning during mitosis, and unequal partitioning of Sfi1 underlies SPB assembly and mitotic defects in the next cell cycle. Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly.
Collapse
Affiliation(s)
- I-Ju Lee
- Graduate Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210 Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Ning Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Wen Hu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Kersey Schott
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Thomas H Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Electron tomography reveals novel microtubule lattice and microtubule organizing centre defects in +TIP mutants. PLoS One 2013; 8:e61698. [PMID: 23613905 PMCID: PMC3627915 DOI: 10.1371/journal.pone.0061698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/17/2013] [Indexed: 12/31/2022] Open
Abstract
Mal3p and Tip1p are the fission yeast (Schizosaccharomyces pombe) homologues of EB1 and CLIP-170, two conserved microtubule plus end tracking proteins (+TIPs). These proteins are crucial regulators of microtubule dynamics. Using electron tomography, we carried out a high-resolution analysis of the phenotypes caused by mal3 and tip1 deletions. We describe the 3-dimensional microtubule organization, quantify microtubule end structures and uncover novel defects of the microtubule lattices. We also reveal unexpected structural modifications of the spindle pole bodies (SPBs), the yeast microtubule organizing centers. In both mutants we observe an increased SPB volume and a reduced number of MT/SPB attachments. The discovered defects alter previous interpretations of the mutant phenotypes and provide new insights into the molecular functions of the two protein families.
Collapse
|
16
|
Funaya C, Samarasinghe S, Pruggnaller S, Ohta M, Connolly Y, Müller J, Murakami H, Grallert A, Yamamoto M, Smith D, Antony C, Tanaka K. Transient structure associated with the spindle pole body directs meiotic microtubule reorganization in S. pombe. Curr Biol 2012; 22:562-74. [PMID: 22425159 PMCID: PMC3382715 DOI: 10.1016/j.cub.2012.02.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/10/2012] [Accepted: 02/17/2012] [Indexed: 02/06/2023]
Abstract
Background Vigorous chromosome movements driven by cytoskeletal assemblies are a widely conserved feature of sexual differentiation to facilitate meiotic recombination. In fission yeast, this process involves the dramatic conversion of arrays of cytoplasmic microtubules (MTs), generated from multiple MT organizing centers (MTOCs), into a single radial MT (rMT) array associated with the spindle pole body (SPB), the major MTOC during meiotic prophase. The rMT is then dissolved upon the onset of meiosis I when a bipolar spindle emerges to conduct chromosome segregation. Structural features and molecular mechanisms that govern these dynamic MT rearrangements are poorly understood. Results Electron tomography of the SPBs showed that the rMT emanates from a newly recognized amorphous structure, which we term the rMTOC. The rMTOC, which resides at the cytoplasmic side of the SPB, is highly enriched in γ-tubulin reminiscent of the pericentriolar material of higher eukaryotic centrosomes. Formation of the rMTOC depends on Hrs1/Mcp6, a meiosis-specific SPB component that is located at the rMTOC. At the onset of meiosis I, Hrs1/Mcp6 is subject to strict downregulation by both proteasome-dependent degradation and phosphorylation leading to complete inactivation of the rMTOC. This ensures rMT dissolution and bipolar spindle formation. Conclusions Our study reveals the molecular basis for the transient generation of a novel MTOC, which triggers a program of MT rearrangement that is required for meiotic differentiation.
Collapse
Affiliation(s)
- Charlotta Funaya
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tamm T, Grallert A, Grossman EPS, Alvarez-Tabares I, Stevens FE, Hagan IM. Brr6 drives the Schizosaccharomyces pombe spindle pole body nuclear envelope insertion/extrusion cycle. ACTA ACUST UNITED AC 2012; 195:467-84. [PMID: 22042620 PMCID: PMC3206342 DOI: 10.1083/jcb.201106076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insertion into and release of the cytoplasmic domain of the Schizosaccharomyces pombe spindle pole body from a nuclear envelope fenestra during mitosis requires Brr6. The fission yeast interphase spindle pole body (SPB) is a bipartite structure in which a bulky cytoplasmic domain is separated from a nuclear component by the nuclear envelope. During mitosis, the SPB is incorporated into a fenestra that forms within the envelope during mitotic commitment. Closure of this fenestra during anaphase B/mitotic exit returns the cytoplasmic component to the cytoplasmic face of an intact interphase nuclear envelope. Here we show that Brr6 is transiently recruited to SPBs at both SPB insertion and extrusion. Brr6 is required for both SPB insertion and nuclear envelope integrity during anaphase B/mitotic exit. Genetic interactions with apq12 and defective sterol assimilation suggest that Brr6 may alter envelope composition at SPBs to promote SPB insertion and extrusion. The restriction of the Brr6 domain to eukaryotes that use a polar fenestra in an otherwise closed mitosis suggests a conserved role in fenestration to enable a single microtubule organizing center to nucleate both cytoplasmic and nuclear microtubules on opposing sides of the nuclear envelope.
Collapse
Affiliation(s)
- Tiina Tamm
- Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, Manchester M20 4BX, England, UK
| | | | | | | | | | | |
Collapse
|
18
|
Castagnetti S, Oliferenko S, Nurse P. Fission yeast cells undergo nuclear division in the absence of spindle microtubules. PLoS Biol 2010; 8:e1000512. [PMID: 20967237 PMCID: PMC2953530 DOI: 10.1371/journal.pbio.1000512] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/26/2010] [Indexed: 12/03/2022] Open
Abstract
Through a previously undescribed mechanism, fission yeast cells can undergo nuclear division and enter the next cell cycle, even in the absence of spindle microtubules. Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis. The process of cell division, mitosis, ensures that chromosomes are accurately segregated to generate two daughter cells, each with a complete genome. Eukaryotic cells use a microtubule-based mitotic spindle to ensure proper chromosome segregation. In the fission yeast Schizosaccharomyces pombe, mitosis is “closed”: that is, the nuclear envelope does not break down, and the mitotic spindle forms within the nucleus. Unexpectedly we have found that in certain circumstances division of the fission yeast nucleus and progression into the next cell cycle can take place without the mitotic spindle. We call this nuclear division process “nuclear fission” because the nucleus separates into two bodies. We show that nuclear fission requires filamentous actin and functional spindle pole bodies, which are the fission yeast equivalent of the centrosome in other organisms. We also show that nuclear fission requires sister chromatid separation and is accompanied by some level of chromosome segregation. We propose that nuclear fission is a vestige of a primitive nuclear division process and might reflect an evolutionary intermediate between the mechanism of chromosome segregation that takes place in bacteria and the microtubule-based mitosis of modern eukaryotes.
Collapse
|
19
|
Reorganization of the growth pattern of Schizosaccharomyces pombe in invasive filament formation. EUKARYOTIC CELL 2010; 9:1788-97. [PMID: 20870879 DOI: 10.1128/ec.00084-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The organization and control of polarized growth through the cell cycle of Schizosaccharomyces pombe, a single-celled eukaryote, have been studied extensively. We have investigated the changes in these processes when S. pombe differentiates to form multicellular invasive mycelia and have found striking alterations to the behavior of some of the key regulatory proteins. Cells at the tips of invading filaments are considerably more elongated than cells growing singly and grow at one pole only. The filament tip follows a strict direction of growth through multiple cell cycles. A group of proteins involved in the growth process and actin regulation, comprising Spo20, Bgs4, activated Cdc42, and Crn1, are all concentrated at the growing tip, unlike their distribution at both ends of single cells. In contrast, several proteins implicated in microtubule-dependent organization of growth, including Tea1, Tea4, Mod5, and Pom1, all show the opposite effect and are relatively depleted at the growing end and enriched at the nongrowing end, although Tea1 appears to continue to be delivered to both ends. A third group acting at different stages of the cell cycle, including Bud6, Rga4, and Mid1, localize similarly in filaments and single cells, while Nif1 shows a reciprocal localization to Pom1.
Collapse
|
20
|
Jia ZF, Huang Q, Kang CS, Yang WD, Wang GX, Yu SZ, Jiang H, Pu PY. Overexpression of septin 7 suppresses glioma cell growth. J Neurooncol 2009; 98:329-40. [PMID: 20035367 DOI: 10.1007/s11060-009-0092-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 12/07/2009] [Indexed: 11/28/2022]
Abstract
Our previous study demonstrated that SEPT7 was downregulated at mRNA level in human gliomas. This study is to further examine the expression of SEPT7 in glioma samples and characterizes its role on cell cycle progression and growth of glioma cells. mRNA and protein expression of SEPT7 were detected by RT-PCR, immunohistochemical staining, and western blot analysis in human glioma specimens and normal brain tissues. A pcDNA3-SEPT7 expression plasmid was constructed and transfected into human glioblastoma cell line U251, and cell proliferation and apoptosis were examined. The growth of established U251 and TJ905 subcutaneous xenograft gliomas was measured in nude mice treated with pcDNA3-SEPT7 and U251 xenograft tumors treated with SEPT7 siRNA. SEPT7 expression is negatively correlated with the increase of glioma grade. Overexpression of SEPT7 is able to inhibit cell proliferation and arrest cell cycle progression in the G0/G1 phase both in vitro and in vivo. Knocking down further the already low endogenous expression of SEPT7 in U251 xenograft tumors with siRNA leads to faster tumor growth compared with control tumors. This study demonstrates that SEPT7 is involved in gliomagenesis and suppresses glioma cell growth.
Collapse
Affiliation(s)
- Zhi-fan Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, 152 An-Shan Road, Tianjin, 300052, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tallada VA, Tanaka K, Yanagida M, Hagan IM. The S. pombe mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope. ACTA ACUST UNITED AC 2009; 185:875-88. [PMID: 19487457 PMCID: PMC2711587 DOI: 10.1083/jcb.200812108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fission yeast spindle pole body (SPB) comprises a cytoplasmic structure that is separated from an ill-defined nuclear component by the nuclear envelope. Upon mitotic commitment, the nuclear envelope separating these domains disperses as the two SPBs integrate into a hole that forms in the nuclear envelope. The SPB component Cut12 is linked to cell cycle control, as dominant cut12.s11 mutations suppress the mitotic commitment defect of cdc25.22 cells and elevated Cdc25 levels suppress the monopolar spindle phenotype of cut12.1 loss of function mutations. We show that the cut12.1 monopolar phenotype arises from a failure to activate and integrate the new SPB into the nuclear envelope. The activation of the old SPB was frequently delayed, and its integration into the nuclear envelope was defective, resulting in leakage of the nucleoplasm into the cytoplasm through large gaps in the nuclear envelope. We propose that these activation/integration defects arise from a local deficiency in mitosis-promoting factor activation at the new SPB.
Collapse
Affiliation(s)
- Victor A Tallada
- Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M204BX, England, UK
| | | | | | | |
Collapse
|
22
|
Yamaguchi M, Biswas SK, Ohkusu M, Takeo K. Dynamics of the spindle pole body of the pathogenic yeastCryptococcus neoformansexamined by freeze-substitution electron microscopy. FEMS Microbiol Lett 2009; 296:257-65. [DOI: 10.1111/j.1574-6968.2009.01643.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Dikaryotic cell division of the fission yeast Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2008; 72:1531-8. [PMID: 18540083 DOI: 10.1271/bbb.80035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dikaryons, cells with two haploid nuclei contributed by the members of a mating pair, are part of the life cycle of many filamentous fungi, but the molecular mechanisms underlying the division of dikaryons are largely unknown. We found that the fission yeast Schizosaccharomyces pombe has a latent ability to divide as a dikaryon. Cells capable of restarting the mitotic cycle with two nuclei were prepared by transient inactivation of the septation initiation network. Close pairing of the two nuclei before mitosis was dependent on minus-end-directed kinesin Klp2p and was essential for propagation as a dikaryon. The two spindles extended in opposite directions, keeping their old spindle pole bodies at the prospective site of cell division until the mid-anaphase. The spindles then overlapped, exchanging the inner nuclei. Finally, twin mitosis was followed by a single cytokinesis, producing two daughter dikaryons carrying copies of the original pair of nuclei.
Collapse
|
24
|
Daga RR, Nurse P. Interphase microtubule bundles use global cell shape to guide spindle alignment in fission yeast. J Cell Sci 2008; 121:1973-80. [PMID: 18495844 DOI: 10.1242/jcs.011825] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Correct spindle alignment requires a cell to detect and interpret its global geometry and to communicate this information to the mitotic spindle. In the fission yeast, Schizosaccharomyces pombe, the mitotic spindle is aligned with the longitudinal axis of the rod-shaped cell. Here, using wild-type and cell-shape mutants we investigate the mechanism of initial spindle alignment and show that attachment of interphase microtubules to the spindle pole bodies (SPB), the yeast equivalent of the centrosome, is required to align duplicated SPBs, and thus the mitotic spindle, with the long axis of the cell. In the absence of interphase microtubules or attachment between the microtubules and the SPB, newly formed spindles are randomly oriented. We show that the axis of the mitotic spindle correlates with the axis along which the SPB, as a consequence of interphase microtubule dynamics, oscillates just before mitosis. We propose that cell geometry guides cytoplasmic microtubule alignment, which in turn, determines initial spindle alignment, and demonstrate that a failure of the spindle pre-alignment mechanism results in unequal chromosome segregation when spindle length is reduced.
Collapse
|
25
|
Durcan TM, Halpin ES, Casaletti L, Vaughan KT, Pierson MR, Woods S, Hinchcliffe EH. Centrosome duplication proceeds during mimosine-induced G1 cell cycle arrest. J Cell Physiol 2008; 215:182-91. [PMID: 17960592 PMCID: PMC2764247 DOI: 10.1002/jcp.21298] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centrosome duplication must remain coordinated with cell cycle progression to ensure the formation of a strictly bipolar mitotic spindle, but the mechanisms that regulate this coordination are poorly understood. Previous work has shown that prolonged S-phase is permissive for centrosome duplication, but prolonging either G2 or M-phase cannot support duplication. To examine whether G1 is permissive for centrosome duplication, we release serum-starved G0 cells into mimosine, which delays the cell cycle in G1. We find that in mimosine, centrosome duplication does occur, albeit slowly compared with cells that progress into S-phase; centrosome duplication in mimosine-treated cells also proceeds in the absence of a rise in Cdk2 kinase activity normally associated with the G1/S transition. CHO cells arrested with mimosine can also assemble more than four centrioles (termed "centrosome amplification"), but the extent of centrosome amplification during prolonged G1 is decreased compared to cells that enter S-phase and activate the Cdk2-cyclin complex. Together, our results suggest a model, which predicts that entry into S-phase and the rise in Cdk2 activity associated with this transition are not absolutely required to initiate centrosome duplication, but rather, serve to entrain the centrosome reproduction cycle with cell cycle progression.
Collapse
Affiliation(s)
- Thomas M. Durcan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Elizabeth S. Halpin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Luciana Casaletti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Kevin T. Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Maggie R. Pierson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Shane Woods
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | | |
Collapse
|
26
|
Zheng L, Schwartz C, Magidson V, Khodjakov A, Oliferenko S. The spindle pole bodies facilitate nuclear envelope division during closed mitosis in fission yeast. PLoS Biol 2007; 5:e170. [PMID: 17579515 PMCID: PMC1892572 DOI: 10.1371/journal.pbio.0050170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 04/20/2007] [Indexed: 01/07/2023] Open
Abstract
Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Delta cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.
Collapse
Affiliation(s)
- Liling Zheng
- Cell Dynamics Group, Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Cindi Schwartz
- The Boulder Laboratory for 3-D Electron Microscopy of Cells, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | | | | | | |
Collapse
|
27
|
Höög JL, Schwartz C, Noon AT, O'Toole ET, Mastronarde DN, McIntosh JR, Antony C. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev Cell 2007; 12:349-61. [PMID: 17336902 DOI: 10.1016/j.devcel.2007.01.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 12/08/2006] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
Polarized cells, such as neuronal, epithelial, and fungal cells, all display a specialized organization of their microtubules (MTs). The interphase MT cytoskeleton of the rod-shaped fission yeast, Schizosaccharomyces pombe, has been extensively described by fluorescence microscopy. Here, we describe a large-scale, electron tomography investigation of S. pombe, including a 3D reconstruction of a complete eukaryotic cell volume at sufficient resolution to show both how many MTs there are in a bundle and their detailed architecture. Most cytoplasmic MTs are open at one end and capped at the other, providing evidence about their polarity. Electron-dense bridges between the MTs themselves and between MTs and the nuclear envelope were frequently observed. Finally, we have investigated structure/function relationships between MTs and both mitochondria and vesicles. Our analysis shows that electron tomography of well-preserved cells is ideally suited for describing fine ultrastructural details that were not visible with previous techniques.
Collapse
Affiliation(s)
- Johanna L Höög
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Grishchuk EL, Spiridonov IS, McIntosh JR. Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol Biol Cell 2007; 18:2216-25. [PMID: 17409356 PMCID: PMC1877089 DOI: 10.1091/mbc.e06-11-0987] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end-directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Molecular, Cellular, and Developmental Biology Department, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
29
|
Abstract
A simple self-assembly pathway generates cytoplasmic microtubule bundles that can locate the cell center and guide spindle assembly in fission yeast. The cylindrical cell shape automatically corrects spindle orientation errors, rendering a checkpoint unnecessary.
Collapse
Affiliation(s)
- Steven B Haase
- Biology Department, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
30
|
Vogel SK, Raabe I, Dereli A, Maghelli N, Tolić-Nørrelykke I. Interphase microtubules determine the initial alignment of the mitotic spindle. Curr Biol 2007; 17:438-44. [PMID: 17306542 DOI: 10.1016/j.cub.2007.01.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 01/10/2007] [Accepted: 01/17/2007] [Indexed: 11/18/2022]
Abstract
In the fission yeast Schizosaccharomyces pombe, interphase microtubules (MTs) position the nucleus [1, 2], which in turn positions the cell-division plane [1, 3]. It is unclear how the spindle orients, with respect to the predetermined division plane, to ensure that the chromosomes are segregated across this plane. It has been proposed that, during prometaphase, the astral MT interaction with the cell cortex aligns the spindle with the cell axis [4] and also participates in a spindle orientation checkpoint (SOC), which delays entry into anaphase as long as the spindle is misaligned [5-7]. Here, we trace the position of the spindle throughout mitosis in a single-cell assay. We find no evidence for the SOC. We show that the spindle is remarkably well aligned with the cell longitudinal axis at the onset of mitosis, by growing along the axis of the adjacent interphase MT. Misalignment of nascent spindles can give rise to anucleate cells when spindle elongation is impaired. We propose a new role for interphase microtubules: through interaction with the spindle pole body, interphase microtubules determine the initial alignment of the spindle in the subsequent cell division.
Collapse
Affiliation(s)
- Sven K Vogel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | | | | | | | |
Collapse
|
31
|
Grishchuk EL, McIntosh JR. Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J 2006; 25:4888-96. [PMID: 17036054 PMCID: PMC1618090 DOI: 10.1038/sj.emboj.7601353] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 08/23/2006] [Indexed: 11/08/2022] Open
Abstract
Prometaphase kinetochores interact with spindle microtubules (MTs) to establish chromosome bi-orientation. Before becoming bi-oriented, chromosomes frequently exhibit poleward movements (P-movements), which are commonly attributed to minus end-directed, MT-dependent motors. In fission yeast there are three such motors: dynein and two kinesin-14s, Pkl1p and Klp2p. None of these enzymes is essential for viability, and even the triple deletion grows well. This might be due to the fact that yeasts kinetochores are normally juxtapolar at mitosis onset, removing the need for poleward chromosome movement during prometaphase. Anaphase P-movement might also be dispensable in a spindle that elongates significantly. To test this supposition, we have analyzed kinetochore dynamics in cells whose kinetochore-pole connections have been dispersed. In cells recovering from this condition, the maximum rate of poleward kinetochore movement was unaffected by the deletion of any or all of these motors, strongly suggesting that other factors, like MT depolymerization, can cause such movements in vivo. However, Klp2p, which localizes to kinetochores, contributed to the effectiveness of P-movement by promoting the shortening of kinetochore fibers.
Collapse
|
32
|
Masuda H, Toda T, Miyamoto R, Haraguchi T, Hiraoka Y. Modulation of Alp4 function in Schizosaccharomyces pombe induces novel phenotypes that imply distinct functions for nuclear and cytoplasmic gamma-tubulin complexes. Genes Cells 2006; 11:319-36. [PMID: 16611237 DOI: 10.1111/j.1365-2443.2006.00946.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gamma-tubulin complex acts as a nucleation unit for microtubule assembly. It remains unknown, however, how spatial and temporal regulation of the complex activity affects microtubule-mediated cellular processes. Alp4 is one of the essential components of the S. pombe gamma-tubulin complex. We show here that overproduction of a carboxy-terminal form of Alp4 (Alp4C) and its derivatives tagged to a nuclear localization signal or to a nuclear export signal affect localization of gamma-tubulin complexes and induces novel phenotypes that reflect distinct functions of nuclear and cytoplasmic gamma-tubulin complexes. Nuclear Alp4C induces a Wee1-dependent G2 delay, reduces the levels of the gamma-tubulin complex at the spindle pole body, and results in defects in mitotic progression including spindle assembly, cytoplasmic microtubule disassembly, and chromosome segregation. In contrast, cytoplasmic Alp4C induces oscillatory nuclear movement and affects levels of cell polarity markers, Bud6 and Tip1, at the cell ends. These results demonstrate that regulation of nuclear gamma-tubulin complex activity is essential for cell cycle progression through the G2/M boundary and M phase, whereas regulation of cytoplasmic gamma-tubulin complex activity is important for nuclear positioning and cell polarity control during interphase.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Cell Biology Group and CREST/JST, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| | | | | | | | | |
Collapse
|
33
|
Rosenberg JA, Tomlin GC, McDonald WH, Snydsman BE, Muller EG, Yates JR, Gould KL. Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body. Mol Biol Cell 2006; 17:3793-805. [PMID: 16775007 PMCID: PMC1593159 DOI: 10.1091/mbc.e06-01-0039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle-pole body (SPB), the yeast analog of the centrosome, serves as the major microtubule (MT) organizing center in the yeast cell. In addition to this central function, the SPB organizes and concentrates proteins required for proper coordination between the nuclear-division cycle and cytokinesis. For example, the Schizosaccharomyces pombe septation-initiation network (SIN), which is responsible for initiating actomyosin ring constriction and septation, is assembled at the SPB through its two scaffolding components, Sid4 and Cdc11. In an effort to identify novel SIN interactors, we purified Cdc11 and identified by mass spectrometry a previously uncharacterized protein associated with it, Ppc89. Ppc89 localizes constitutively to the SPB and interacts directly with Sid4. A fusion between the N-terminal 300 amino acids of Sid4 and a SPB targeting domain of Ppc89 supplies the essential function of Sid4 in anchoring the SIN. ppc89Delta cells are inviable and exhibit defects in SPB integrity, and hence in spindle formation, chromosome segregation, and SIN localization. Ppc89 overproduction is lethal, resulting primarily in a G2 arrest accompanied by massive enlargement of the SPB and increased SPB MT nucleation. These results suggest a fundamental role for Ppc89 in organization of the S. pombe SPB.
Collapse
Affiliation(s)
- Joshua A. Rosenberg
- *Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Gregory C. Tomlin
- *Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - Brian E. Snydsman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Eric G. Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - John R. Yates
- The Scripps Research Institute, La Jolla, CA 92037; and
| | - Kathleen L. Gould
- *Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
34
|
Current awareness on yeast. Yeast 2005; 22:593-600. [PMID: 16003861 DOI: 10.1002/yea.1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|