1
|
Mishra PK, Chakraborty A, Yeh E, Feng W, Bloom KS, Basrai MA. R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Mol Biol Cell 2020; 32:74-89. [PMID: 33147102 PMCID: PMC8098821 DOI: 10.1091/mbc.e20-06-0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
R-loops, the byproduct of DNA–RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA–RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Wenyi Feng
- SUNY Upstate Medical University, Syracuse, NY 13210
| | - Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2
|
Alonso A, Fabritius A, Ozzello C, Andreas M, Klenchin D, Rayment I, Winey M. Yeast pericentrin/Spc110 contains multiple domains required for tethering the γ-tubulin complex to the centrosome. Mol Biol Cell 2020; 31:1437-1452. [PMID: 32374651 PMCID: PMC7359572 DOI: 10.1091/mbc.e20-02-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae spindle pole body (SPB) serves as the sole microtubule-organizing center of the cell, nucleating both cytoplasmic and nuclear microtubules. Yeast pericentrin, Spc110, binds to and activates the γ-tubulin complex via its N terminus, allowing nuclear microtubule polymerization to occur. The Spc110 C terminus links the γ-tubulin complex to the central plaque of the SPB by binding to Spc42, Spc29, and calmodulin (Cmd1). Here, we show that overexpression of the C terminus of Spc110 is toxic to cells and correlates with its localization to the SPB. Spc110 domains that are required for SPB localization and toxicity include its Spc42-, Spc29-, and Cmd1-binding sites. Overexpression of the Spc110 C terminus induces SPB defects and disrupts microtubule organization in both cycling and G2/M arrested cells. Notably, the two mitotic SPBs are affected in an asymmetric manner such that one SPB appears to be pulled away from the nucleus toward the cortex but remains attached via a thread of nuclear envelope. This SPB also contains relatively fewer microtubules and less endogenous Spc110. Our data suggest that overexpression of the Spc110 C terminus acts as a dominant-negative mutant that titrates endogenous Spc110 from the SPB causing spindle defects.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Amy Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Courtney Ozzello
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Mike Andreas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Dima Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
3
|
Jones MH, O'Toole ET, Fabritius AS, Muller EG, Meehl JB, Jaspersen SL, Winey M. Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Mol Biol Cell 2018; 29:2280-2291. [PMID: 30044722 PMCID: PMC6249810 DOI: 10.1091/mbc.e18-05-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components. Here we describe mutagenic analysis of phosphorylation events on Spc29 and Spc42, two SPB core components that were shown in the phosphoproteome to be heavily phosphorylated. Mutagenesis at multiple sites in Spc29 and Spc42 suggests that much of the phosphorylation on these two proteins is not essential but enhances several steps of mitosis. Of the 65 sites examined on both proteins, phosphorylation of the Mps1 sites Spc29-T18 and Spc29-T240 was shown to be critical for function. Interestingly, these two sites primarily influence distinct successive steps; Spc29-T240 is important for the interaction of Spc29 with Spc42, likely during satellite formation, and Spc29-T18 facilitates insertion of the new SPB into the nuclear envelope and promotes anaphase spindle elongation. Phosphorylation sites within Cdk1 motifs affect function to varying degrees, but mutations only have significant effects in the presence of an MPS1 mutation, supporting a theme of coregulation by these two kinases.
Collapse
Affiliation(s)
- Michele Haltiner Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Eric G Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Janet B Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
4
|
Viswanath S, Bonomi M, Kim SJ, Klenchin VA, Taylor KC, Yabut KC, Umbreit NT, Van Epps HA, Meehl J, Jones MH, Russel D, Velazquez-Muriel JA, Winey M, Rayment I, Davis TN, Sali A, Muller EG. The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol Biol Cell 2017; 28:3298-3314. [PMID: 28814505 PMCID: PMC5687031 DOI: 10.1091/mbc.e17-06-0397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
A model of the core of the yeast spindle pole body (SPB) was created by a Bayesian modeling approach that integrated a diverse data set of biophysical, biochemical, and genetic information. The model led to a proposed pathway for the assembly of Spc110, a protein related to pericentrin, and a mechanism for how calmodulin strengthens the SPB during mitosis. Microtubule-organizing centers (MTOCs) form, anchor, and stabilize the polarized network of microtubules in a cell. The central MTOC is the centrosome that duplicates during the cell cycle and assembles a bipolar spindle during mitosis to capture and segregate sister chromatids. Yet, despite their importance in cell biology, the physical structure of MTOCs is poorly understood. Here we determine the molecular architecture of the core of the yeast spindle pole body (SPB) by Bayesian integrative structure modeling based on in vivo fluorescence resonance energy transfer (FRET), small-angle x-ray scattering (SAXS), x-ray crystallography, electron microscopy, and two-hybrid analysis. The model is validated by several methods that include a genetic analysis of the conserved PACT domain that recruits Spc110, a protein related to pericentrin, to the SPB. The model suggests that calmodulin can act as a protein cross-linker and Spc29 is an extended, flexible protein. The model led to the identification of a single, essential heptad in the coiled-coil of Spc110 and a minimal PACT domain. It also led to a proposed pathway for the integration of Spc110 into the SPB.
Collapse
Affiliation(s)
- Shruthi Viswanath
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Massimiliano Bonomi
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158 .,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Vadim A Klenchin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Keenan C Taylor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - King C Yabut
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Janet Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Michele H Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Daniel Russel
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Javier A Velazquez-Muriel
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Eric G Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
5
|
Fong KK, Sarangapani KK, Yusko EC, Riffle M, Llauró A, Graczyk B, Davis TN, Asbury CL. Direct measurement of the strength of microtubule attachment to yeast centrosomes. Mol Biol Cell 2017; 28:1853-1861. [PMID: 28331072 PMCID: PMC5541836 DOI: 10.1091/mbc.e17-01-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/14/2023] Open
Abstract
Laser trapping is used to manipulate single attached microtubules in vitro. Direct mechanical measurement shows that attachment of microtubule minus ends to yeast spindle pole bodies is extraordinarily strong. Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubule-centrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB–microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB–microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB–microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs.
Collapse
Affiliation(s)
- Kimberly K Fong
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Krishna K Sarangapani
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Aida Llauró
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Beth Graczyk
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
6
|
Abstract
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.
Collapse
|
7
|
Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD, Weaver KJ, Delventhal KM, Unruh J, Slaughter BD, Jaspersen SL. The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet 2011; 7:e1002365. [PMID: 22125491 PMCID: PMC3219597 DOI: 10.1371/journal.pgen.1002365] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.
Collapse
Affiliation(s)
| | - Suman Ghosh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christine J. Smoyer
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brandon D. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kyle J. Weaver
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym M. Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
8
|
Greenland KB, Ding H, Costanzo M, Boone C, Davis TN. Identification of Saccharomyces cerevisiae spindle pole body remodeling factors. PLoS One 2010; 5:e15426. [PMID: 21103054 PMCID: PMC2980476 DOI: 10.1371/journal.pone.0015426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/20/2010] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae centrosome or spindle pole body (SPB) is a dynamic structure that is remodeled in a cell cycle dependent manner. The SPB increases in size late in the cell cycle and during most cell cycle arrests and exchanges components during G1/S. We identified proteins involved in the remodeling process using a strain in which SPB remodeling is conditionally induced. This strain was engineered to express a modified SPB component, Spc110, which can be cleaved upon the induction of a protease. Using a synthetic genetic array analysis, we screened for genes required only when Spc110 cleavage is induced. Candidate SPB remodeling factors fell into several functional categories: mitotic regulators, microtubule motors, protein modification enzymes, and nuclear pore proteins. The involvement of candidate genes in SPB assembly was assessed in three ways: by identifying the presence of a synthetic growth defect when combined with an Spc110 assembly defective mutant, quantifying growth of SPBs during metaphase arrest, and comparing distribution of SPB size during asynchronous growth. These secondary screens identified four genes required for SPB remodeling: NUP60, POM152, and NCS2 are required for SPB growth during a mitotic cell cycle arrest, and UBC4 is required to maintain SPB size during the cell cycle. These findings implicate the nuclear pore, urmylation, and ubiquitination in SPB remodeling and represent novel functions for these genes.
Collapse
Affiliation(s)
- Kristen B. Greenland
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Huiming Ding
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Michael Costanzo
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Trisha N. Davis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
9
|
Fong CS, Sato M, Toda T. Fission yeast Pcp1 links polo kinase-mediated mitotic entry to gamma-tubulin-dependent spindle formation. EMBO J 2010; 29:120-30. [PMID: 19942852 PMCID: PMC2788132 DOI: 10.1038/emboj.2009.331] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/16/2009] [Indexed: 12/23/2022] Open
Abstract
The centrosomal pericentrin-related proteins play pivotal roles in various aspects of cell division; however their underlying mechanisms remain largely elusive. Here we show that fission-yeast pericentrin-like Pcp1 regulates multiple functions of the spindle pole body (SPB) through recruiting two critical factors, the gamma-tubulin complex (gamma-TuC) and polo kinase (Plo1). We isolated two pcp1 mutants (pcp1-15 and pcp1-18) that display similar abnormal spindles, but with remarkably different molecular defects. Both mutants exhibit defective monopolar spindle microtubules that emanate from the mother SPB. However, while pcp1-15 fails to localise the gamma-TuC to the mitotic SPB, pcp1-18 is specifically defective in recruiting Plo1. Consistently Pcp1 forms a complex with both gamma-TuC and Plo1 in the cell. pcp1-18 is further defective in the mitotic-specific reorganisation of the nuclear envelope (NE), leading to impairment of SPB insertion into the NE. Moreover pcp1-18, but not pcp1-15, is rescued by overproducing nuclear pore components or advancing mitotic onset. The central role for Pcp1 in orchestrating these processes provides mechanistic insight into how the centrosome regulates multiple cellular pathways.
Collapse
Affiliation(s)
- Chii Shyang Fong
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Masamitsu Sato
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| |
Collapse
|
10
|
Abstract
Chlamydomonas reinhardtii is a popular model organism in modern cell biology. Historically, methods for preparing this cell for transmission electron microscopy have used conventional chemical fixation that can result in artifacts that affect the 3-D organization of the cell. We have developed improved methods of specimen preparation that involve high-pressure freezing followed by freeze-substitution that are particularly well suited for 3-D studies (O'Toole et al., 2003, 2007). In this chapter, we describe the details of our cryopreparation methods for the optimal preservation of whole cells for immunocytochemistry and electron tomography. Examples are presented that show the utility of this approach for studying the 3-D architecture of membrane systems and cytoskeletal arrays in intact cells.
Collapse
|
11
|
Melloy P, Shen S, White E, Rose MD. Distinct roles for key karyogamy proteins during yeast nuclear fusion. Mol Biol Cell 2009; 20:3773-82. [PMID: 19570912 PMCID: PMC2735476 DOI: 10.1091/mbc.e09-02-0163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 11/11/2022] Open
Abstract
During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.
Collapse
Affiliation(s)
- Patricia Melloy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
In this chapter we describe the preparation of early mitotic C. elegans embryos for the tomographic reconstruction of end-morphologies of spindle microtubules. Early embryos are prepared by high-pressure freezing and freeze-substitution for thin-layer embedding in Epon/Araldite. We further describe data acquisition, tomographic reconstruction, and 3-D modeling of microtubules in serially sectioned mitotic spindles. The presented techniques are applicable to other model systems.
Collapse
|
13
|
Müller-Reichert T, Mäntler J, Srayko M, O'Toole E. Electron microscopy of the early Caenorhabditis elegans embryo. J Microsc 2008; 230:297-307. [PMID: 18445160 DOI: 10.1111/j.1365-2818.2008.01985.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The early Caenorhabditis elegans embryo is currently a popular model system to study centrosome assembly, kinetochore organization, spindle formation, and cellular polarization. Here, we present and review methods for routine electron microscopy and 3D analysis of the early C. elegans embryo. The first method uses laser-induced chemical fixation to preserve the fine structure of isolated embryos. This approach takes advantage of time-resolved fixation to arrest development at specific stages. The second method uses high-pressure freezing of whole worms followed by freeze-substitution (HPF-FS) for ultrastructural analysis. This technique allows staging of developing early embryos within the worm uterus, and has the advantage of superior sample preservation required for high-resolution 3D reconstruction. The third method uses a correlative approach to stage isolated, single embryos by light microscopy followed by HPF-FS and electron tomography. This procedure combines the advantages of time-resolved fixation and superior ultrastructural preservation by high-pressure freezing and allows a higher throughput electron microscopic analysis. The advantages and disadvantages of these methods for different applications are discussed.
Collapse
Affiliation(s)
- T Müller-Reichert
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| | | | | | | |
Collapse
|
14
|
Romao M, Tanaka K, Sibarita JB, Ly-Hartig NTB, Tanaka TU, Antony C. Three-dimensional electron microscopy analysis of ndc10-1 mutant reveals an aberrant organization of the mitotic spindle and spindle pole body defects in Saccharomyces cerevisiae. J Struct Biol 2008; 163:18-28. [PMID: 18515145 DOI: 10.1016/j.jsb.2008.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/21/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
Kinetochore components play a major role in regulating the transmission of genetic information during cell division. Ndc10p, a kinetochore component of the essential CBF3 complex in budding yeast is required for chromosome attachment to the mitotic spindle. ndc10-1 mutant was shown to display chromosome mis-segregation as well as an aberrant mitotic spindle (Goh and Kilmartin, 1993). In addition, Ndc10p localizes along the spindle microtubules (Muller-Reichert et al., 2003). To further understand the role of Ndc10p in the mitotic apparatus, we performed a three-dimensional electron microscopy (EM) reconstruction of mitotic spindles from serial sections of cryo-immobilized ndc10-1 mutant cells. This analysis reveals a dramatic reduction in the number of microtubules present in the half-spindle, which is connected to the newly formed spindle pole body (SPB) in ndc10-1 cells. Moreover, in contrast to wild-type (WT) cells, ndc10-1 cells showed a significantly lower signal intensity of the SPB components Spc42p and Spc110p fused with GFP, in mother cell bodies compared with buds. A subsequent EM analysis also showed clear defects in the newly formed SPB, which remains in the mother cell during anaphase. These results suggest that Ndc10p is required for maturation of the newly formed SPB. Intriguingly, mutations in other kinetochore components, ndc80-1 and spc24-1, showed kinetochore detachment from the spindle, similar to ndc10-1, but did not display defects in SPBs. This suggests that unattached kinetochores are not sufficient to cause SPB defects in ndc10-1 cells. We propose that Ndc10p, alongside its role in kinetochore-microtubule interaction, is also essential for SPB maturation and mitotic spindle integrity.
Collapse
Affiliation(s)
- Maryse Romao
- Institut Curie UMR144 CNRS, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
15
|
Melloy P, Shen S, White E, McIntosh JR, Rose MD. Nuclear fusion during yeast mating occurs by a three-step pathway. ACTA ACUST UNITED AC 2007; 179:659-70. [PMID: 18025302 PMCID: PMC2080914 DOI: 10.1083/jcb.200706151] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in ∼80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.
Collapse
Affiliation(s)
- Patricia Melloy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
16
|
Toya M, Sato M, Haselmann U, Asakawa K, Brunner D, Antony C, Toda T. Gamma-tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast. Nat Cell Biol 2007; 9:646-53. [PMID: 17486116 DOI: 10.1038/ncb1593] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/13/2007] [Indexed: 01/28/2023]
Abstract
The anchoring of microtubules to subcellular structures is critical for cell polarity and motility. Although the process of anchoring cytoplasmic microtubules to the centrosome has been studied in some detail, it is not known how spindle microtubules are anchored to the mitotic centrosome and, particularly, whether anchoring and nucleation of mitotic spindles are functionally separate. Here, we show that a fission yeast coiled-coil protein, Msd1, is required for anchoring the minus end of spindle microtubules to the centrosome equivalent, the spindle-pole body (SPB). msd1 deletion causes spindle microtubules to abnormally extend beyond SPBs, which results in chromosome missegregation. Importantly, this protruding spindle is phenocopied by the amino-terminal deletion mutant of Alp4, a component of the gamma-tubulin complex (gamma-TuC), which lacks the potential Msd1-interacting domain. We propose that Msd1 interacts with gamma-TuC, thereby specifically anchoring the minus end of microtubules to SPBs without affecting microtubule nucleation.
Collapse
Affiliation(s)
- Mika Toya
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Müller-Reichert T, Srayko M, Hyman A, O'Toole ET, McDonald K. Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol 2007; 79:101-19. [PMID: 17327153 DOI: 10.1016/s0091-679x(06)79004-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Müller-Reichert
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
18
|
O'Toole ET, Giddings TH, Dutcher SK. Understanding microtubule organizing centers by comparing mutant and wild-type structures with electron tomography. Methods Cell Biol 2007; 79:125-43. [PMID: 17327155 DOI: 10.1016/s0091-679x(06)79005-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
19
|
Shimogawa MM, Graczyk B, Gardner MK, Francis SE, White EA, Ess M, Molk JN, Ruse C, Niessen S, Yates JR, Muller EG, Bloom K, Odde DJ, Davis TN. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr Biol 2006; 16:1489-501. [PMID: 16890524 PMCID: PMC1762913 DOI: 10.1016/j.cub.2006.06.063] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Revised: 06/06/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends. RESULTS Dam1 is a kinetochore component that directly binds to microtubules. We identified DAM1-765, a dominant allele of DAM1, in a genetic screen for mutations that increase stress on the spindle pole body (SPB) in Saccharomyces cerevisiae. DAM1-765 contains the single mutation S221F. We show that S221 is one of six Dam1 serines (S13, S49, S217, S218, S221, and S232) phosphorylated by Mps1 in vitro. In cells with single mutations S221F, S218A, or S221A, kinetochores in the metaphase spindle form tight clusters that are closer to the SPBs than in a wild-type cell. Five lines of experimental evidence, including localization of spindle components by fluorescence microscopy, measurement of microtubule dynamics by fluorescence redistribution after photobleaching, and reconstructions of three-dimensional structure by electron tomography, combined with computational modeling of microtubule behavior strongly indicate that, unlike wild-type kinetochores, Dam1-765 kinetochores do not colocalize with an equal number of plus ends. Despite the uncoupling of the kinetochores from the plus ends of MTs, the DAM1-765 cells are viable, complete the cell cycle with the same kinetics as wild-type cells, and biorient their chromosomes as efficiently as wild-type cells. CONCLUSIONS We conclude that phosphorylation of Dam1 residues S218 and S221 by Mps1 is required for efficient coupling of kinetochores to MT plus ends. We find that efficient plus-end coupling is not required for (1) maintenance of chromosome biorientation, (2) maintenance of tension between sister kinetochores, or (3) chromosome segregation.
Collapse
Affiliation(s)
- Michelle M. Shimogawa
- Department of Biochemistry and
- Program in Molecular and Cellular Biology University of Washington Seattle, Washington 98195
| | | | - Melissa K. Gardner
- Department of Biomedical Engineering University of Minnesota Minneapolis, Minnesota 55455
| | | | - Erin A. White
- Boulder Laboratory for 3D Electron Microscopy of Cells University of Colorado Boulder, Colorado 80309
| | | | - Jeffrey N. Molk
- Department of Biology University of North Carolina Chapel Hill, North Carolina 27599
| | - Cristian Ruse
- Department of Cell Biology Scripps Research Institute La Jolla, California 92037
| | - Sherry Niessen
- Department of Cell Biology Scripps Research Institute La Jolla, California 92037
| | - John R. Yates
- Department of Cell Biology Scripps Research Institute La Jolla, California 92037
| | | | - Kerry Bloom
- Department of Biology University of North Carolina Chapel Hill, North Carolina 27599
| | - David J. Odde
- Department of Biomedical Engineering University of Minnesota Minneapolis, Minnesota 55455
| | - Trisha N. Davis
- Department of Biochemistry and
- Program in Molecular and Cellular Biology University of Washington Seattle, Washington 98195
- *Correspondence:
| |
Collapse
|
20
|
Miyara F, Han Z, Gao S, Vassena R, Latham KE. Non-equivalence of embryonic and somatic cell nuclei affecting spindle composition in clones. Dev Biol 2006; 289:206-17. [PMID: 16310175 DOI: 10.1016/j.ydbio.2005.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022]
Abstract
Cloning by nuclear transfer remains inefficient but is more efficient when nuclei from embryonic cells or embryonic stem cells (ECNT) are employed as compared with somatic cells (SCNT). The factors determining efficiency have not been elucidated. We find that somatic and embryonic nuclei differ in their ability to organize meiotic and mitotic spindles of normal molecular composition. Calmodulin, a component of meiotic and mitotic spindle chromosome complexes (SCCs), displays sharply reduced association with the SCC forming after SCNT but not ECNT. This defect persists in mitotic spindles at least through the second mitosis, despite abundant calmodulin expression in the cell, and correlates with slow chromosome congression. We propose that somatic cell nuclei lack factors needed to direct normal SCC formation in oocytes and early embryos. These results reveal a striking control of SCC formation by the transplanted nucleus and provide the first identified molecular correlate of donor stage-dependent restriction in nuclear potency.
Collapse
Affiliation(s)
- Faical Miyara
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
21
|
Widlund PO, Lyssand JS, Anderson S, Niessen S, Yates JR, Davis TN. Phosphorylation of the chromosomal passenger protein Bir1 is required for localization of Ndc10 to the spindle during anaphase and full spindle elongation. Mol Biol Cell 2005; 17:1065-74. [PMID: 16381814 PMCID: PMC1382298 DOI: 10.1091/mbc.e05-07-0640] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae inhibitor of apoptosis (IAP) repeat protein Bir1 localizes as a chromosomal passenger. A deletion analysis of Bir1 identified two regions important for function. The C-terminal region is essential for growth, binds Sli15, and is necessary and sufficient for the localization of Bir1 as a chromosomal passenger. The middle region is not essential but is required to localize the inner kinetochore protein Ndc10 to the spindle during anaphase and to the midzone at telophase. In contrast, precise deletion of the highly conserved IAP repeats conferred no phenotype and did not alter the cell cycle delay caused by loss of cohesin. Bir1 is phosphorylated in a cell cycle-dependent manner. Mutation of all nine CDK consensus sites in the middle region of Bir1 significantly decreased the level of phosphorylation and blocked localization of Ndc10 to the spindle at anaphase. Moreover, immunoprecipitation of Ndc10 with Bir1 was dependent on phosphorylation. The loss of Ndc10 from the anaphase spindle prevented elongation of the spindle beyond 7 microm. We conclude that phosphorylation of the middle region of Bir1 is required to bring Ndc10 to the spindle at anaphase, which is required for full spindle elongation.
Collapse
Affiliation(s)
- Per O Widlund
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
22
|
Widlund PO, Davis TN. A high-efficiency method to replace essential genes with mutant alleles in yeast. Yeast 2005; 22:769-74. [PMID: 16088871 PMCID: PMC1698466 DOI: 10.1002/yea.1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Temperature-sensitive (TS), internally deleted and truncated alleles are important tools to facilitate the characterization of essential genes. We have developed a straightforward method to replace a wild-type gene with a mutant allele at the endogenous locus. This method is an efficient alternative to the two-step method for integration of alleles that are compromised in function or contain multiple mutations. A strain is constructed that has the essential gene of interest disrupted by a selectable marker. Strain viability is maintained by a plasmid carrying a copy of the essential wild-type gene and the ADE3 gene. The mutant allele is cloned into an integratable vector carrying a selectable/counter-selectable marker, such as URA3. The plasmid is linearized and transformed, directing integration to the 5' or 3' region flanking the essential open reading frame (ORF). Transformants that have integrated the mutant gene at the endogenous locus can lose the autonomous plasmid carrying the wild-type copy of the essential gene and the ADE3 gene. These transformants are identifiable as white sectoring colonies, display the mutant phenotype and may be characterized. An optional second selection step on 5-fluoroorotic acid (5-FOA) selects for popouts of the integrating vector sequences, leaves the mutant allele at the endogenous locus, and recycles selectable markers. We have used this method to integrate a TS allele of SPC110 that could not be integrated by standard methods.
Collapse
Affiliation(s)
- Per O Widlund
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
23
|
Muller EGD, Snydsman BE, Novik I, Hailey DW, Gestaut DR, Niemann CA, O'Toole ET, Giddings TH, Sundin BA, Davis TN. The organization of the core proteins of the yeast spindle pole body. Mol Biol Cell 2005; 16:3341-52. [PMID: 15872084 PMCID: PMC1165416 DOI: 10.1091/mbc.e05-03-0214] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle pole body (SPB) is the microtubule organizing center of Saccharomyces cerevisiae. Its core includes the proteins Spc42, Spc110 (kendrin/pericentrin ortholog), calmodulin (Cmd1), Spc29, and Cnm67. Each was tagged with CFP and YFP and their proximity to each other was determined by fluorescence resonance energy transfer (FRET). FRET was measured by a new metric that accurately reflected the relative extent of energy transfer. The FRET values established the topology of the core proteins within the architecture of SPB. The N-termini of Spc42 and Spc29, and the C-termini of all the core proteins face the gap between the IL2 layer and the central plaque. Spc110 traverses the central plaque and Cnm67 spans the IL2 layer. Spc42 is a central component of the central plaque where its N-terminus is closely associated with the C-termini of Spc29, Cmd1, and Spc110. When the donor-acceptor pairs were ordered into five broad categories of increasing FRET, the ranking of the pairs specified a unique geometry for the positions of the core proteins, as shown by a mathematical proof. The geometry was integrated with prior cryoelectron tomography to create a model of the interwoven network of proteins within the central plaque. One prediction of the model, the dimerization of the calmodulin-binding domains of Spc110, was confirmed by in vitro analysis.
Collapse
Affiliation(s)
- Eric G D Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|