1
|
Körber S, Junemann A, Litschko C, Winterhoff M, Faix J. Convergence of Ras- and Rac-regulated formin pathways is pivotal for phagosome formation and particle uptake in Dictyostelium. Proc Natl Acad Sci U S A 2023; 120:e2220825120. [PMID: 36897976 PMCID: PMC10243128 DOI: 10.1073/pnas.2220825120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete. In the Dictyostelium model system, the Ras-regulated formin ForG was previously shown to specifically contribute to actin assembly at the cup base. Loss of ForG is associated with a strongly impaired macroendocytosis and a 50% reduction in F-actin content at the base of phagocytic cups, in turn indicating the presence of additional factors that specifically contribute to actin formation at the base. Here, we show that ForG synergizes with the Rac-regulated formin ForB to form the bulk of linear filaments at the cup base. Consistently, combined loss of both formins virtually abolishes cup formation and leads to severe defects of macroendocytosis, emphasizing the relevance of converging Ras- and Rac-regulated formin pathways in assembly of linear filaments in the cup base, which apparently provide mechanical support to the entire structure. Remarkably, we finally show that active ForB, unlike ForG, additionally drives phagosome rocketing to aid particle internalization.
Collapse
Affiliation(s)
- Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Alexander Junemann
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| |
Collapse
|
2
|
aVASP boosts protrusive activity of macroendocytic cups and drives phagosome rocketing after internalization. Eur J Cell Biol 2022; 101:151200. [DOI: 10.1016/j.ejcb.2022.151200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
|
3
|
Brzeska H, Bagnoli M, Korn ED, Titus MA. Dictyostelium myosin 1F and myosin 1E inhibit actin waves in a lipid-binding-dependent and motor-independent manner. Cytoskeleton (Hoboken) 2021; 77:295-302. [PMID: 32734648 DOI: 10.1002/cm.21627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
Actin waves are F-actin-rich entities traveling on the ventral plasma membrane by the treadmilling mechanism. Actin waves were first discovered and are best characterized in Dictyostelium. Class I myosins are unconventional monomeric myosins that bind lipids through their tails. Dictyostelium has seven class I myosins, six of these have tails (Myo1A-F) while one has a very short tail (Myo1K), and three of them (Myo1D, Myo1E and Myo1F) bind PIP3 with high affinity. Localization of five Dictyostelium Class I myosins synchronizes with localization and propagation of actin waves. Myo1B and Myo1C colocalize with actin in actin waves, whereas Myo1D, E and F localize to the PIP3-rich region surrounded by actin waves. Here, we studied the effect of overexpression of the three PIP3 specific Class I myosins on actin waves. We found that ectopic expression of the short-tail Myo1F inhibits wave formation, short-tail Myo1E has similar but weaker inhibitory effect, but long-tail Myo1D does not affect waves. A study of Myo1F mutants shows that its membrane-binding site is absolutely required for wave inhibition, but the head portion is not. The results suggest that PIP3 specificity and the presence of two membrane-binding sites are required for inhibition of actin waves, and that inhibition may be caused by crosslinking of PIP3 heads groups.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Bagnoli
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward D Korn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Gerisch G, Prassler J, Butterfield N, Ecke M. Actin Waves and Dynamic Patterning of the Plasma Membrane. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:397-411. [PMID: 31543704 PMCID: PMC6747932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plasma membrane and underlying actin network are connected to a functional unit that by non-linear interactions is capable of forming patterns. For instance, in cell motility and chemotaxis, cells polarize to form a protruding front and a retracting tail. Here we address dynamic patterns that are formed on a planar substrate surface and are therefore easily accessible to optical recording. In these patterns two distinct areas of the membrane and actin cortex are interconverted at the site of circular actin waves. The inner territory circumscribed by a wave is distinguished from the external area by a high PIP3 content and high Ras activity. In contrast, the external area is occupied with the PIP3-degrading phosphatase PTEN. In the underlying cortex, these areas differ in the proteins associated with the actin network. Actin waves can be formed at zones of increasing as well as decreasing Ras activity. Both types of waves are headed by myosin IB. When waves collide, they usually extinguish each other, and their decay is accompanied by the accumulation of coronin. No membrane patterns have been observed after efficient depolymerization of actin, suggesting that residual actin filaments are necessary for the pattern generating system to work. Where appropriate, we relate the experimental data obtained with Dictyostelium to human normal and malignant cell behavior, in particular to the role of Ras-GAP as an enhancer of macropinocytosis, to mutations in the tumor suppressor PTEN, to frustrated phagocytosis, and to the role of coronin in immune cells and neurons.
Collapse
Affiliation(s)
- Guenther Gerisch
- To whom all correspondence should be addressed: Dr. Günther Gerisch, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; Tel: +49 89 8578-2326, Fax: +49 89 8578-3885,
| | | | | | | |
Collapse
|
5
|
Verma K, Nozaki T, Datta S. Role of EhRab7A in phagocytosis of type 1 fimbriated E. coli by Entamoeba histolytica. Mol Microbiol 2016; 102:1043-1061. [PMID: 27663892 DOI: 10.1111/mmi.13533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/16/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebic colitis and liver abscess in human, ingests the intestinal bacteria and variety of host cells. Phagocytosis of bacteria by the amebic trophozoite has been reported to be important for the virulence of the parasite. Here, we set out to characterize different stages of phagocytosis of type 1 E. coli and investigated the role of a set of amoebic Rab GTPases in the process. The localizations of the Rab GTPases during different stages of the phagocytosis were investigated using laser scanning confocal microscopy and their functional relevance were determined using fluorescence activated cell sorter based assay as well as colony forming unit assay. Our results demonstrate that EhRab7A is localized on the phagosomes and involved in both early and late stages of type 1 E. coli phagocytosis. We further showed that the E. coli or RBC containing phagosomes are distinct from the large endocytic vacuoles in the parasite which are exclusively used to transport human holotransferrin and low density lipoprotein. Remarkably, type 1 E. coli uptake was found to be insensitive to cytochalasin D treatment, suggesting that the initial stage of E. coli phagocytosis is independent of the formation of actin filaments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
6
|
Abstract
SUMMARY Stimuli that promote cell migration, such as chemokines, cytokines, and growth factors in metazoans and cyclic AMP in Dictyostelium, activate signaling pathways that control organization of the actin cytoskeleton and adhesion complexes. The Rho-family GTPases are a key convergence point of these pathways. Their effectors include actin regulators such as formins, members of the WASP/WAVE family and the Arp2/3 complex, and the myosin II motor protein. Pathways that link to the Rho GTPases include Ras GTPases, TorC2, and PI3K. Many of the molecules involved form gradients within cells, which define the front and rear of migrating cells, and are also established in related cellular behaviors such as neuronal growth cone extension and cytokinesis. The signaling molecules that regulate migration can be integrated to provide a model of network function. The network displays biochemical excitability seen as spontaneous waves of activation that propagate along the cell cortex. These events coordinate cell movement and can be biased by external cues to bring about directed migration.
Collapse
Affiliation(s)
- Peter Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
7
|
Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann AC, Böhme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014; 346:1257998. [PMID: 25342811 DOI: 10.1126/science.1257998] [Citation(s) in RCA: 1209] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.
Collapse
Affiliation(s)
- Bi-Chang Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wesley R Legant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kai Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lin Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel E Milkie
- Coleman Technologies, Incorporated, Newtown Square, PA 19073, USA
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A Hammer
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brian P English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yuko Mimori-Kiyosue
- Optical Image Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Daniel P Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex T Ritter
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, England, UK
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lillian Fritz-Laylin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diana M Mitchell
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Joshua N Bembenek
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Anne-Cecile Reymann
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
| | - Ralph Böhme
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
| | - Jennifer T Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - U Serdar Tulu
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
8
|
Usatyuk PV, Burns M, Mohan V, Pendyala S, He D, Ebenezer DL, Harijith A, Fu P, Huang LS, Bear JE, Garcia JGN, Natarajan V. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. PLoS One 2013; 8:e63007. [PMID: 23667561 PMCID: PMC3648575 DOI: 10.1371/journal.pone.0063007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Institute for Personalized Respiratory Medicine, University of Illinois, Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Simple system--substantial share: the use of Dictyostelium in cell biology and molecular medicine. Eur J Cell Biol 2012. [PMID: 23200106 DOI: 10.1016/j.ejcb.2012.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dictyostelium discoideum offers unique advantages for studying fundamental cellular processes, host-pathogen interactions as well as the molecular causes of human diseases. The organism can be easily grown in large amounts and is amenable to diverse biochemical, cell biological and genetic approaches. Throughout their life cycle Dictyostelium cells are motile, and thus are perfectly suited to study random and directed cell motility with the underlying changes in signal transduction and the actin cytoskeleton. Dictyostelium is also increasingly used for the investigation of human disease genes and the crosstalk between host and pathogen. As a professional phagocyte it can be infected with several human bacterial pathogens and used to study the infection process. The availability of a large number of knock-out mutants renders Dictyostelium particularly useful for the elucidation and investigation of host cell factors. A powerful armory of molecular genetic techniques that have been continuously expanded over the years and a well curated genome sequence, which is accessible via the online database dictyBase, considerably strengthened Dictyostelium's experimental attractiveness and its value as model organism.
Collapse
|
10
|
Srinivasan K, Wright GA, Hames N, Housman M, Roberts A, Aufderheide KJ, Janetopoulos C. Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses. J Cell Sci 2012; 126:221-33. [PMID: 23132928 DOI: 10.1242/jcs.113415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dictyostelium discoideum shows chemotaxis towards folic acid (FA) throughout vegetative growth, and towards cAMP during development. We determined the spatiotemporal localization of cytoskeletal and signaling molecules and investigated the FA-mediated responses in a number of signaling mutants to further our understanding of the core regulatory elements that are crucial for cell migration. Proteins enriched in the pseudopods during chemotaxis also relocalize transiently to the plasma membrane during uniform FA stimulation. In contrast, proteins that are absent from the pseudopods during migration redistribute transiently from the PM to the cytosol when cells are globally stimulated with FA. These chemotactic responses to FA were also examined in cells lacking the GTPases Ras C and G. Although Ras and phosphoinositide 3-kinase activity were significantly decreased in Ras G and Ras C/G nulls, these mutants still migrated towards FA, indicating that other pathways must support FA-mediated chemotaxis. We also examined the spatial movements of PTEN in response to uniform FA and cAMP stimulation in phospholipase C (PLC) null cells. The lack of PLC strongly influences the localization of PTEN in response to FA, but not cAMP. In addition, we compared the gradient-sensing behavior of polarized cells migrating towards cAMP to that of unpolarized cells migrating towards FA. The majority of polarized cells make U-turns when the cAMP gradient is switched from the front of the cell to the rear. Conversely, unpolarized cells immediately extend pseudopods towards the new FA source. We also observed that plasma membrane phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] levels oscillate in unpolarized cells treated with Latrunculin-A, whereas polarized cells had stable plasma membrane PtdIns(3,4,5)P3 responses toward the chemoattractant gradient source. Results were similar for cells that were starved for 4 hours, with a mixture of polarized and unpolarized cells responding to cAMP. Taken together, these findings suggest that similar components control gradient sensing during FA- and cAMP-mediated motility, but the response of polarized cells is more stable, which ultimately helps maintain their directionality.
Collapse
|
11
|
Kastner PM, Schleicher M, Müller-Taubenberger A. The NDR Family Kinase NdrA of Dictyostelium Localizes to the Centrosome and Is Required for Efficient Phagocytosis. Traffic 2011; 12:301-12. [DOI: 10.1111/j.1600-0854.2010.01147.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Clarke M, Engel U, Giorgione J, Müller-Taubenberger A, Prassler J, Veltman D, Gerisch G. Curvature recognition and force generation in phagocytosis. BMC Biol 2010; 8:154. [PMID: 21190565 PMCID: PMC3022777 DOI: 10.1186/1741-7007-8-154] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. RESULTS Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR) domain in combination with an Src homology (SH3) domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. CONCLUSIONS Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle there, or extending the cup along the particle surface to identify the very end of the object to be ingested. Our data illustrate the flexibility of regulatory mechanisms that are at the phagocyte's disposal in exploring an environment of irregular geometry.
Collapse
Affiliation(s)
- Margaret Clarke
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73121, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Ishikawa-Ankerhold HC, Gerisch G, Müller-Taubenberger A. Genetic evidence for concerted control of actin dynamics in cytokinesis, endocytic traffic, and cell motility by coronin and Aip1. Cytoskeleton (Hoboken) 2010; 67:442-55. [PMID: 20506401 DOI: 10.1002/cm.20456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coronin and actin-interacting protein 1 (Aip1) are actin-binding proteins that by different mechanisms inhibit actin polymerization or enhance the disassembly of actin filaments. Cells of Dictyostelium discoideum lacking both proteins are retarded in growth and early development and often fail to proceed to fruiting body formation. Coronin/Aip1-null cells show numerous surface protrusions enriched in filamentous actin and cofilin. We show that the double-null cells are characterized by an increase in filamentous actin that causes a thickening of the cell cortex. This imbalance has severe consequences for processes that rely on the dynamic reorganization of the actin cytoskeleton, such as cell motility, cytokinesis and endocytosis. Although cell motility is considerably slowed down, the double-mutant cells are still capable of orientating in a gradient of chemoattractant. The cytokinesis defect is caused by the lack of proper cleavage furrow formation, a defect that is partially rescued by low concentrations of latrunculin A, an inhibitor of actin polymerization. Furthermore, we demonstrate that the disassembly of the actin coat after phagocytic or macropinocytic uptake is significantly delayed in the double-mutant cells. Our results prove that coronin and Aip1 are important effectors that act together in maintaining the balance of actin polymerization and depolymerization in living cells.
Collapse
|
14
|
Tollis S, Dart AE, Tzircotis G, Endres RG. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC SYSTEMS BIOLOGY 2010; 4:149. [PMID: 21059234 PMCID: PMC2991294 DOI: 10.1186/1752-0509-4-149] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Phagocytosis is the fundamental cellular process by which eukaryotic cells bind and engulf particles by their cell membrane. Particle engulfment involves particle recognition by cell-surface receptors, signaling and remodeling of the actin cytoskeleton to guide the membrane around the particle in a zipper-like fashion. Despite the signaling complexity, phagocytosis also depends strongly on biophysical parameters, such as particle shape, and the need for actin-driven force generation remains poorly understood. RESULTS Here, we propose a novel, three-dimensional and stochastic biophysical model of phagocytosis, and study the engulfment of particles of various sizes and shapes, including spiral and rod-shaped particles reminiscent of bacteria. Highly curved shapes are not taken up, in line with recent experimental results. Furthermore, we surprisingly find that even without actin-driven force generation, engulfment proceeds in a large regime of parameter values, albeit more slowly and with highly variable phagocytic cups. We experimentally confirm these predictions using fibroblasts, transfected with immunoreceptor FcγRIIa for engulfment of immunoglobulin G-opsonized particles. Specifically, we compare the wild-type receptor with a mutant receptor, unable to signal to the actin cytoskeleton. Based on the reconstruction of phagocytic cups from imaging data, we indeed show that cells are able to engulf small particles even without support from biological actin-driven processes. CONCLUSIONS This suggests that biochemical pathways render the evolutionary ancient process of phagocytic highly robust, allowing cells to engulf even very large particles. The particle-shape dependence of phagocytosis makes a systematic investigation of host-pathogen interactions and an efficient design of a vehicle for drug delivery possible.
Collapse
Affiliation(s)
- Sylvain Tollis
- Division of Molecular Biosciences, South Kensington Campus, Imperial College London, SW72AZ London, UK
| | | | | | | |
Collapse
|
15
|
Jowhar D, Wright G, Samson PC, Wikswo JP, Janetopoulos C. Open access microfluidic device for the study of cell migration during chemotaxis. Integr Biol (Camb) 2010; 2:648-58. [PMID: 20949221 PMCID: PMC3806978 DOI: 10.1039/c0ib00110d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells sense and interpret chemical gradients, and respond by localized responses that lead to directed migration. An open microfluidic device (OMD) was developed to provide quantitative information on both the gradient and morphological changes that occurred as cells crawled through various microfabricated channels. This device overcame problems that many current devices have been plagued with, such as complicated cell loading, media evaporation and channel blockage by air bubbles. We used a micropipette to set up stable gradients formed by passive diffusion and thus avoided confounding cellular responses produced by shear forces. Two versions of the OMD are reported here: one device that has channels with widths of 6, 8, 10 and 12 μm, while the other has two large 100 μm channels to minimize cellular interaction with lateral walls. These experiments compared the migration rates and qualitative behavior of Dictyostelium discoideum cells responding to measurable cAMP and folic acid gradients in small and large channels. We report on the influence that polarity has on a cell's ability to migrate when confined in a channel. Polarized cells that migrated to cAMP were significantly faster than the unpolarized cells that crawled toward folic acid. Unpolarized cells in wide channels often strayed off course, yet migrated faster than unpolarized cells in confined channels. Cells in channels farthest from the micropipette migrated through the channels at rates similar to cells in channels with higher concentrations, suggesting that cell speed was independent of mean concentration. Lastly, it was found that the polarized cells could easily change migration direction even when only the leading edge of the cell was exposed to a lateral gradient.
Collapse
Affiliation(s)
- Dawit Jowhar
- Department of Biological Sciences, Vanderbilt University, VU Station B #351634, Nashville, TN 37235., Fax: +1 615-343-6707; Tel: +1 615-936-8907
| | - Gus Wright
- Department of Biological Sciences, Vanderbilt University, VU Station B #351634, Nashville, TN 37235., Fax: +1 615-343-6707; Tel: +1 615-936-8907
| | - Philip C. Samson
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
| | - John P. Wikswo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Christopher Janetopoulos
- Department of Biological Sciences, Vanderbilt University, VU Station B #351634, Nashville, TN 37235., Fax: +1 615-343-6707; Tel: +1 615-936-8907
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
16
|
Brady RJ, Damer CK, Heuser JE, O'Halloran TJ. Regulation of Hip1r by epsin controls the temporal and spatial coupling of actin filaments to clathrin-coated pits. J Cell Sci 2010; 123:3652-61. [PMID: 20923836 DOI: 10.1242/jcs.066852] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, it has become clear that the actin cytoskeleton is involved in clathrin-mediated endocytosis. During clathrin-mediated endocytosis, clathrin triskelions and adaptor proteins assemble into lattices, forming clathrin-coated pits. These coated pits invaginate and detach from the membrane, a process that requires dynamic actin polymerization. We found an unexpected role for the clathrin adaptor epsin in regulating actin dynamics during this late stage of coated vesicle formation. In Dictyostelium cells, epsin is required for both the membrane recruitment and phosphorylation of the actin- and clathrin-binding protein Hip1r. Epsin-null and Hip1r-null cells exhibit deficiencies in the timing and organization of actin filaments at clathrin-coated pits. Consequently, clathrin structures persist on the membranes of epsin and Hip1r mutants and the internalization of clathrin structures is delayed. We conclude that epsin works with Hip1r to regulate actin dynamics by controlling the spatial and temporal coupling of actin filaments to clathrin-coated pits. Specific residues in the ENTH domain of epsin that are required for the membrane recruitment and phosphorylation of Hip1r are also required for normal actin and clathrin dynamics at the plasma membrane. We propose that epsin promotes the membrane recruitment and phosphorylation of Hip1r, which in turn regulates actin polymerization at clathrin-coated pits.
Collapse
Affiliation(s)
- Rebecca J Brady
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
17
|
Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 2010; 39:265-89. [PMID: 20192768 DOI: 10.1146/annurev.biophys.093008.131228] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
18
|
Westendorf C, Bae AJ, Erlenkamper C, Galland E, Franck C, Bodenschatz E, Beta C. Live cell flattening - traditional and novel approaches. PMC BIOPHYSICS 2010; 3:9. [PMID: 20403171 PMCID: PMC2873278 DOI: 10.1186/1757-5036-3-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/19/2010] [Indexed: 11/10/2022]
Abstract
Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field (BF) to total internal reflection fluorescence (TIRF) microscopy. Fundamental processes, such as mitosis and in vivo actin polymerization, have been investigated using these techniques. Here, we review the well known agar overlayer protocol and the oil overlay method. In addition, we present more elaborate microfluidics-based techniques that provide us with a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method.PACS Codes: 87.64.-t, 47.61.-k, 87.80.Ek.
Collapse
Affiliation(s)
- Christian Westendorf
- Max-Planck-Institut für Dynamik und Selbstorganisation, 37077 Göttingen, Germany
| | - Albert J Bae
- Max-Planck-Institut für Dynamik und Selbstorganisation, 37077 Göttingen, Germany
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Carl Franck
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Eberhard Bodenschatz
- Max-Planck-Institut für Dynamik und Selbstorganisation, 37077 Göttingen, Germany
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA
- Institut für Nichtlineare Dynamik, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Carsten Beta
- Max-Planck-Institut für Dynamik und Selbstorganisation, 37077 Göttingen, Germany
- Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
19
|
Gerisch G. Self-organizing actin waves that simulate phagocytic cup structures. PMC BIOPHYSICS 2010; 3:7. [PMID: 20298542 PMCID: PMC2851664 DOI: 10.1186/1757-5036-3-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 03/18/2010] [Indexed: 01/19/2023]
Abstract
This report deals with actin waves that are spontaneously generated on the planar, substrate-attached surface of Dictyostelium cells. These waves have the following characteristics. (1) They are circular structures of varying shape, capable of changing the direction of propagation. (2) The waves propagate by treadmilling with a recovery of actin incorporation after photobleaching of less than 10 seconds. (3) The waves are associated with actin-binding proteins in an ordered 3-dimensional organization: with myosin-IB at the front and close to the membrane, the Arp2/3 complex throughout the wave, and coronin at the cytoplasmic face and back of the wave. Coronin is a marker of disassembling actin structures. (4) The waves separate two areas of the cell cortex that differ in actin structure and phosphoinositide composition of the membrane. The waves arise at the border of membrane areas rich in phosphatidylinositol (3,4,5) trisphosphate (PIP3). The inhibition of PIP3 synthesis reversibly inhibits wave formation. (5) The actin wave and PIP3 patterns resemble 2-dimensional projections of phagocytic cups, suggesting that they are involved in the scanning of surfaces for particles to be taken up. PACS Codes: 87.16.Ln, 87.19.lp, 89.75.Fb
Collapse
Affiliation(s)
- Günther Gerisch
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
20
|
Clarke M, Maddera L, Engel U, Gerisch G. Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging. PLoS One 2010; 5:e8585. [PMID: 20052281 PMCID: PMC2796722 DOI: 10.1371/journal.pone.0008585] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/07/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.
Collapse
Affiliation(s)
- Margaret Clarke
- Program in Genetic Models of Disease, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America.
| | | | | | | |
Collapse
|
21
|
Schroth-Diez B, Gerwig S, Ecke M, Hegerl R, Diez S, Gerisch G. Propagating waves separate two states of actin organization in living cells. HFSP JOURNAL 2009; 3:412-27. [PMID: 20514132 DOI: 10.2976/1.3239407] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/08/2009] [Indexed: 12/29/2022]
Abstract
Propagating actin waves are dynamic supramolecular structures formed by the self-assembly of proteins within living cells. They are built from actin filaments together with single-headed myosin, the Arp23 complex, and coronin in a defined three-dimensional order. The function of these waves in structuring the cell cortex is studied on the substrate-attached surface of Dictyostelium cells by the use of total internal reflection fluorescence (TIRF) microscopy. Actin waves separate two areas of the cell cortex from each other, which are distinguished by the arrangement of actin filaments. The Arp23 complex dominates in the area enclosed by a wave, where it has the capacity of building dendritic structures, while the proteins prevailing in the external area, cortexillin I and myosin-II, bundle actin filaments and arrange them in antiparallel direction. Wave propagation is accompanied by transitions in the state of actin with a preferential period of 5 min. Wave generation is preceded by local fluctuations in actin assembly, some of the nuclei of polymerized actin emanating from clathrin-coated structures, others emerging independently. The dynamics of phase transitions has been analyzed to provide a basis for modeling the nonlinear interactions that produce spatio-temporal patterns in the actin system of living cells.
Collapse
|
22
|
Engel U. Imaging centers as partnerships between industry and academia: NICs go global. Biotechnol J 2009; 4:797-803. [PMID: 19492331 DOI: 10.1002/biot.200900060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ulrike Engel
- Nikon Imaging Center at University of Heidelberg, Bioquant, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
23
|
Liebl D, Griffiths G. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. J Cell Sci 2009; 122:2935-45. [PMID: 19638408 DOI: 10.1242/jcs.048355] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic remodelling of the cortical actin cytoskeleton is required for phagocytic uptake of pathogens and other particles by macrophages. Actin can also be nucleated de novo on membranes of nascent phagosomes, a process that can stimulate or inhibit phagosome fusion with lysosomes. Recently, phagosomes were shown to polymerize actin in transient pulses, called actin ;flashing', whose function remains unexplained. Here, we investigated phagosomal actin dynamics in live macrophages expressing actin tagged with green fluorescent protein (GFP). We show that only immature phagosomes can transiently induce assembly of actin coat, which forms a barrier preventing phagosome-lysosome docking and fusion. The capacity of phagosomes to assemble actin is enhanced in cells exposed to increased phagocytic load, which also exhibit a delay in phagosome maturation. Parallel analysis indicated that polymerization of actin on macropinosomes also induces compression and propulsion. We show that dynamic interactions between membrane elastic tension and compression forces of polymerizing actin can also lead to macropinosome constriction and scission - a process that is obstructed on rigid phagosomes. We hypothesize that the rate of individual phagosome maturation, as well as the biogenesis and remodelling of macropinosomes, can be regulated by the extent and manner of actin assembly on their membrane.
Collapse
Affiliation(s)
- David Liebl
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
24
|
Bretschneider T, Anderson K, Ecke M, Müller-Taubenberger A, Schroth-Diez B, Ishikawa-Ankerhold HC, Gerisch G. The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophys J 2009; 96:2888-900. [PMID: 19348770 DOI: 10.1016/j.bpj.2008.12.3942] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022] Open
Abstract
Actin polymerization is typically initiated at specific sites in a cell by membrane-bound protein complexes, and the resulting structures are involved in specialized cellular functions, such as migration, particle uptake, or mitotic division. Here we analyze the potential of the actin system to self-organize into waves that propagate on the planar, substrate-attached membrane of a cell. We show that self-assembly involves the ordered recruitment of proteins from the cytoplasmic pool and relate the organization of actin waves to their capacity for applying force. Three proteins are shown to form distinct three-dimensional patterns in the actin waves. Myosin-IB is enriched at the wave front and close to the plasma membrane, the Arp2/3 complex is distributed throughout the waves, and coronin forms a sloping layer on top of them. CARMIL, a protein that links myosin-IB to the Arp2/3 complex, is also recruited to the waves. Wave formation does not depend on signals transmitted by heterotrimeric G-proteins, nor does their propagation require SCAR, a regulator upstream of the Arp2/3 complex. Propagation of the waves is based on an actin treadmilling mechanism, indicating a program that couples actin assembly to disassembly in a three-dimensional pattern. When waves impinge on the cell perimeter, they push the edge forward; when they reverse direction, the cell border is paralyzed. These data show that force-generating, highly organized supramolecular networks are autonomously formed in live cells from molecular motors and proteins controlling actin polymerization and depolymerization.
Collapse
|
25
|
Sabaneyeva EV, Derkacheva ME, Benken KA, Fokin SI, Vainio S, Skovorodkin IN. Actin-based mechanism of holospora obtusa trafficking in Paramecium caudatum. Protist 2009; 160:205-19. [PMID: 19231281 DOI: 10.1016/j.protis.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 11/08/2008] [Indexed: 12/25/2022]
Abstract
Holospora obtusa, an alpha-proteobacterium, is an obligate endonuclear pathogen of the ciliate Paramecium caudatum. It is engulfed by the host cell in the course of phagocytosis but soon escapes from the phagosome and is transported across the host cell cytoplasm to the paramecium macronucleus. Electron microscopy reveals a comet-like tail resembling that of Listeria trailing after H. obtusa in the host cytoplasm. In this study we investigated the role of the host cell actin and Arp3 in the process of infection with Holospora. Cytochalasin D treatment significantly reduced the rate of nuclear infection. Using immunocytochemistry and experimental infection of GFP-actin-transfected paramecia we demonstrated that the Paramecium actin1-1 took part in the bacterial escape from the phagosome, its trafficking in the cytoplasm and entry into the host macronucleus. Rapid assembly/disassembly of actin filaments in P. caudatum led to quick loss of actin1-1 from the trails left by H. obtusa. Immunocytochemistry using anti-bovine Arp3 antibodies demonstrated the presence of Arp3 in these trails. Our data indicate that details of H. obtusa infection are rather similar to those of Listeria and Rickettsia.
Collapse
Affiliation(s)
- Elena V Sabaneyeva
- Department of Cytology and Histology, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
26
|
Giorgione J, Clarke M. Heterogeneous modes of uptake for latex beads revealed through live cell imaging of phagocytes expressing a probe for phosphatidylinositol-(3,4,5)-trisphosphate and phosphatidylinositol-(3,4)-bisphosphate. ACTA ACUST UNITED AC 2008; 65:721-33. [DOI: 10.1002/cm.20293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol 2008; 18:220-7. [DOI: 10.1016/j.tcb.2008.03.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/01/2008] [Accepted: 03/03/2008] [Indexed: 11/21/2022]
|
28
|
Heinrich D, Youssef S, Schroth-Diez B, Engel U, Aydin D, Blümmel J, Spatz JP, Gerisch G. Actin-cytoskeleton dynamics in non-monotonic cell spreading. Cell Adh Migr 2008; 2:58-68. [PMID: 19262103 DOI: 10.4161/cam.2.2.6190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spreading of motile cells on a substrate surface is accompanied by reorganization of their actin network. We show that spreading in the highly motile cells of Dictyostelium is non-monotonic, and thus differs from the passage of spreading cells through a regular series of stages. Quantification of the gain and loss of contact area revealed fluctuating forces of protrusion and retraction that dominate the interaction of Dictyostelium cells with a substrate. The molecular basis of these fluctuations is elucidated by dual-fluorescence labeling of filamentous actin together with proteins that highlight specific activities in the actin system. Front-to-tail polarity is established by the sorting out of myosin-II from regions where dense actin assemblies are accumulating. Myosin-IB identifies protruding front regions, and the Arp2/3 complex localizes to lamellipodia protruded from the fronts. Coronin is used as a sensitive indicator of actin disassembly to visualize the delicate balance of polymerization and depolymerization in spreading cells. Short-lived actin patches that co-localize with clathrin suggest that membrane internalization occurs even when the substrate-attached cell surface expands. We conclude that non-monotonic cell spreading is characterized by spatiotemporal patterns formed by motor proteins together with regulatory proteins that either promote or terminate actin polymerization on the scale of seconds.
Collapse
Affiliation(s)
- Doris Heinrich
- Department für Physik, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Brandt DT, Marion S, Griffiths G, Watanabe T, Kaibuchi K, Grosse R. Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. ACTA ACUST UNITED AC 2007; 178:193-200. [PMID: 17620407 PMCID: PMC2064439 DOI: 10.1083/jcb.200612071] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Diaphanous-related formin Dia1 nucleates actin polymerization, thereby regulating cell shape and motility. Mechanisms that control the cellular location of Dia1 to spatially define actin polymerization are largely unknown. In this study, we identify the cytoskeletal scaffold protein IQGAP1 as a Dia1-binding protein that is necessary for its subcellular location. IQGAP1 interacts with Dia1 through a region within the Diaphanous inhibitory domain after the RhoA-mediated release of Dia1 autoinhibition. Both proteins colocalize at the front of migrating cells but also at the actin-rich phagocytic cup in macrophages. We show that IQGAP1 interaction with Dia1 is required for phagocytosis and phagocytic cup formation. Thus, we identify IQGAP1 as a novel component involved in the regulation of phagocytosis by mediating the localization of the actin filament nucleator Dia1.
Collapse
Affiliation(s)
- Dominique T Brandt
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|