1
|
Lin YC, Liu D, Chakraborty A, Macias V, Brister E, Sonalkar J, Shen L, Mitra J, Ha T, Kajdacsy-Balla A, Prasanth KV, Prasanth SG. DNA Damage-Induced, S-Phase Specific Phosphorylation of Orc6 is Critical for the Maintenance of Genome Stability. Mol Cell Biol 2023; 43:143-156. [PMID: 37096556 PMCID: PMC10153009 DOI: 10.1080/10985549.2023.2196204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 04/26/2023] Open
Abstract
The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.
Collapse
Affiliation(s)
- Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dazhen Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Virgilia Macias
- Research Tissue Imaging Core, Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Eileen Brister
- Research Tissue Imaging Core, Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Jay Sonalkar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Linyuan Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jaba Mitra
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taekjip Ha
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andre Kajdacsy-Balla
- Research Tissue Imaging Core, Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Kannanganattu V. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, UIUC, Urbana, Illinois, USA
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, UIUC, Urbana, Illinois, USA
| |
Collapse
|
2
|
Amin A, Wu R, Khan MA, Cheung MH, Liang Y, Liu C, Zhu G, Yu ZL, Liang C. An essential Noc3p dimerization cycle mediates ORC double-hexamer formation in replication licensing. Life Sci Alliance 2023; 6:e202201594. [PMID: 36599624 PMCID: PMC9813392 DOI: 10.26508/lsa.202201594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.
Collapse
Affiliation(s)
- Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanting Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| |
Collapse
|
3
|
Ikui AE, Ueki N, Pecani K, Cross FR. Control of pre-replicative complex during the division cycle in Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009471. [PMID: 33909603 PMCID: PMC8081180 DOI: 10.1371/journal.pgen.1009471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/07/2021] [Indexed: 12/31/2022] Open
Abstract
DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions ('multiple fission'). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom.
Collapse
Affiliation(s)
- Amy E. Ikui
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| | - Noriko Ueki
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
| | - Kresti Pecani
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| |
Collapse
|
4
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
5
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
6
|
Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:6910-5. [PMID: 27274080 DOI: 10.1073/pnas.1523824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cellular wound healing or the repair of plasma membrane/cell wall damage (plasma membrane damage) occurs frequently in nature. Although various cellular perturbations, such as DNA damage, spindle misalignment, and impaired daughter cell formation, are monitored by cell cycle checkpoint mechanisms in budding yeast, whether plasma membrane damage is monitored by any of these checkpoints remains to be addressed. Here, we define the mechanism by which cells sense membrane damage and inhibit DNA replication. We found that the inhibition of DNA replication upon plasma membrane damage requires GSK3/Mck1-dependent degradation of Cdc6, a component of the prereplicative complex. Furthermore, the CDK inhibitor Sic1 is stabilized in response to plasma membrane damage, leading to cell integrity maintenance in parallel with the Mck1-Cdc6 pathway. Cells defective in both Cdc6 degradation and Sic1 stabilization failed to grow in the presence of plasma membrane damage. Taking these data together, we propose that plasma membrane damage triggers G1 arrest via Cdc6 degradation and Sic1 stabilization to promote the cellular wound healing process.
Collapse
|
7
|
Chen C, Lu J, Yu Q, Xiao JR, Wei HF, Song XJ, Ge JB, Tao WD, Qian R, Yu XW, Zhao J. Expression of CDc6 after acute spinal cord injury in adult rats. Neuropeptides 2016; 56:59-67. [PMID: 26899166 DOI: 10.1016/j.npep.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/19/2023]
Abstract
The cell division cycle 6 (CDc6) protein has been primarily investigated as a component of the pre-replicative complex for the initiation of DNA replication. Some studies have shown that CDc6 played a critical role in the development of human carcinoma. However, the expression and roles of CDc6 in the central nervous system remain unknown. We have performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of CDc6 expression in spinal cord. Western blot have found that CDc6 protein levels first significantly increase, reach a peak at day 3, and then gradually return to normal level at day 14 after SCI. Double immunofluorescence staining showed that CDc6 immunoreactivity was found in neurons, astrocytes, and microglia. Additionally, colocalization of CDc6/active caspase-3 has been detected in neurons and colocalization of CDc6/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, CDc6 depletion by short interfering RNA inhibits astrocyte proliferation and reduces cyclin A and cyclin D1 protein levels. CDc6 knockdown also decreases neuronal apoptosis. We speculate that CDc6 might play crucial roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Chen Chen
- Department of orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jian Lu
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Qin Yu
- Department of Medical image, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jian-Ru Xiao
- Department of Orthopedics, Shanghai Changzheng Hospital, 200000 Shanghai, China
| | - Hai-Feng Wei
- Department of Orthopedics, Shanghai Changzheng Hospital, 200000 Shanghai, China
| | - Xin-jian Song
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Jian-Bing Ge
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Wei-Dong Tao
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Rong Qian
- Department of orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Wei Yu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| | - Jian Zhao
- Department of Orthopedics, Shanghai Changzheng Hospital, 200000 Shanghai, China.
| |
Collapse
|
8
|
Al-Zain A, Schroeder L, Sheglov A, Ikui AE. Cdc6 degradation requires phosphodegron created by GSK-3 and Cdk1 for SCFCdc4 recognition in Saccharomyces cerevisiae. Mol Biol Cell 2015. [PMID: 25995377 DOI: 10.1091/mbc.e14-07-1213/asset/images/large/mbc-26-2609-g005.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To ensure genome integrity, DNA replication takes place only once per cell cycle and is tightly controlled by cyclin-dependent kinase (Cdk1). Cdc6p is part of the prereplicative complex, which is essential for DNA replication. Cdc6 is phosphorylated by cyclin-Cdk1 to promote its degradation after origin firing to prevent DNA rereplication. We previously showed that a yeast GSK-3 homologue, Mck1 kinase, promotes Cdc6 degradation in a SCF(Cdc4)-dependent manner, therefore preventing rereplication. Here we present evidence that Mck1 directly phosphorylates a GSK-3 consensus site in the C-terminus of Cdc6. The Mck1-dependent Cdc6 phosphorylation required priming by cyclin/Cdk1 at an adjacent CDK consensus site. The sequential phosphorylation by Mck1 and Clb2/Cdk1 generated a Cdc4 E3 ubiquitin ligase-binding motif to promote Cdc6 degradation during mitosis. We further revealed that Cdc6 degradation triggered by Mck1 kinase was enhanced upon DNA damage caused by the alkylating agent methyl methanesulfonate and that the resulting degradation was mediated through Cdc4. Thus, Mck1 kinase ensures proper DNA replication, prevents DNA damage, and maintains genome integrity by inhibiting Cdc6.
Collapse
Affiliation(s)
- Amr Al-Zain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Lea Schroeder
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Alina Sheglov
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Amy E Ikui
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| |
Collapse
|
9
|
Al-Zain A, Schroeder L, Sheglov A, Ikui AE. Cdc6 degradation requires phosphodegron created by GSK-3 and Cdk1 for SCFCdc4 recognition in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2609-19. [PMID: 25995377 PMCID: PMC4501359 DOI: 10.1091/mbc.e14-07-1213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/12/2015] [Indexed: 11/11/2022] Open
Abstract
DNA replication has to be tightly regulated to ensure genome integrity such that DNA replication takes place only once per cell cycle. The Cdc6 sequential phosphorylation by GSK-3 and Cdk1 creates a binding site for Cdc4 ubiquitin ligase to promote Cdc6 degradation. To ensure genome integrity, DNA replication takes place only once per cell cycle and is tightly controlled by cyclin-dependent kinase (Cdk1). Cdc6p is part of the prereplicative complex, which is essential for DNA replication. Cdc6 is phosphorylated by cyclin-Cdk1 to promote its degradation after origin firing to prevent DNA rereplication. We previously showed that a yeast GSK-3 homologue, Mck1 kinase, promotes Cdc6 degradation in a SCFCdc4-dependent manner, therefore preventing rereplication. Here we present evidence that Mck1 directly phosphorylates a GSK-3 consensus site in the C-terminus of Cdc6. The Mck1-dependent Cdc6 phosphorylation required priming by cyclin/Cdk1 at an adjacent CDK consensus site. The sequential phosphorylation by Mck1 and Clb2/Cdk1 generated a Cdc4 E3 ubiquitin ligase–binding motif to promote Cdc6 degradation during mitosis. We further revealed that Cdc6 degradation triggered by Mck1 kinase was enhanced upon DNA damage caused by the alkylating agent methyl methanesulfonate and that the resulting degradation was mediated through Cdc4. Thus, Mck1 kinase ensures proper DNA replication, prevents DNA damage, and maintains genome integrity by inhibiting Cdc6.
Collapse
Affiliation(s)
- Amr Al-Zain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Lea Schroeder
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Alina Sheglov
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Amy E Ikui
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| |
Collapse
|
10
|
Chan SC, Zhang L, Wu HC, Tsui KM. A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:123-135. [PMID: 26357083 DOI: 10.1109/tcbb.2014.2343951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Unlike most conventional techniques with static model assumption, this paper aims to estimate the time-varying model parameters and identify significant genes involved at different timepoints from time course gene microarray data. We first formulate the parameter identification problem as a new maximum a posteriori probability estimation problem so that prior information can be incorporated as regularization terms to reduce the large estimation variance of the high dimensional estimation problem. Under this framework, sparsity and temporal consistency of the model parameters are imposed using L1-regularization and novel continuity constraints, respectively. The resulting problem is solved using the L-BFGS method with the initial guess obtained from the partial least squares method. A novel forward validation measure is also proposed for the selection of regularization parameters, based on both forward and current prediction errors. The proposed method is evaluated using a synthetic benchmark testing data and a publicly available yeast Saccharomyces cerevisiae cell cycle microarray data. For the latter particularly, a number of significant genes identified at different timepoints are found to be biological significant according to previous findings in biological experiments. These suggest that the proposed approach may serve as a valuable tool for inferring time-varying gene regulatory networks in biological studies.
Collapse
|
11
|
Hwang IS, Woo SU, Park JW, Lee SK, Yim H. Two nuclear export signals of Cdc6 are differentially associated with CDK-mediated phosphorylation residues for cytoplasmic translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:223-33. [PMID: 24216307 DOI: 10.1016/j.bbamcr.2013.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 10/25/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022]
Abstract
Cdc6 is cleaved at residues 442 and 290 by caspase-3 during apoptosis producing p49-tCdc6 and p32-tCdc6, respectively. While p32-tCdc6 is unable to translocate into the cytoplasm, p49-tCdc6 retains cytoplasmic translocation activity, but it has a lower efficiency than wild-type Cdc6. We hypothesized that a novel nuclear export signal (NES) sequence exists between amino acids 290 and 442. Cdc6 contains a novel NES in the region of amino acids 300-315 (NES2) that shares sequence similarity with NES1 at residues 462-476. In mutant versions of Cdc6, we replaced leucine with alanine in NES1 and NES2 and co-expressed the mutant constructs with cyclin A. We observed that the cytoplasmic translocation of these mutants was reduced in comparison to wild-type Cdc6. Moreover, the cytoplasmic translocation of a mutant in which all four leucine residues were mutated to alanine was significantly inhibited in comparison to the translocation of wild-type Cdc6. The Crm1 binding activities of Cdc6 NES mutants were consistent with the efficiency of its cytoplasmic translocation. Further studies have revealed that L468 and L470 of NES1 are required for cytoplasmic translocation of Cdc6 phosphorylated at S74, while L311 and L313 of NES2 accelerate the cytoplasmic translocation of Cdc6 phosphorylated at S54. These results suggest that the two NESs of Cdc6 work cooperatively and distinctly for the cytoplasmic translocation of Cdc6 phosphorylated at S74 and S54 by cyclin A/Cdk2.
Collapse
Affiliation(s)
- In Sun Hwang
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Uk Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Ji-Woong Park
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Ki Lee
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea.
| |
Collapse
|
12
|
Clijsters L, Ogink J, Wolthuis R. The spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct roles in connecting mitosis to S phase. ACTA ACUST UNITED AC 2013; 201:1013-26. [PMID: 23775192 PMCID: PMC3691463 DOI: 10.1083/jcb.201211019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spindle checkpoint, APC/C-Cdc20, and APC/C-Cdh1 act successively to connect disappearance of geminin and cyclin B1 to a peak of Cdt1 and Cdc6. DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.
Collapse
Affiliation(s)
- Linda Clijsters
- Division of Cell Biology I (B5), The Netherlands Cancer Institute (NKI-AvL), 1066 CX Amsterdam, Netherlands.
| | | | | |
Collapse
|
13
|
Ikui AE, Rossio V, Schroeder L, Yoshida S. A yeast GSK-3 kinase Mck1 promotes Cdc6 degradation to inhibit DNA re-replication. PLoS Genet 2012; 8:e1003099. [PMID: 23236290 PMCID: PMC3516531 DOI: 10.1371/journal.pgen.1003099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
Cdc6p is an essential component of the pre-replicative complex (pre-RC), which binds to DNA replication origins to promote initiation of DNA replication. Only once per cell cycle does DNA replication take place. After initiation, the pre-RC components are disassembled in order to prevent re-replication. It has been shown that the N-terminal region of Cdc6p is targeted for degradation after phosphorylation by Cyclin Dependent Kinase (CDK). Here we show that Mck1p, a yeast homologue of GSK-3 kinase, is also required for Cdc6 degradation through a distinct mechanism. Cdc6 is an unstable protein and is accumulated in the nucleus only during G1 and early S-phase in wild-type cells. In mck1 deletion cells, CDC6p is stabilized and accumulates in the nucleus even in late S phase and mitosis. Overexpression of Mck1p induces rapid Cdc6p degradation in a manner dependent on Threonine-368, a GSK-3 phosphorylation consensus site, and SCF(CDC4). We show evidence that Mck1p-dependent degradation of Cdc6 is required for prevention of DNA re-replication. Loss of Mck1 activity results in synthetic lethality with other pre-RC mutants previously implicated in re-replication control, and these double mutant strains over-replicate DNA within a single cell cycle. These results suggest that a GSK3 family protein plays an unexpected role in preventing DNA over-replication through Cdc6 degradation in Saccharomyces cerevisiae. We propose that both CDK and Mck1 kinases are required for Cdc6 degradation to ensure a tight control of DNA replication.
Collapse
Affiliation(s)
- Amy E Ikui
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, United States of America.
| | | | | | | |
Collapse
|
14
|
Huo L, Wu R, Yu Z, Zhai Y, Yang X, Chan TC, Yeung JTF, Kan J, Liang C. The Rix1 (Ipi1p-2p-3p) complex is a critical determinant of DNA replication licensing independent of their roles in ribosome biogenesis. Cell Cycle 2012; 11:1325-39. [PMID: 22421151 DOI: 10.4161/cc.19709] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Several replication-initiation proteins are assembled stepwise onto replicators to form pre-replicative complexes (pre-RCs) to license eukaryotic DNA replication. We performed a yeast functional proteomic screen and identified the Rix1 complex members (Ipi1p-Ipi2p/Rix1-Ipi3p) as pre-RC components and critical determinants of replication licensing and replication-initiation frequency. Ipi3p interacts with pre-RC proteins, binds chromatin predominantly at ARS sequences in a cell cycle-regulated and ORC- and Noc3p-dependent manner and is required for loading Cdc6p, Cdt1p and MCM onto chromatin to form pre-RC during the M-to-G₁ transition and for pre-RC maintenance in G₁ phase-independent of its role in ribosome biogenesis. Moreover, Ipi1p and Ipi2p, but not other ribosome biogenesis proteins Rea1p and Utp1p, are also required for pre-RC formation and maintenance, and Ipi1p, -2p and -3p are interdependent for their chromatin association and function in pre-RC formation. These results establish a new framework for the hierarchy of pre-RC proteins, where the Ipi1p-2p-3p complex provides a critical link between ORC-Noc3p and Cdc6p-Cdt1p-MCM in replication licensing.
Collapse
Affiliation(s)
- Lin Huo
- Division of Life Science, Center for Cancer Research and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu P, Slater DM, Lenburg M, Nevis K, Cook JG, Vaziri C. Replication licensing promotes cyclin D1 expression and G1 progression in untransformed human cells. Cell Cycle 2009; 8:125-36. [PMID: 19106611 DOI: 10.4161/cc.8.1.7528] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Defects in DNA replication are implicated as early and causal events in malignancy. However, the immediate effects of impaired DNA replication licensing on cell cycle progression of non-malignant human cells are unknown. Therefore, we have investigated the acute effects of Mcm7 ablation using synchronized cultures of untransformed Human Dermal Fibroblasts (HDF). Mcm7 ablation elicited a G(1) delay associated with impaired activation of CDK4 and CDK2 and reduced Rb phosphorylation. The cell cycle delay of Mcm7-ablated cells was not associated with a DNA damage response. However, levels of cyclin D1 mRNA were specifically reduced and binding of RNA Polymerase II to the CYCD1 promoter was decreased in Mcm7-depleted cells. Similar to Mcm7-deficiency, Mcm2- or Cdc6-depletion led to impaired cyclin D expression. Ectopic overexpression of Cdc6 in quiescent cells promoted cyclin D1 expression, CDK4 activation and G(1) progression. Therefore timely and efficient expression of cyclin D1 during G(1) phase requires replication licensing. Reconstitution of cyclin D1 expression was insufficient to correct the G(1) delay of Mcm7-depleted cells, indicating that additional cell cycle events during G(1) are dependent on replication licensing. However, ectopic expression of the HPV-E7 oncoprotein, and the resulting bypass of the requirement for cyclin D1-Rb signaling enabled Mcm7-depleted cells to enter S-phase. HPV-E7-induced S-phase entry of Mcm7-depleted cells led to a DNA damage response, a hallmark of pre-malignancy. Taken together, our results suggest the existence of a 'replication licensing restriction point' that couples pre-RC assembly with G(1) progression in normal cells to minimize replication stress, DNA damage and tumorigenesis.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
16
|
Liu L, Choi JH, Yim H, Choi JS, Park BD, Cho SJ, Lee SK. ATR (AT mutated Rad3 related) activity stabilizes Cdc6 and delays G2/M-phase entry during hydroxyurea-induced S-phase arrest of HeLa cells. Int J Biochem Cell Biol 2008; 41:1410-20. [PMID: 19154794 DOI: 10.1016/j.biocel.2008.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/10/2008] [Accepted: 12/10/2008] [Indexed: 11/18/2022]
Abstract
The Cdc6 protein, a key DNA replication initiation factor, contributes to the long-term maintenance of the S-phase checkpoint by anchoring the Rad3-Rad26 complex to chromatin. Here, we demonstrate that ATR (AT mutated and Rad3 related) activity is essential for maintaining high chromatin levels of the Cdc6 protein, thereby delaying entry into mitosis during hydroxyurea (HU)-induced S-phase arrest of HeLa cells. Downregulation of ATR (AT mutated and Rad3 related) (i.e., using ATR-siRNA) reduced the protein levels of chromatin Cdc6 and significantly increased the cellular levels of phospho-histone H3 (Ser 10), an index of mitosis. Downregulation of Cdc6 was completely restored by pretreatment with MG132, a proteasome inhibitor. Moreover, mitotic entry of MG132-pretreated cells was significantly downregulated. Our results also show that ATR (AT mutated and Rad3 related) kinase phosphorylates Cdc6 at serine residue 6. Thus, this ATR (AT mutated and Rad3 related)-mediated phosphorylation of Cdc6 is likely associated with stabilization of Cdc6 protein, thereby maintaining high levels of chromatin Cdc6 and delaying premature mitotic entry. This novel mechanism likely contributes to the functional regulation of chromatin Cdc6, which delays the cell cycle of hydroxyurea-induced cells to enter mitosis at the S-phase checkpoint.
Collapse
Affiliation(s)
- Linhua Liu
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
17
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|