1
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET. BIOPHYSICAL REPORTS 2023; 3:100110. [PMID: 37251213 PMCID: PMC10209493 DOI: 10.1016/j.bpr.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the three-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated-intensified charge-coupled device, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of a near-infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI-FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required nine measurements (six of which are used for calibration) acquired from three mice, MFLI-FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
2
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. in vivo quantitative FRET small animal imaging: intensity versus lifetime-based FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525411. [PMID: 36747671 PMCID: PMC9900789 DOI: 10.1101/2023.01.24.525411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Förster Resonance Energy Transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the 3-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated ICCD, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of near infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required 9 measurements (6 of which are used for calibration) acquired from three mice, MFLI FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Elephas, 1 Erdman Pl., Madison, WI 53705, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency, 12120 Pathum Thani, Thailand
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California, CA 90095, USA
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
3
|
Quantification of Trastuzumab-HER2 Engagement In Vitro and In Vivo. Molecules 2020; 25:molecules25245976. [PMID: 33348564 PMCID: PMC7767145 DOI: 10.3390/molecules25245976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Human EGF Receptor 2 (HER2) is an important oncogene driving aggressive metastatic growth in up to 20% of breast cancer tumors. At the same time, it presents a target for passive immunotherapy such as trastuzumab (TZM). Although TZM has been widely used clinically since 1998, not all eligible patients benefit from this therapy due to primary and acquired drug resistance as well as potentially lack of drug exposure. Hence, it is critical to directly quantify TZM–HER2 binding dynamics, also known as cellular target engagement, in undisturbed tumor environments in live, intact tumor xenograft models. Herein, we report the direct measurement of TZM–HER2 binding in HER2-positive human breast cancer cells and tumor xenografts using fluorescence lifetime Forster Resonance Energy Transfer (FLI-FRET) via near-infrared (NIR) microscopy (FLIM-FRET) as well as macroscopy (MFLI-FRET) approaches. By sensing the reduction of fluorescence lifetime of donor-labeled TZM in the presence of acceptor-labeled TZM, we successfully quantified the fraction of HER2-bound and internalized TZM immunoconjugate both in cell culture and tumor xenografts in live animals. Ex vivo immunohistological analysis of tumors confirmed the binding and internalization of TZM–HER2 complex in breast cancer cells. Thus, FLI-FRET imaging presents a powerful analytical tool to monitor and quantify cellular target engagement and subsequent intracellular drug delivery in live HER2-positive tumor xenografts.
Collapse
|
4
|
Deal J, Pleshinger DJ, Johnson SC, Leavesley SJ, Rich TC. Milestones in the development and implementation of FRET-based sensors of intracellular signals: A biological perspective of the history of FRET. Cell Signal 2020; 75:109769. [PMID: 32898611 DOI: 10.1016/j.cellsig.2020.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Fӧrster resonance energy transfer (FRET) has been described for more than a century. FRET has become a mainstay for the study of protein localization in living cells and tissues. It has also become widely used in the fields that comprise cellular signaling. FRET-based probes have been developed to monitor second messenger signals, the phosphorylation state of peptides and proteins, and subsequent cellular responses. Here, we discuss the milestones that led to FRET becoming a widely used tool for the study of biological systems: the theoretical description of FRET, the insight to use FRET as a molecular ruler, and the isolation and genetic modification of green fluorescent protein (GFP). Each of these milestones were critical to the development of a myriad of FRET-based probes and reporters in common use today. FRET-probes offer a unique opportunity to interrogate second messenger signals and subsequent protein phosphorylation - and perhaps the most effective approach for study of cAMP/PKA pathways. As such, FRET probes are widely used in the study of intracellular signaling pathways. Yet, somehow, the potential of FRET-based probes to provide windows through which we can visualize complex cellular signaling systems has not been fully reached. Hence we conclude by discussing the technical challenges to be overcome if FRET-based probes are to live up to their potential for the study of complex signaling networks.
Collapse
Affiliation(s)
- J Deal
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - D J Pleshinger
- Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S C Johnson
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
5
|
Rudkouskaya A, Sinsuebphon N, Ochoa M, Chen SJ, Mazurkiewicz JE, Intes X, Barroso M. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor. Theranostics 2020; 10:10309-10325. [PMID: 32929350 PMCID: PMC7481426 DOI: 10.7150/thno.45825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale: Following an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in live intact animals, which is critical to assess the delivery efficacy of therapeutics. However, to date, non-invasive imaging approaches that can simultaneously measure cellular drug delivery efficacy and metabolic response are lacking. A major challenge for the implementation of concurrent optical and MFLI-FRET in vivo whole-body preclinical imaging is the spectral crowding and cross-contamination between fluorescent probes. Methods: We report on a strategy that relies on a dark quencher enabling simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. Several optical imaging approaches, such as in vitro NIR FLI microscopy (FLIM) and in vivo wide-field MFLI, were used to validate a novel donor-dark quencher FRET pair. IRDye 800CW 2-deoxyglucose (2-DG) imaging was multiplexed with MFLI-FRET of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) to monitor tumor metabolism and probe uptake in breast tumor xenografts in intact live nude mice. Immunohistochemistry was used to validate in vivo imaging results. Results: First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700). Second, we report on simultaneous in vivo imaging of the metabolic probe 2-DG and MFLI-FRET imaging of Tf-AF700/Tf-QC-1 uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Conclusions: Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Marien Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sez-Jade Chen
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Joseph E. Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
6
|
Association of microtubules and axonal RNA transferred from myelinating Schwann cells in rat sciatic nerve. PLoS One 2020; 15:e0233651. [PMID: 32469980 PMCID: PMC7259579 DOI: 10.1371/journal.pone.0233651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/09/2020] [Indexed: 01/19/2023] Open
Abstract
Transference of RNAs and ribosomes from Schwann cell-to-axon was demonstrated in normal and regenerating peripheral nerves. Previously, we have shown that RNAs transfer is dependent on F-actin cytoskeleton and Myosin Va. Here, we explored the contribution of microtubules to newly synthesized RNAs transport from Schwann cell nuclei up to nodal microvilli in sciatic nerves. Results using immunohistochemistry and quantitative confocal FRET analysis indicate that Schwann cell-derived RNAs co-localize with microtubules in Schwann cell cytoplasm. Additionally, transport of Schwann cell-derived RNAs is nocodazole and colchicine sensitive demonstrating its dependence on microtubule network integrity. Moreover, mRNAs codifying neuron-specific proteins are among Schwann cell newly synthesized RNAs population, and some of them are associated with KIF1B and KIF5B microtubules-based motors.
Collapse
|
7
|
Chen SJ, Sinsuebphon N, Rudkouskaya A, Barroso M, Intes X, Michalet X. In vitro and in vivo phasor analysis of stoichiometry and pharmacokinetics using short-lifetime near-infrared dyes and time-gated imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800185. [PMID: 30421551 PMCID: PMC6559731 DOI: 10.1002/jbio.201800185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/08/2018] [Accepted: 11/11/2018] [Indexed: 05/22/2023]
Abstract
We introduce a simple new approach for time-resolved multiplexed analysis of complex systems using near-infrared (NIR) dyes, applicable to in vitro and in vivo studies. We show that fast and precise in vitro quantification of NIR fluorophores' short (subnanosecond) lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user-friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation and time-gated camera imaging. We apply this approach to the study of binding equilibria by Förster resonant energy transfer using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend it to dynamic imaging of the pharmacokinetics of transferrin engagement with the transferrin receptor in live mice, elucidating the kinetics of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from nonspecific binding. Our method, implemented in a freely-available software, has the advantage of time-resolved NIR imaging, including better tissue penetration and background-free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging and could be extended to applications as diverse as image-guided surgery or optical tomography.
Collapse
Affiliation(s)
- Sez-Jade Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Nattawut Sinsuebphon
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
Rudkouskaya A, Sinsuebphon N, Ward J, Tubbesing K, Intes X, Barroso M. Quantitative imaging of receptor-ligand engagement in intact live animals. J Control Release 2018; 286:451-459. [PMID: 30036545 PMCID: PMC6231501 DOI: 10.1016/j.jconrel.2018.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
Maintaining an intact tumor environment is critical for quantitation of receptor-ligand engagement in a targeted drug development pipeline. However, measuring receptor-ligand engagement in vivo and non-invasively in preclinical settings is extremely challenging. We found that quantitation of intracellular receptor-ligand binding can be achieved using whole-body macroscopic lifetime-based Förster Resonance Energy Transfer (FRET) imaging in intact, live animals bearing tumor xenografts. We determined that FRET levels report on ligand binding to transferrin receptors conversely to raw fluorescence intensity. FRET levels in heterogeneous tumors correlate with intracellular ligand binding but strikingly, not with ubiquitously used ex vivo receptor expression assessment. Hence, MFLI-FRET provides a direct measurement of systemic delivery, target availability and intracellular drug delivery in preclinical studies. Here, we have used MFLI to measure FRET longitudinally in intact and live animals. MFLI-FRET is well-suited for guiding the development of targeted drug therapy in heterogeneous tumors in intact, live small animals.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Nattawut Sinsuebphon
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jamie Ward
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
9
|
Hooghoudt JO, Barroso M, Waagepetersen R. TOWARD BAYESIAN INFERENCE OF THE SPATIAL DISTRIBUTION OF PROTEINS FROM THREE-CUBE FÖRSTER RESONANCE ENERGY TRANSFER DATA. Ann Appl Stat 2018; 11:1711-1737. [PMID: 29861820 DOI: 10.1214/17-aoas1054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Förster resonance energy transfer (FRET) is a quantum-physical phenomenon where energy may be transferred from one molecule to a neighbor molecule if the molecules are close enough. Using fluorophore molecule marking of proteins in a cell, it is possible to measure in microscopic images to what extent FRET takes place between the fluorophores. This provides indirect information of the spatial distribution of the proteins. Questions of particular interest are whether (and if so to which extent) proteins of possibly different types interact or whether they appear independently of each other. In this paper we propose a new likelihood-based approach to statistical inference for FRET microscopic data. The likelihood function is obtained from a detailed modeling of the FRET data-generating mechanism conditional on a protein configuration. We next follow a Bayesian approach and introduce a spatial point process prior model for the protein configurations depending on hyperparameters quantifying the intensity of the point process. Posterior distributions are evaluated using Markov chain Monte Carlo. We propose to infer microscope-related parameters in an initial step from reference data without interaction between the proteins. The new methodology is applied to simulated and real datasets.
Collapse
|
10
|
Glebov OO, Jackson RE, Winterflood CM, Owen DM, Barker EA, Doherty P, Ewers H, Burrone J. Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function. Cell Rep 2017; 18:2715-2728. [PMID: 28297674 PMCID: PMC5368346 DOI: 10.1016/j.celrep.2017.02.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 12/10/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
The active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the nanoscale, revealing segregation between the AZ matrix, VGCCs, and putative release sites. Long-term blockade of neuronal activity leads to reversible AZ matrix unclustering and presynaptic actin depolymerization, allowing for enrichment of AZ machinery. Conversely, patterned optogenetic stimulation of postsynaptic neurons retrogradely enhanced AZ clustering. In individual synapses, AZ clustering was inversely correlated with local VGCC recruitment and vesicle cycling. Acute actin depolymerization led to rapid (5 min) nanoscale AZ matrix unclustering. We propose a model whereby neuronal activity modulates presynaptic function in a homeostatic manner by altering the clustering state of the AZ matrix.
Collapse
Affiliation(s)
- Oleg O Glebov
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Rachel E Jackson
- Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Christian M Winterflood
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK
| | - Dylan M Owen
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; Department of Physics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| | - Ellen A Barker
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Helge Ewers
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Juan Burrone
- Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
11
|
Ulloa-Aguirre A, Zariñán T. The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 2016; 90:596-608. [PMID: 27382014 DOI: 10.1124/mol.116.104398] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/28/2016] [Indexed: 02/14/2025] Open
Abstract
Follitropin, or follicle-stimulating hormone (FSH) receptor (FSHR), is a G protein-coupled receptor belonging to the glycoprotein hormone receptor family that plays an essential role in reproduction. Although its primary location is the gonad, the FSHR has also been reported in extragonadal tissues including bone, placenta, endometrium, liver, and blood vessels from a number of malignant tumors. The recently resolved crystal structure of FSH bound to the entire FSHR ectodomain has been instrumental in more clearly defining the role of this domain in ligand binding and receptor activation. Biochemical, biophysical, and structural data also indicate that the FSHR exists as a higher order structure and that it may heterodimerize with its closely related receptor, the luteinizing hormone receptor; this association may have physiologic implications during ovarian follicle maturation given that both receptors may simultaneously coexist in the same cell. FSHR heterodimerization is unique to the ovary because in the testes, gonadotropin receptors are expressed in separate compartments. FSHR self-association appears to be required for receptor coupling to multiple effectors and adaptors, for the activation of multiple signaling pathways and the transduction of asymmetric signaling, and for negative and positive receptor cooperativity. It also provides a mechanism through which the glycosylation variants of FSH may exert distinct and differential effects at the target cell level. Given its importance in regulating activation of distinct signaling pathways, functional selectivity at the FSHR is briefly discussed, as well as the potential implications of this particular functional feature on the design of new pharmacological therapies in reproduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| | - Teresa Zariñán
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| |
Collapse
|
12
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
13
|
Omer T, Intes X, Hahn J. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging. PLoS One 2015; 10:e0144421. [PMID: 26658308 PMCID: PMC4686107 DOI: 10.1371/journal.pone.0144421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022] Open
Abstract
Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.
Collapse
Affiliation(s)
- Travis Omer
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Barroso M, Tucker H, Drake L, Nichol K, Drake JR. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules. J Biol Chem 2015; 290:27101-27112. [PMID: 26400081 DOI: 10.1074/jbc.m115.649582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen.
Collapse
Affiliation(s)
- Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Heidi Tucker
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Lisa Drake
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Kathleen Nichol
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - James R Drake
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208.
| |
Collapse
|
15
|
Mazurkiewicz JE, Herrick-Davis K, Barroso M, Ulloa-Aguirre A, Lindau-Shepard B, Thomas RM, Dias JA. Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biol Reprod 2015; 92:100. [PMID: 25761594 DOI: 10.1095/biolreprod.114.125781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that the carboxyl terminus (cT) of human follicle-stimulating hormone (FSH, follitropin) receptor (FSHR) is clipped before insertion into the plasma membrane. Surprisingly, several different constructs of FSHR fluorescent fusion proteins (FSHR-FPs) failed to traffic to the plasma membrane. Subsequently, we discovered that substituting the extreme cT of luteinizing hormone (LH) receptor (LHR) to create an FSHR-LHRcT chimera has no effect on FSHR functionality. Therefore, we used this approach to create an FSHR-LHRcT-FP fusion. We found this chimeric FSHR-LHRcT-FP was expressed in HEK293 cells at levels similar to reported values for FSHR in human granulosa cells, bound FSH with high affinity, and transduced FSH binding to produce cAMP. Quantitative fluorescence resonance energy transfer (FRET) analysis of FSHR-LHRcT-YFP/FSHR-LHRcT-mCherry pairs revealed an average FRET efficiency of 12.9 ± 5.7. Advanced methods in single-molecule analyses were applied in order to ascertain the oligomerization state of the FSHR-LHRcT. Fluorescence correlation spectroscopy coupled with photon-counting histogram analyses demonstrated that the FSHR-LHRcT-FP fusion protein exists as a freely diffusing homodimer in the plasma membrane. A central question is whether LHR could oligomerize with FSHR, because both receptors are coexpressed in differentiated granulosa cells. Indeed, FRET analysis revealed an average FRET efficiency of 14.4 ± 7.5 when the FSHR-LHR cT-mCherry was coexpressed with LHR-YFP. In contrast, coexpression of a 5-HT2cVSV-YFP with FSHR-LHR cT-mCherry showed only 5.6 ± 3.2 average FRET efficiency, a value indistinguishable from the detection limit using intensity-based FRET methods. These data demonstrate that coexpression of FSHR and LHR can lead to heterodimerization, and we hypothesize that it is possible for this to occur during granulosa cell differentiation.
Collapse
Affiliation(s)
- Joseph E Mazurkiewicz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York
| | | | - Margarida Barroso
- Center for Cardiovascular Science, Albany Medical College, Albany, New York
| | - Alfredo Ulloa-Aguirre
- Research Support Network, Instituto Nacional de Ciencias Médicas y Nutrición SZ-Universidad Nacional Autónoma de México, México D.F., México
| | - Barbara Lindau-Shepard
- Division of Genetic Disorders, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Richard M Thomas
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York
| |
Collapse
|
16
|
Abstract
Optical imaging assays, especially fluorescence molecular assays, are minimally invasive if not completely noninvasive, and thus an ideal technique to be applied to live specimens. These fluorescence imaging assays are a powerful tool in biomedical sciences as they allow the study of a wide range of molecular and physiological events occurring in biological systems. Furthermore, optical imaging assays bridge the gap between the in vitro cell-based analysis of subcellular processes and in vivo study of disease mechanisms in small animal models. In particular, the application of Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM), well-known techniques widely used in microscopy, to the optical imaging assay toolbox, will have a significant impact in the molecular study of protein-protein interactions during cancer progression. This review article describes the application of FLIM-FRET to the field of optical imaging and addresses their various applications, both current and potential, to anti-cancer drug delivery and cancer research.
Collapse
Affiliation(s)
- Shilpi Rajoria
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| |
Collapse
|
17
|
Omer T, Zhao L, Intes X, Hahn J. Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:086023. [PMID: 25166472 PMCID: PMC4147194 DOI: 10.1117/1.jbo.19.8.086023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging (FLIM) aims at quantifying the exponential decay rate of fluorophores to yield lifetime maps over the imaged sample. When combined with Förster resonance energy transfer (FRET), the technique can be used to indirectly sense interactions at the nanoscale such as protein–protein interactions, protein–DNA interactions, and protein conformational changes. In the case of FLIM-FRET, the fluorescence intensity decays are fitted to a biexponential model in order to estimate the lifetime and fractional amplitude coefficients of each component of the population of the donor fluorophore (quenched and nonquenched). Numerous time data points, also called temporal or time gates, are typically employed for accurately estimating the model parameters, leading to lengthy acquisition times and significant computational demands. This work investigates the effect of the number and location of time gates on model parameter estimation accuracy. A detailed model of a FLIM-FRET imaging system is used for the investigation, and the simulation outcomes are validated with in vitro and in vivo experimental data. In all cases investigated, it is found that 10 equally spaced time gates allow robust estimation of model-based parameters with accuracy similar to that of full temporal datasets (90 gates).
Collapse
Affiliation(s)
- Travis Omer
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180, United States
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180, United States
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180, United States
| | - Juergen Hahn
- Rensselaer Polytechnic Institute, Departments of Biomedical Engineering and Chemical & Biological Engineering, 110 8th Street, Troy, New York 12180, United States
- Address all correspondence to: Juergen Hahn, E-mail:
| |
Collapse
|
18
|
Abe K, Zhao L, Periasamy A, Intes X, Barroso M. Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET. PLoS One 2013; 8:e80269. [PMID: 24278268 PMCID: PMC3836976 DOI: 10.1371/journal.pone.0080269] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/11/2013] [Indexed: 12/05/2022] Open
Abstract
The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo. Due to the enhanced permeability and retention (EPR) effect, it remains unknown whether these Tfn-conjugated drugs are specifically internalized into cancer cells or are localized non-specifically as a result of a generalized accumulation of macromolecules near tumors. By exploiting the dimeric nature of the TfnR that binds two molecules of Tfn in close proximity, we utilized a Förster Resonance Energy Transfer (FRET) based technique that can discriminate bound and internalized Tfn from free, soluble Tfn. In order to non-invasively visualize intracellular amounts of Tfn in tumors through live animal tissues, we developed a novel near infrared (NIR) fluorescence lifetime FRET imaging technique that uses an active wide-field time gated illumination platform. In summary, we report that the NIR fluorescence lifetime FRET technique is capable of non-invasively detecting bound and internalized forms of Tfn in cancer cells and tumors within a live small animal model, and that our results are quantitatively consistent when compared to well-established intensity-based FRET microscopy methods used in in vitro experiments.
Collapse
Affiliation(s)
- Ken Abe
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wallrabe H, Cai Y, Sun Y, Periasamy A, Luzes R, Fang X, Kan HM, Cameron LC, Schafer DA, Bloom GS. IQGAP1 interactome analysis by in vitro reconstitution and live cell 3-color FRET microscopy. Cytoskeleton (Hoboken) 2013; 70:819-36. [PMID: 24124181 DOI: 10.1002/cm.21146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
IQGAP1 stimulates branched actin filament nucleation by activating N-WASP, which then activates the Arp2/3 complex. N-WASP can be activated by other factors, including GTP-bound Cdc42 or Rac1, which also bind IQGAP1. Here we report the use of purified proteins for in vitro binding and actin polymerization assays, and Förster (or fluorescence) resonance energy transfer (FRET) microscopy of cultured cells to illuminate functional interactions among IQGAP1, N-WASP, actin, and either Cdc42 or Rac1. In pyrene-actin assembly assays containing N-WASP and Arp2/3 complex, IQGAP1 plus either small G protein cooperatively stimulated actin filament nucleation by reducing the lag time before 50% maximum actin polymerization was reached. Similarly, Cdc42 and Rac1 modulated the binding of IQGAP1 to N-WASP in a dose-dependent manner, with Cdc42 enhancing the interaction and Rac1 reducing the interaction. These in vitro reconstitution results suggested that IQGAP1 interacts by similar, yet distinct mechanisms with Cdc42 versus Rac1 to regulate actin filament assembly through N-WASP in vivo. The physiological relevance of these multi-protein interactions was substantiated by 3-color FRET microscopy of live MDCK cells expressing various combinations of fluorescent N-WASP, IQGAP1, Cdc42, Rac1, and actin. This study also establishes 3-color FRET microscopy as a powerful tool for studying dynamic intermolecular interactions in live cells.
Collapse
Affiliation(s)
- Horst Wallrabe
- Department of Biology, University of Virginia, Charlottesville, Virginia; Keck Center for Cellular Imaging; University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhao L, Abe K, Barroso M, Intes X. Active wide-field illumination for high-throughput fluorescence lifetime imaging. OPTICS LETTERS 2013; 38:3976-9. [PMID: 24081103 PMCID: PMC3933959 DOI: 10.1364/ol.38.003976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wide-field fluorescence lifetime imaging allows for fast imaging of large sample areas at the cost of low sensitivity to weak fluorescence signals. To overcome this challenge, we developed an active wide-field illumination (AWFI) strategy to optimize the impinging spatial intensity for acquiring optimal fluorescence signals over the whole sample. We demonstrated the ability of AWFI to accurately estimate lifetimes from a multiwell plate sample with concentrations ranging over two orders of magnitude. We further reported its successful application to a quantitative Förster resonance energy transfer lifetime cell-based assay. Overall, this method allows for enhanced accuracy in lifetime-based imaging at high acquisition speed over samples with large fluorescence intensity distributions.
Collapse
Affiliation(s)
- Lingling Zhao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 43 New Scotland Avenue, Albany, New York 12208, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 43 New Scotland Avenue, Albany, New York 12208, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Corresponding author:
| |
Collapse
|
21
|
Talati R, Vanderpoel A, Eladdadi A, Anderson K, Abe K, Barroso M. Automated selection of regions of interest for intensity-based FRET analysis of transferrin endocytic trafficking in normal vs. cancer cells. Methods 2013; 66:139-52. [PMID: 23994873 DOI: 10.1016/j.ymeth.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/14/2022] Open
Abstract
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells.
Collapse
Affiliation(s)
- Ronak Talati
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Andrew Vanderpoel
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Kate Anderson
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
22
|
Sun Y, Rombola C, Jyothikumar V, Periasamy A. Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells. Cytometry A 2013; 83:780-93. [PMID: 23813736 DOI: 10.1002/cyto.a.22321] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/08/2013] [Accepted: 05/23/2013] [Indexed: 12/15/2022]
Abstract
The fundamental theory of Förster resonance energy transfer (FRET) was established in the 1940s. Its great power was only realized in the past 20 years after different techniques were developed and applied to biological experiments. This success was made possible by the availability of suitable fluorescent probes, advanced optics, detectors, microscopy instrumentation, and analytical tools. Combined with state-of-the-art microscopy and spectroscopy, FRET imaging allows scientists to study a variety of phenomena that produce changes in molecular proximity, thereby leading to many significant findings in the life sciences. In this review, we outline various FRET imaging techniques and their strengths and limitations; we also provide a biological model to demonstrate how to investigate protein-protein interactions in living cells using both intensity- and fluorescence lifetime-based FRET microscopy methods.
Collapse
Affiliation(s)
- Yuansheng Sun
- The W.M. Keck Center for Cellular Imaging (KCCI), Department of Biology, Physical and Life Sciences Building, University of Virginia, Charlottesville, Virginia
| | | | | | | |
Collapse
|
23
|
Wallrabe H, Sun Y, Fang X, Periasamy A, Bloom G. Three-Color FRET expands the ability to quantify the interactions of several proteins involved in actin filament nucleation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2012; 8226. [PMID: 23549657 DOI: 10.1117/12.906432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
With traditional 2-color Förster Resonance Energy Transfer (FRET) microscopy, valuable quantitative analyses can be conducted. Correlations of donor (D), acceptor (A) and their ratios (D:A) with energy transfer efficiency (E%) or distance (r) allows measurement of changes between control and experimental samples; also, clustered vs. random assembly of cellular components can be differentiated. Essentially, only the above three parameters D, A and D:A vs. E% are the basis for these deductions. 3-color FRET uses the same basic parameters, but exponentially expands the opportunities to quantify interrelationships among 3 cellular components. We investigated a number of questions based on the results of a triple combination (F1-F2-F3) of TFP-NWASP/Venus-IQGAP1/mCherry-Actin - all involved in the nucleation of actin - to apply the extensive analysis assay possible with 3-color FRET. How do changing N-WASP or IQGAP1 fluorescence levels affect actin fluorescence? What is the effect on E% of NWASP-actin by IQGAP1 or E% of IQGAP1-actin by N-WASP? These and other questions are explored in the context of all proteins of interest being in FRET distance vs. any two in the absence of the third. 4 cases are compared based on bleed-through corrected FRET: (1) all 3 interact, (2) only F1-F3 and F2-F3 [not F1-F2], (3) only F1-F2 and F2-F3 interact [not F1-F3], (4) only F1-F2 and F1-F3 interact [not F2-F3]. Other than describing the methodology in detail, several biologically relevant results are presented showing how E% (i.e. distance), fluorescence levels and ratios are affected in each of the cases. These correlations can only be observed in a 3-fluorophore combination. 3-color FRET will greatly expand the investigative range of quantitative analysis for the life-science researcher.
Collapse
Affiliation(s)
- Horst Wallrabe
- Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA ; Department of Biology, University of Virginia, Charlottesville, VA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.
Collapse
Affiliation(s)
- Margarida M Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
25
|
Sun Y, Wallrabe H, Seo SA, Periasamy A. FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth. Chemphyschem 2011; 12:462-74. [PMID: 21344587 PMCID: PMC3422661 DOI: 10.1002/cphc.201000664] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Indexed: 11/09/2022]
Abstract
Theodor Förster would have been 100 years old this year, and he would have been astounded to see the impact of his scientific achievement, which is still evolving. Combining his quantitative approach of (Förster) resonance energy transfer (FRET) with state-of-the-art digital imaging techniques allows scientists to breach the resolution limits of light (ca. 200 nm) in light microscopy. The ability to deduce molecular or particle distances within a range of 1-10 nm in real time and to prove or disprove interactions between two or more components is of vital interest to researchers in many branches of science. While Förster's groundbreaking theory was published in the 1940s, the availability of suitable fluorophores, instruments, and analytical tools spawned numerous experiments in the last 20 years, as demonstrated by the exponential increase in publications. These cover basic investigation of cellular processes and the ability to investigate them when they go awry in pathological states, the dynamics involved in genetics, and following events in environmental sciences and methods in drug screening. This review covers the essentials of Theodor Förster's theory, describes the elements for successful implementation of FRET microscopy, the challenges and how to overcome them, and a leading-edge example of how Förster's scientific impact is still evolving in many directions. While this review cannot possibly do justice to the burgeoning field of FRET microscopy, a few interesting applications such as threecolor FRET, which greatly expands the opportunities for investigating interactions of cellular components compared with the traditional two-color method, are described, and an extensive list of references is provided for the interested reader to access.
Collapse
Affiliation(s)
- Yuansheng Sun
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Horst Wallrabe
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Soo-Ah Seo
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Ammasi Periasamy
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
26
|
McGrath N, Barroso M. Quantum dots as fluorescence resonance energy transfer donors in cells. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:031210. [PMID: 18601534 DOI: 10.1117/1.2939417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Quantum dots (QDs) promise to revolutionize the way fluorescence imaging is used in the cell biology field. The unique fluorescent spectral characteristics, high photostability, low photobleaching, and tight emission spectra of QDs position them above traditional dyes. We will address the ability of water-stabilized QDs to behave as effective fluorescence resonance energy transfer (FRET) donors in cells upon transferrin-receptor-(TFR) mediated endocytosis. Confocal microscopy detects whether donor QD transferrin conjugates transfer energy to acceptor organic fluorophore-transferrin conjugate molecules in endocytic compartments. QDs are shown to be effective FRET donors when internalized into cells via the transferring receptor-mediated endocytic pathway. Upon pairing with the appropriate acceptor dyes, QDs will reduce the laborious data processing that is required to compensate for bleed through contamination between organic dye donor and acceptor pair signals. The QD technology simplifies and expands the use of FRET in the analysis of complex cellular processes that may involve protein organization in intracellular membranes as well as protein-protein interactions.
Collapse
Affiliation(s)
- Nicole McGrath
- Albany Medical College, Center for Cardiovascular Sciences, Albany, New York 12208, USA
| | | |
Collapse
|
27
|
Periasamy A, Wallrabe H, Chen Y, Barroso M. Chapter 22: Quantitation of protein-protein interactions: confocal FRET microscopy. Methods Cell Biol 2008; 89:569-98. [PMID: 19118691 DOI: 10.1016/s0091-679x(08)00622-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Förster resonance energy transfer (FRET) is an effective and high resolution method to monitor protein-protein interactions in live or fixed specimens. FRET can be used to estimate the distance between interacting protein molecules in vivo or in vitro using laser-scanning confocal FRET microscopy. The spectral overlap of donor and acceptor-essential for FRET-also generates a contamination of the FRET signal, which should be removed in order to carry out quantitative data analysis with confidence. Quantitative FRET data analysis addresses the wealth of information contained in the data set, once optimized FRET imaging has been completed. In this chapter, we describe step-by-step what the issues are in quantitative FRET data analysis, using membrane receptor trafficking and organization as an example. The assays described are applicable to many other biological applications.
Collapse
Affiliation(s)
- Ammasi Periasamy
- University of Virginia, W. M. Keck Center for Cellular Imaging, Department of Biology, Charlottesville, Virginia 22904, USA
| | | | | | | |
Collapse
|
28
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|