1
|
Renz C, Asimaki E, Meister C, Albanèse V, Petriukov K, Krapoth NC, Wegmann S, Wollscheid HP, Wong RP, Fulzele A, Chen JX, Léon S, Ulrich HD. Ubiquiton-An inducible, linkage-specific polyubiquitylation tool. Mol Cell 2024; 84:386-400.e11. [PMID: 38103558 PMCID: PMC10804999 DOI: 10.1016/j.molcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.
Collapse
Affiliation(s)
- Christian Renz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Evrydiki Asimaki
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Nils C Krapoth
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sabrina Wegmann
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Buelto D, Hung CW, Aoh QL, Lahiri S, Duncan MC. Plasma membrane to vacuole traffic induced by glucose starvation requires Gga2-dependent sorting at the trans-Golgi network. Biol Cell 2020; 112:349-367. [PMID: 32761633 DOI: 10.1111/boc.202000058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND INFORMATION In the yeast Saccharomyces cerevisiae, acute glucose starvation induces rapid endocytosis followed by vacuolar degradation of many plasma membrane proteins. This process is essential for cell viability, but the regulatory mechanisms that control it remain poorly understood. Under normal growth conditions, a major regulatory decision for endocytic cargo occurs at the trans-Golgi network (TGN) where proteins can recycle back to the plasma membrane or can be recognized by TGN-localised clathrin adaptors that direct them towards the vacuole. However, glucose starvation reduces recycling and alters the localization and post-translational modification of TGN-localised clathrin adaptors. This raises the possibility that during glucose starvation endocytosed proteins are routed to the vacuole by a novel mechanism that bypasses the TGN or does not require TGN-localised clathrin adaptors. RESULTS Here, we investigate the role of TGN-localised clathrin adaptors in the traffic of several amino acid permeases, including Can1, during glucose starvation. We find that Can1 transits through the TGN after endocytosis in both starved and normal conditions. Can1 and other amino acid permeases require TGN-localised clathrin adaptors for maximal delivery to the vacuole. Furthermore, these permeases are actively sorted to the vacuole, because ectopically forced de-ubiquitination at the TGN results in the recycling of the Tat1 permase in starved cells. Finally, we report that the Mup1 permease requires the clathrin adaptor Gga2 for vacuolar delivery. In contrast, the clathrin adaptor protein complex AP-1 plays a minor role, potentially in retaining permeases in the TGN, but it is otherwise dispensable for vacuolar delivery. CONCLUSIONS AND SIGNIFICANCE This work elucidates one membrane trafficking pathway needed for yeast to respond to acute glucose starvation. It also reveals the functions of TGNlocalised clathrin adaptors in this process. Our results indicate that the same machinery is needed for vacuolar protein sorting at the GN in glucose starved cells as is needed in the presence of glucose. In addition, our findings provide further support for the model that the TGN is a transit point for many endocytosed proteins, and that Gga2 and AP-1 function in distinct pathways at the TGN.
Collapse
Affiliation(s)
- Destiney Buelto
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chao-Wei Hung
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quyen L Aoh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sagar Lahiri
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
Function and Regulation of Fungal Amino Acid Transporters: Insights from Predicted Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:69-106. [PMID: 26721271 DOI: 10.1007/978-3-319-25304-6_4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amino acids constitute a major nutritional source for probably all fungi. Studies of model species such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans have shown that they possess multiple amino acid transporters. These proteins belong to a limited number of superfamilies, now defined according to protein fold in addition to sequence criteria, and differ in subcellular location, substrate specificity range, and regulation. Structural models of several of these transporters have recently been built, and the detailed molecular mechanisms of amino acid recognition and translocation are now being unveiled. Furthermore, the particular conformations adopted by some of these transporters in response to amino acid binding appear crucial to promoting their ubiquitin-dependent endocytosis and/or to triggering signaling responses. We here summarize current knowledge, derived mainly from studies on S. cerevisiae and A. nidulans, about the transport activities, regulation, and sensing role of fungal amino acid transporters, in relation to predicted structure.
Collapse
|
5
|
Košík I, Práznovská M, Košíková M, Bobišová Z, Hollý J, Varečková E, Kostolanský F, Russ G. The ubiquitination of the influenza A virus PB1-F2 protein is crucial for its biological function. PLoS One 2015; 10:e0118477. [PMID: 25866881 PMCID: PMC4395099 DOI: 10.1371/journal.pone.0118477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/18/2015] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to identify what influences the short half-life of the influenza A virus PB1-F2 protein and whether a prolonged half-life affects the properties of this molecule. We hypothesized that the short half-life of PB1-F2 could conceal the phenotype of the protein. Because proteasome degradation might be involved in PB1-F2 degradation, we focused on ubiquitination, a common label for proteasome targeting. A cluster of lysine residues was demonstrated as an ubiquitination acceptor site in evolutionary and functionally distinct proteins. The PB1-F2 sequence alignment revealed a cluster of lysines on the carboxy terminal end of PB1-F2 in almost all of the GenBank sequences available to date. Using a proximity ligation assay, we identified ubiquitination as a novel posttranslational modification of PB1-F2. Changing the lysines at positions 73, 78, and 85 to arginines suppressed the ubiquitination of A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. The mutation of the C-terminal lysine residue cluster positively affected the overall expression levels of avian A/Honk Kong/156/1997 (H5N1)- and mammalian A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. Moreover, increased PB1-F2 copy numbers strengthened the functions of this virus in the infected cells. The results of a minigenome luciferase reporter assay revealed an enhancement of viral RNA-dependent RNA polymerase activity in the presence of stabilized PB1-F2, regardless of viral origin. IFNβ antagonism was enhanced in 293T cells transfected with a plasmid expressing stabilized K→R mutant variants of PB1-F2. Compared with PB1-F2 wt, the loss of ubiquitination enhanced the antibody response after DNA vaccination. In summary, we revealed that PB1-F2 is an ubiquitinated IAV protein, and this posttranslational modification plays a central role in the regulation of the biological functions of this protein.
Collapse
Affiliation(s)
- Ivan Košík
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
- * E-mail:
| | - Margaréta Práznovská
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Martina Košíková
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Zuzana Bobišová
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Jaroslav Hollý
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Eva Varečková
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - František Kostolanský
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Gustáv Russ
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| |
Collapse
|
6
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
7
|
Kolb AR, Needham PG, Rothenberg C, Guerriero CJ, Welling PA, Brodsky JL. ESCRT regulates surface expression of the Kir2.1 potassium channel. Mol Biol Cell 2013; 25:276-89. [PMID: 24227888 PMCID: PMC3890348 DOI: 10.1091/mbc.e13-07-0394] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Kir2.1 potassium channel is targeted by endoplasmic reticulum–associated degradation in yeast. To identify other Kir2.1 quality control factors, a novel yeast screen was performed. ESCRT components were among the strongest hits from the screen. Consistent with these data, ESCRT also regulates Kir2.1 stability in human cells. Protein quality control (PQC) is required to ensure cellular health. PQC is recognized for targeting the destruction of defective polypeptides, whereas regulated protein degradation mechanisms modulate the concentration of specific proteins in concert with physiological demands. For example, ion channel levels are physiologically regulated within tight limits, but a system-wide approach to define which degradative systems are involved is lacking. We focus on the Kir2.1 potassium channel because altered Kir2.1 levels lead to human disease and Kir2.1 restores growth on low-potassium medium in yeast mutated for endogenous potassium channels. Using this system, first we find that Kir2.1 is targeted for endoplasmic reticulum–associated degradation (ERAD). Next a synthetic gene array identifies nonessential genes that negatively regulate Kir2.1. The most prominent gene family that emerges from this effort encodes members of endosomal sorting complex required for transport (ESCRT). ERAD and ESCRT also mediate Kir2.1 degradation in human cells, with ESCRT playing a more prominent role. Thus multiple proteolytic pathways control Kir2.1 levels at the plasma membrane.
Collapse
Affiliation(s)
- Alexander R Kolb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15261 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | | | | | | |
Collapse
|
8
|
Fernández-Murray JP, Ngo MH, McMaster CR. Choline transport activity regulates phosphatidylcholine synthesis through choline transporter Hnm1 stability. J Biol Chem 2013; 288:36106-15. [PMID: 24187140 DOI: 10.1074/jbc.m113.499855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis.
Collapse
Affiliation(s)
- J Pedro Fernández-Murray
- From the Department of Pharmacology, Atlantic Research Centre, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
9
|
Abstract
All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.
Collapse
|
10
|
De M, Abazeed ME, Fuller RS. Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation. Mol Biol Cell 2013; 24:495-509. [PMID: 23408788 PMCID: PMC3571872 DOI: 10.1091/mbc.e12-11-0843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The VHS domains of yeast Gga1p and Gga2p bind sites (GBSs) in the Kex2p and Vps10p cytosolic tails. Phosphorylation of Ser-780 in the Kex2p GBS enhances Kex2p transport from the TGN to the PVC and is induced by cell wall damage. Kex2p GBS function is shown by direct binding, cell-free transport, and in vivo assays for Kex2 localization. Human Golgi-localized, γ-ear–containing, ADP-ribosylation factor–binding proteins (Ggas) bind directly to acidic dileucine sorting motifs in the cytosolic tails (C-tails) of intracellular receptors. Despite evidence for a role in recruiting ubiquitinated cargo, it remains unclear whether yeast Ggas also function by binding peptide-sorting signals directly. Two-hybrid analysis shows that the Gga1p and Gga2p Vps27, Hrs, Stam (VHS) domains both bind a site in the Kex2p C-tail and that the Gga2p VHS domain binds a site in the Vps10p C-tail. Binding requires deletion of an apparently autoinhibitory sequence in the Gga2p hinge. Ser780 in the Kex2p C-tail is crucial for binding: an Ala substitution blocks but an Asp substitution permits binding. Biochemical assays using purified Gga2p VHS–GGA and TOM1 (GAT) and glutathione S-transferase–Kex2p C-tail fusions show that Gga2p binds directly to the Kex2p C-tail, with relative affinities Asp780 > Ser780 > Ala780. Affinity-purified antibody against a peptide containing phospho-Ser780 recognizes wild-type Kex2p but not S780A Kex2p, showing that Ser780 is phosphorylated in vivo; phosphorylation of Ser780 is up-regulated by cell wall–damaging drugs. Finally, mutation of Ser780 alters trafficking of Kex2p both in vivo and in cell-free trans-Golgi network (TGN)–prevacuolar compartment (PVC) transport. Thus yeast Gga adaptors facilitate TGN–PVC transport by direct binding of noncanonical phosphoregulated Gga-binding sites in cargo molecules.
Collapse
Affiliation(s)
- Mithu De
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
11
|
Tanno H, Komada M. The ubiquitin code and its decoding machinery in the endocytic pathway. J Biochem 2013; 153:497-504. [PMID: 23564907 DOI: 10.1093/jb/mvt028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The level of individual plasma membrane proteins needs to be regulated strictly depending on the situation under which the cell is placed. To reduce the level of a specific plasma membrane protein in a short period, cells internalize the protein from the cell surface by endocytosis and degrade it in the lysosome. Internalized cargo proteins are transported to the limiting membrane of the early endosome, from which they are incorporated into the lumenal vesicles of the endosome. Such endosomes, called the late endosome or multivesicular body, fuse with the lysosome, thereby delivering cargo proteins to the lysosomal lumen and exposing them to acid hydrolases. During this lysosomal trafficking process, ubiquitination serves as a signal that drives internalization and endosome-to-lysosome transport of the cargo proteins. In this review, we discuss the types of ubiquitination that drive these trafficking processes, and how the ubiquitin (Ub) modifications are recognized by specific Ub-binding proteins.
Collapse
Affiliation(s)
- Hidetaka Tanno
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | |
Collapse
|
12
|
De M, Abazeed ME, Fuller RS. Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation. Mol Biol Cell 2013. [DOI: 10.1091/mbc.e12-04-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human Golgi-localized, γ-ear–containing, ADP-ribosylation factor–binding proteins (Ggas) bind directly to acidic dileucine sorting motifs in the cytosolic tails (C-tails) of intracellular receptors. Despite evidence for a role in recruiting ubiquitinated cargo, it remains unclear whether yeast Ggas also function by binding peptide-sorting signals directly. Two-hybrid analysis shows that the Gga1p and Gga2p Vps27, Hrs, Stam (VHS) domains both bind a site in the Kex2p C-tail and that the Gga2p VHS domain binds a site in the Vps10p C-tail. Binding requires deletion of an apparently autoinhibitory sequence in the Gga2p hinge. Ser780in the Kex2p C-tail is crucial for binding: an Ala substitution blocks but an Asp substitution permits binding. Biochemical assays using purified Gga2p VHS–GGA and TOM1 (GAT) and glutathione S-transferase–Kex2p C-tail fusions show that Gga2p binds directly to the Kex2p C-tail, with relative affinities Asp780> Ser780> Ala780. Affinity-purified antibody against a peptide containing phospho-Ser780recognizes wild-type Kex2p but not S780A Kex2p, showing that Ser780is phosphorylated in vivo; phosphorylation of Ser780is up-regulated by cell wall–damaging drugs. Finally, mutation of Ser780alters trafficking of Kex2p both in vivo and in cell-free trans-Golgi network (TGN)–prevacuolar compartment (PVC) transport. Thus yeast Gga adaptors facilitate TGN–PVC transport by direct binding of noncanonical phosphoregulated Gga-binding sites in cargo molecules.
Collapse
Affiliation(s)
- Mithu De
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed E. Abazeed
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Robert S. Fuller
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Aoh QL, Hung CW, Duncan MC. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell 2013; 24:832-47. [PMID: 23345590 PMCID: PMC3596253 DOI: 10.1091/mbc.e12-10-0750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glucose is a master regulator of cell behavior in the yeast Saccharomyces cerevisiae. It acts as both a metabolic substrate and a potent regulator of intracellular signaling cascades. Glucose starvation induces the transient delocalization and then partial relocalization of clathrin adaptors at the trans-Golgi network and endosomes. Although these localization responses are known to depend on the protein kinase A (PKA) signaling pathway, the molecular mechanism of this regulation is unknown. Here we demonstrate that PKA and the AMP-regulated kinase regulate adaptor localization through changes in energy metabolism. We show that genetic and chemical manipulation of intracellular ATP levels cause corresponding changes in adaptor localization. In permeabilized cells, exogenous ATP is sufficient to induce adaptor localization. Furthermore, we reveal distinct energy-dependent steps in adaptor localization: a step that requires the ADP-ribosylation factor ARF, an ATP-dependent step that requires the phosphatidyl-inositol-4 kinase Pik1, and third ATP-dependent step for which we provide evidence but for which the mechanism is unknown. We propose that these energy-dependent mechanisms precisely synchronize membrane traffic with overall proliferation rates and contribute a crucial aspect of energy conservation during acute glucose starvation.
Collapse
Affiliation(s)
- Quyen L Aoh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
14
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
15
|
From networks of protein interactions to networks of functional dependencies. BMC SYSTEMS BIOLOGY 2012; 6:44. [PMID: 22607727 PMCID: PMC3434018 DOI: 10.1186/1752-0509-6-44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/20/2012] [Indexed: 11/23/2022]
Abstract
Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation). However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins) might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations), based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud) or biological processes (e.g., cell budding) of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.
Collapse
|
16
|
Erpapazoglou Z, Dhaoui M, Pantazopoulou M, Giordano F, Mari M, Léon S, Raposo G, Reggiori F, Haguenauer-Tsapis R. A dual role for K63-linked ubiquitin chains in multivesicular body biogenesis and cargo sorting. Mol Biol Cell 2012; 23:2170-83. [PMID: 22493318 PMCID: PMC3364180 DOI: 10.1091/mbc.e11-10-0891] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In yeast, the sorting of transmembrane proteins into the multivesicular body (MVB) internal vesicles requires their ubiquitylation by the ubiquitin ligase Rsp5. This allows their recognition by the ubiquitin-binding domains (UBDs) of several endosomal sorting complex required for transport (ESCRT) subunits. K63-linked ubiquitin (K63Ub) chains decorate several MVB cargoes, and accordingly we show that they localize prominently to the class E compartment, which accumulates ubiquitylated cargoes in cells lacking ESCRT components. Conversely, yeast cells unable to generate K63Ub chains displayed MVB sorting defects. These properties are conserved among eukaryotes, as the mammalian melanosomal MVB cargo MART-1 is modified by K63Ub chains and partly missorted when the genesis of these chains is inhibited. We show that all yeast UBD-containing ESCRT proteins undergo ubiquitylation and deubiquitylation, some being modified through the opposing activities of Rsp5 and the ubiquitin isopeptidase Ubp2, which are known to assemble and disassemble preferentially K63Ub chains, respectively. A failure to generate K63Ub chains in yeast leads to an MVB ultrastructure alteration. Our work thus unravels a double function of K63Ub chains in cargo sorting and MVB biogenesis.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7592, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
From the moment of cotranslational insertion into the lipid bilayer of the endoplasmic reticulum (ER), newly synthesized integral membrane proteins are subject to a complex series of sorting, trafficking, quality control, and quality maintenance systems. Many of these processes are intimately controlled by ubiquitination, a posttranslational modification that directs trafficking decisions related to both the biosynthetic delivery of proteins to the plasma membrane (PM) via the secretory pathway and the removal of proteins from the PM via the endocytic pathway. Ubiquitin modification of integral membrane proteins (or "cargoes") generally acts as a sorting signal, which is recognized, captured, and delivered to a specific cellular destination via specialized trafficking events. By affecting the quality, quantity, and localization of integral membrane proteins in the cell, defects in these processes contribute to human diseases, including cystic fibrosis, circulatory diseases, and various neuropathies. This review summarizes our current understanding of how ubiquitin modification influences cargo trafficking, with a special emphasis on mechanisms of quality control and quality maintenance in the secretory and endocytic pathways.
Collapse
Affiliation(s)
- Jason A MacGurn
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
18
|
Iron influences the abundance of the iron regulatory protein Cir1 in the fungal pathogen Cryptococcus neoformans. FEBS Lett 2011; 585:3342-7. [PMID: 21963719 DOI: 10.1016/j.febslet.2011.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 01/05/2023]
Abstract
The GATA-type, zinc-finger protein Cir1 regulates iron uptake, iron homeostasis and virulence factor expression in the fungal pathogen Cryptococcus neoformans. The mechanisms by which Cir1 senses iron availability, although as yet undefined, are important for understanding the proliferation of the fungus in mammalian hosts. We investigated the influence of iron availability on Cir1 and found that the abundance of the protein decreases upon iron deprivation. This destabilization was influenced by reducing conditions and by inhibition of proteasome function. The combined data suggest a post-translational mechanism for the control of Cir1 abundance in response to iron and redox status.
Collapse
|
19
|
Guo Y, Au WC, Shakoury-Elizeh M, Protchenko O, Basrai M, Prinz WA, Philpott CC. Phosphatidylserine is involved in the ferrichrome-induced plasma membrane trafficking of Arn1 in Saccharomyces cerevisiae. J Biol Chem 2010; 285:39564-73. [PMID: 20923770 DOI: 10.1074/jbc.m110.177055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arn1 is an integral membrane protein that mediates the uptake of ferrichrome, an important nutritional source of iron, in Saccharomyces cerevisiae. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network to the vacuolar lumen for degradation. In the presence of low levels of ferrichrome, the siderophore binds to a receptor domain on Arn1, triggering the redistribution of Arn1 to the plasma membrane. When extracellular ferrichrome levels are high, Arn1 cycles between the plasma membrane and intracellular vesicles. To further understand the mechanisms of trafficking of Arn1p, we screened 4580 viable yeast deletion mutants for mislocalization of Arn1-GFP using synthetic genetic array technology. We identified over 100 genes required for trans-Golgi network-to-vacuole trafficking of Arn1-GFP and only two genes, SER1 and SER2, required for the ferrichrome-induced plasma membrane trafficking of Arn1-GFP. SER1 and SER2 encode two enzymes of the major serine biosynthetic pathway, and the Arn1 trafficking defect in the ser1Δ strain was corrected with supplemental serine or glycine. Plasma membrane trafficking of Hxt3, a structurally related glucose transporter, was unaffected by SER1 deletion. Serine is required for the synthesis of multiple cellular components, including purines, sphingolipids, and phospholipids, but of these only phosphatidylserine corrected the Arn1 trafficking defects of the ser1Δ strain. Strains with defects in phospholipid synthesis also exhibited alterations in Arn1p trafficking, indicating that the intracellular trafficking of some transporters is dependent on the phospholipid composition of the cellular membranes.
Collapse
Affiliation(s)
- Yan Guo
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1800, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Lauwers E, Erpapazoglou Z, Haguenauer-Tsapis R, André B. The ubiquitin code of yeast permease trafficking. Trends Cell Biol 2010; 20:196-204. [PMID: 20138522 DOI: 10.1016/j.tcb.2010.01.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/24/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022]
Abstract
Yeast permeases, that act as transporters for nutrients including amino acids, nucleobases and metals, provide a powerful model system for dissecting the physiological control of membrane protein trafficking. Modification of these transporters by ubiquitin is known to target them for degradation in the vacuole, the degradation organelle of fungi. Recent studies have uncovered the role of specific adaptors for recruiting the Rsp5 ubiquitin ligase to these proteins. In addition, the role of ubiquitin at different trafficking steps including early endocytosis, sorting into the multivesicular body (MVB) pathway and Golgi-to-endosome transit is now becoming clear. In particular, K63-linked ubiquitin chains now emerge as a specific signal for protein sorting into the MVB pathway. A complete view of the ubiquitin code governing yeast permease trafficking might not be far off.
Collapse
Affiliation(s)
- Elsa Lauwers
- Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | | |
Collapse
|
21
|
Gournas C, Amillis S, Vlanti A, Diallinas G. Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Mol Microbiol 2010; 75:246-60. [DOI: 10.1111/j.1365-2958.2009.06997.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
A novel function of Aft1 in regulating ferrioxamine B uptake: Aft1 modulates Arn3 ubiquitination in Saccharomyces cerevisiae. Biochem J 2009; 422:181-91. [PMID: 19469713 DOI: 10.1042/bj20082399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aft1 is a transcriptional activator in Saccharomyces cerevisiae that responds to iron availability and regulates the expression of genes in the iron regulon, such as FET3, FTR1 and the ARN family. Using a two-hybrid screen, we found that Aft1 physically interacts with the FOB (ferrioxamine B) transporter Arn3. This interaction modulates the ability of Arn3 to take up FOB. The interaction between Arn3 and Aft1 was confirmed by beta-galactosidase, co-immunoprecipitation and SPR (surface plasmon resonance) assays. Truncated Aft1 had a stronger interaction with Arn3 and caused a higher FOB-uptake activity than full-length Aft1. Interestingly, only full-length Aft1 induced the correct localization of Arn3 in response to FOB. Furthermore, we found Aft1 affected Arn3 ubiquitination. These results suggest that Aft1 interacts with Arn3 and may regulate the ubiquitination of Arn3 in the cytosolic compartment.
Collapse
|
23
|
Deng Y, Guo Y, Watson H, Au WC, Shakoury-Elizeh M, Basrai MA, Bonifacino JS, Philpott CC. Gga2 mediates sequential ubiquitin-independent and ubiquitin-dependent steps in the trafficking of ARN1 from the trans-Golgi network to the vacuole. J Biol Chem 2009; 284:23830-41. [PMID: 19574226 DOI: 10.1074/jbc.m109.030015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but it was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino-terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body and that the first step can occur without ubiquitin binding.
Collapse
Affiliation(s)
- Yi Deng
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Paiva S, Vieira N, Nondier I, Haguenauer-Tsapis R, Casal M, Urban-Grimal D. Glucose-induced ubiquitylation and endocytosis of the yeast Jen1 transporter: role of lysine 63-linked ubiquitin chains. J Biol Chem 2009; 284:19228-36. [PMID: 19433580 DOI: 10.1074/jbc.m109.008318] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein ubiquitylation is essential for many events linked to intracellular protein trafficking. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitylation remain largely unknown. Plasma membrane transporters are subjected to tightly regulated endocytosis, and ubiquitylation is a key signal at several stages of the endocytic pathway. The yeast monocarboxylate transporter Jen1 displays glucose-regulated endocytosis. We show here that casein kinase 1-dependent phosphorylation and HECT-ubiquitin ligase Rsp5-dependent ubiquitylation are required for Jen1 endocytosis. Ubiquitylation and endocytosis of Jen1 are induced within minutes in response to glucose addition. Jen1 is modified at the cell surface by oligo-ubiquitylation with ubiquitin-Lys(63) linked chain(s), and Jen1-Lys(338) is one of the target residues. Ubiquitin-Lys(63)-linked chain(s) are also required directly or indirectly to sort Jen1 into multivesicular bodies. Jen1 is one of the few examples for which ubiquitin-Lys(63)-linked chain(s) was shown to be required for correct trafficking at two stages of endocytosis: endocytic internalization and sorting at multivesicular bodies.
Collapse
Affiliation(s)
- Sandra Paiva
- Department of Biology, Molecular and Environmental Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
25
|
Lauwers E, Jacob C, André B. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. ACTA ACUST UNITED AC 2009; 185:493-502. [PMID: 19398763 PMCID: PMC2700384 DOI: 10.1083/jcb.200810114] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A growing number of yeast and mammalian plasma membrane proteins are reported to be modified with K63-linked ubiquitin (Ub) chains. However, the relative importance of this modification versus monoubiquitylation in endocytosis, Golgi to endosome traffic, and sorting into the multivesicular body (MVB) pathway remains unclear. In this study, we show that K63-linked ubiquitylation of the Gap1 permease is essential for its entry into the MVB pathway. Carboxypeptidase S also requires modification with a K63-Ub chain for correct MVB sorting. In contrast, monoubiquitylation of a single target lysine of Gap1 is a sufficient signal for its internalization from the cell surface, and Golgi to endosome transport of the permease requires neither its ubiquitylation nor the Ub-binding GAT (Gga and Tom1) domain of Gga (Golgi localizing, gamma-ear containing, ARF binding) adapter proteins, the latter being crucial for subsequent MVB sorting of the permease. Our data reveal that K63-linked Ub chains act as a specific signal for MVB sorting, providing further insight into the Ub code of membrane protein trafficking.
Collapse
Affiliation(s)
- Elsa Lauwers
- Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|
26
|
Dual sorting of the Saccharomyces cerevisiae vacuolar protein Sna4p. EUKARYOTIC CELL 2009; 8:278-86. [PMID: 19168755 DOI: 10.1128/ec.00363-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sna4p, a vacuolar membrane protein, belongs to a small family of proteins conserved in plants and fungi. It is transported to the vacuolar membrane via the alkaline phosphatase (ALP) pathway, which bypasses the multivesicular bodies (MVBs). Here, we show that transfer of Sna4p by the ALP route involves the AP-3 adaptor protein complex, which binds to an acidic dileucine sorting signal in the cytoplasmic region of Sna4p. In addition, Sna4p can use the MVB pathway by using a PPPY motif, which is involved in the interaction with ubiquitin ligase Rsp5p. Deletion or mutation of the Sna4p PPPY motif or a low level of Rsp5p inhibits the entrance of Sna4p into MVBs. Sna4p is polyubiquitylated on its only lysine, and Sna4p lacking this lysine shows defective MVB sorting. These data indicate that Sna4p has two functional motifs, one for interaction with the AP-3 complex, followed by entry into the ALP pathway, and one for binding Rsp5p, which directs the protein to the MVB pathway. The presence of these two motifs allows Sna4p to localize to both the vacuolar membrane and the lumen.
Collapse
|
27
|
Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem Soc Trans 2008; 36:791-6. [PMID: 18793138 DOI: 10.1042/bst0360791] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ubiquitin ligase (E3) Rsp5p is the only member of the Nedd (neural-precursor-cell-expressed, developmentally down-regulated) 4 family of E3s present in yeast. Rsp5p has several proteasome-independent functions in membrane protein trafficking, including a role in the ubiquitination of most plasma membrane proteins, leading to their endocytosis. Rsp5p is also required for the ubiquitination of endosomal proteins, leading to their sorting to the internal vesicles of MVBs (multivesicular bodies). Rsp5p catalyses the attachment of non-conventional ubiquitin chains, linked through ubiquitin Lys-63, to some endocytic and MVB cargoes. This modification appears to be required for efficient sorting, possibly because these chains have a greater affinity for the ubiquitin-binding domains present within endocytic or MVB sorting complexes. The mechanisms involved in the recognition of plasma membrane and MVB substrates by Rsp5p remain unclear. A subset of Rsp5/Nedd4 substrates have a 'PY motif' and are recognized directly by the WW (Trp-Trp) domains of Rsp5p. Most Rsp5p substrates do not carry PY motifs, but some may depend on PY-containing proteins for their ubiquitination by Rsp5p, consistent with the latter's acting as specificity factors or adaptors. As in other ubiquitin-conjugating systems, these adaptors are also Rsp5p substrates and undergo ubiquitin-dependent trafficking. In the present review, we discuss recent examples illustrating the role of Rsp5p in membrane protein trafficking and providing new insights into the regulation of this E3 by adaptor proteins.
Collapse
|
28
|
Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touzé N. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 2008; 9:1372-91. [PMID: 18489705 DOI: 10.1111/j.1600-0854.2008.00766.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic plasma membrane transporters are subjected to a tightly regulated intracellular trafficking. The yeast siderophore iron transporter1 (Sit1) displays substrate-regulated trafficking. It is targeted to the plasma membrane or to a vacuolar degradative pathway when synthesized in the presence or absence of external substrate, respectively. Sorting of Sit1 to the vacuolar pathway is dependent on the clathrin adaptor Gga2, and more specifically on its C-GAT subdomain. Plasma membrane undergoes substrate-induced ubiquitylation dependent on the Rsp5 ubiquitin protein ligase. Sit1 is also ubiquitylated in an Rsp5-dependent manner in internal compartments when expressed in the absence of substrate. In several rsp5 mutants including cells deleted for RSP5, Sit1 expressed in the absence of substrate is correctly targeted to the endosomal pathway but its sorting to multivesicular bodies (MVBs) is impaired. Consequently, it displays endosome to plasma membrane targeting, with kinetics similar to those observed in vps mutants defective for MVB sorting. Plasma membrane Sit1 is modified by Lys63-linked ubiquitin chains. We also show for the first time in yeast that modification by this latter type of ubiquitin chains is required directly or indirectly for efficient MVB sorting, as it is for efficient internalization at the plasma membrane.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Département de Biologie Cellulaire, Laboratoire Trafic Intracellulaire des Protéines dans la Levure, Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 6 et 7, 75251 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
29
|
Philpott CC, Protchenko O. Response to iron deprivation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:20-7. [PMID: 17993568 PMCID: PMC2224162 DOI: 10.1128/ec.00354-07] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Caroline C Philpott
- Liver Diseases Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9B-16, 10 Center Drive, MSC 1800, Bethesda, MD 20892-1800, USA.
| | | |
Collapse
|
30
|
Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:149-87. [PMID: 18680426 DOI: 10.1146/annurev.phyto.45.062806.094338] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Maintaining the appropriate balance of iron between deficiency and toxicity requires fine-tuned control of systems for iron uptake and storage. Both among fungal species and within a single species, different systems for acquisition, storage, and regulation of iron are present. Here we discuss the most recent findings on the mechanisms involved in maintaining iron homeostasis with a focus on siderophores, low-molecular-mass iron chelators, employed for iron uptake and storage. Recently siderophores have been found to be crucial for pathogenicity of animal, as well as plant-pathogenic fungi and for maintenance of plant-fungal symbioses.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
31
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Johnson L. Iron and siderophores in fungal-host interactions. ACTA ACUST UNITED AC 2007; 112:170-83. [PMID: 18280720 DOI: 10.1016/j.mycres.2007.11.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/13/2007] [Accepted: 11/29/2007] [Indexed: 12/20/2022]
Abstract
Most fungi and bacteria express specific mechanisms for the acquisition of iron from the hosts they infect for their own survival. This is primarily because iron plays a key catalytic role in various vital cellular reactions in conjunction with the fact that iron is not freely available in these environments due to host sequestration. High-affinity iron uptake systems, such as siderophore-mediated iron uptake and reductive iron assimilation, enable fungi to acquire limited iron from animal or plant hosts. Regulating iron uptake is crucial to maintain iron homeostasis, a state necessary to avoid iron-induced toxicity from iron abundance, while simultaneously supplying iron required for biochemical demand. Siderophores play diverse roles in fungal-host interactions, many of which have been principally delineated from gene deletions in non-ribosomal peptide synthetases, enzymes required for siderophore biosynthesis. These analyses have demonstrated that siderophores are required for virulence, resistance to oxidative stress, asexual/sexual development, iron storage, and protection against iron-induced toxicity in some fungal organisms. In this review, the strategies fungi employ to obtain iron, siderophore biosynthesis, and the regulatory mechanisms governing iron homeostasis will be discussed with an emphasis on siderophore function and relevance for fungal organisms in their interactions with their hosts.
Collapse
Affiliation(s)
- Linda Johnson
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand.
| |
Collapse
|
33
|
Froissard M, Belgareh-Touzé N, Dias M, Buisson N, Camadro JM, Haguenauer-Tsapis R, Lesuisse E. Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates. Traffic 2007; 8:1601-16. [PMID: 17714436 PMCID: PMC2171038 DOI: 10.1111/j.1600-0854.2007.00627.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.
Collapse
Affiliation(s)
- Marine Froissard
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Naïma Belgareh-Touzé
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Marylène Dias
- Chimie, Ingénierie Moléculaire et Matériaux d’Angers (CIMMA)Unité Mixte de Recherche 6200 CNRS, Université d’Angers, France
| | - Nicole Buisson
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Jean-Michel Camadro
- Laboratoire d’Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Rosine Haguenauer-Tsapis
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Emmanuel Lesuisse
- Laboratoire d’Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
- Emmanuel Lesuisse,
| |
Collapse
|
34
|
Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H, Bonifacino JS, Yin HL. PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell 2007; 18:2646-55. [PMID: 17494868 PMCID: PMC1924815 DOI: 10.1091/mbc.e06-10-0897] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4 phosphate (PI4P) is highly enriched in the trans-Golgi network (TGN). Here we establish that PI4P is a key regulator of the recruitment of the GGA clathrin adaptor proteins to the TGN and that PI4P has a novel role in promoting their recognition of the ubiquitin (Ub) sorting signal. Knockdown of PI4KIIalpha by RNA interference (RNAi), which depletes the TGN's PI4P, impaired the recruitment of the GGAs to the TGN. GGAs bind PI4P primarily through their GAT domain, in a region called C-GAT, which also binds Ub but not Arf1. We identified two basic residues in the GAT domain that are essential for PI4P binding in vitro and for the recruitment of GGAs to the TGN in vivo. Unlike wild-type GGA, GGA with mutated GATs failed to rescue the abnormal TGN phenotype of the GGA RNAi-depleted cells. These residues partially overlap with those that bind Ub, and PI4P increased the affinity of the GAT domain for Ub. Because the recruitment of clathrin adaptors and their cargoes to the TGN is mediated through a web of low-affinity interactions, our results show that the dual roles of PI4P can promote specific GGA targeting and cargo recognition at the TGN.
Collapse
Affiliation(s)
- Jing Wang
- *Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Hui-Qiao Sun
- *Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Eric Macia
- Department of Cell Biology and Center for Blood Research Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115; and
| | - Tomas Kirchhausen
- Department of Cell Biology and Center for Blood Research Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115; and
| | - Hadiya Watson
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Helen L. Yin
- *Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| |
Collapse
|