1
|
Parra AS, Johnston CA. The RNA-binding protein Modulo promotes neural stem cell maintenance in Drosophila. PLoS One 2024; 19:e0309221. [PMID: 39700092 DOI: 10.1371/journal.pone.0309221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 12/21/2024] Open
Abstract
A small population of stem cells in the developing Drosophila central nervous system generates the large number of different cell types that make up the adult brain. To achieve this, these neural stem cells (neuroblasts, NBs) divide asymmetrically to produce non-identical daughter cells. The balance between stem cell self-renewal and neural differentiation is regulated by various cellular machinery, including transcription factors, chromatin remodelers, and RNA-binding proteins. The list of these components remains incomplete, and the mechanisms regulating their function are not fully understood, however. Here, we identify a role for the RNA-binding protein Modulo (Mod; nucleolin in humans) in NB maintenance. We employ transcriptomic analyses to identify RNA targets of Mod and assess changes in global gene expression following its knockdown, results of which suggest a link with notable proneural genes and those essential for neurogenesis. Mod is expressed in larval brains and its loss leads to a significant decrease in the number of central brain NBs. Stem cells that remain lack expression of key NB identity factors and exhibit cell proliferation defects. Mechanistically, our analysis suggests these deficiencies arise at least in part from altered cell cycle progression, with a proportion of NBs arresting prior to mitosis. Overall, our data show that Mod function is essential for neural stem cell maintenance during neurogenesis.
Collapse
Affiliation(s)
- Amalia S Parra
- Department of Biology, U.S Department of Energy, (DOE), Oakridge Institute for Science and Education, (ORISE), Office of the Director of National Intelligence, (ODNI), University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Christopher A Johnston
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
2
|
Isaacson JR, Berg MD, Charles B, Jagiello J, Villén J, Brandl CJ, Moehring AJ. A novel mistranslating tRNA model in Drosophila melanogaster has diverse, sexually dimorphic effects. G3 GENES|GENOMES|GENETICS 2022; 12:6526391. [PMID: 35143655 PMCID: PMC9073681 DOI: 10.1093/g3journal/jkac035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms. Here, we create a multicellular model of mistranslation by integrating a serine transfer RNA variant that mistranslates serine for proline (tRNAUGG,G26ASer) into the Drosophila melanogaster genome. We confirm mistranslation via mass spectrometry and find that tRNAUGG,G26ASer misincorporates serine for proline at a frequency of ∼0.6% per codon. tRNAUGG,G26ASer extends development time and decreases the number of flies that reach adulthood. While both sexes of adult flies containing tRNAUGG,G26ASer present with morphological deformities and poor climbing performance, these effects are more pronounced in female flies and the impact on climbing performance is exacerbated by age. This model will enable studies into the synergistic effects of mistranslating transfer RNA variants and disease-causing alleles.
Collapse
Affiliation(s)
- Joshua R Isaacson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brendan Charles
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jessica Jagiello
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Surya A, Sarinay-Cenik E. Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways. Open Biol 2022; 12:210308. [PMID: 35472285 PMCID: PMC9042575 DOI: 10.1098/rsob.210308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023] Open
Abstract
Translation machinery is responsible for the production of cellular proteins; thus, cells devote the majority of their resources to ribosome biogenesis and protein synthesis. Single-copy loss of function in the translation machinery components results in rare ribosomopathy disorders, such as Diamond-Blackfan anaemia in humans and similar developmental defects in various model organisms. Somatic copy number alterations of translation machinery components are also observed in specific tumours. The organism-wide response to haploinsufficient loss-of-function mutations in ribosomal proteins or translation machinery components is complex: variations in translation machinery lead to reduced ribosome biogenesis, protein translation and altered protein homeostasis and cellular signalling pathways. Cells are affected both autonomously and non-autonomously by changes in translation machinery or ribosome biogenesis through cell-cell interactions and secreted hormones. We first briefly introduce the model organisms where mutants or knockdowns of protein synthesis and ribosome biogenesis are characterized. Next, we specifically describe observations in Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein synthesis in a subset of cells triggers cell non-autonomous growth or apoptosis responses that affect nearby cells and tissues. We then cover the characterized signalling pathways that interact with ribosome biogenesis/protein synthesis machinery with an emphasis on their respective functions during organism development.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay-Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Drosophila to Explore Nucleolar Stress. Int J Mol Sci 2021; 22:ijms22136759. [PMID: 34201772 PMCID: PMC8267670 DOI: 10.3390/ijms22136759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/29/2023] Open
Abstract
Nucleolar stress occurs when ribosome production or function declines. Nucleolar stress in stem cells or progenitor cells often leads to disease states called ribosomopathies. Drosophila offers a robust system to explore how nucleolar stress causes cell cycle arrest, apoptosis, or autophagy depending on the cell type. We provide an overview of nucleolar stress in Drosophila by depleting nucleolar phosphoprotein of 140 kDa (Nopp140), a ribosome biogenesis factor (RBF) in nucleoli and Cajal bodies (CBs). The depletion of Nopp140 in eye imaginal disc cells generates eye deformities reminiscent of craniofacial deformities associated with the Treacher Collins syndrome (TCS), a human ribosomopathy. We show the activation of c-Jun N-terminal Kinase (JNK) in Drosophila larvae homozygous for a Nopp140 gene deletion. JNK is known to induce the expression of the pro-apoptotic Hid protein and autophagy factors Atg1, Atg18.1, and Atg8a; thus, JNK is a central regulator in Drosophila nucleolar stress. Ribosome abundance declines upon Nopp140 loss, but unusual cytoplasmic granules accumulate that resemble Processing (P) bodies based on marker proteins, Decapping Protein 1 (DCP1) and Maternal expression at 31B (Me31B). Wild type brain neuroblasts (NBs) express copious amounts of endogenous coilin, but coilin levels decline upon nucleolar stress in most NB types relative to the Mushroom body (MB) NBs. MB NBs exhibit resilience against nucleolar stress as they maintain normal coilin, Deadpan, and EdU labeling levels.
Collapse
|
5
|
Baral SS, Lieux ME, DiMario PJ. Nucleolar stress in Drosophila neuroblasts, a model for human ribosomopathies. Biol Open 2020; 9:bio046565. [PMID: 32184230 PMCID: PMC7197718 DOI: 10.1242/bio.046565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Different stem cells or progenitor cells display variable threshold requirements for functional ribosomes. This is particularly true for several human ribosomopathies in which select embryonic neural crest cells or adult bone marrow stem cells, but not others, show lethality due to failures in ribosome biogenesis or function (now known as nucleolar stress). To determine if various Drosophila neuroblasts display differential sensitivities to nucleolar stress, we used CRISPR-Cas9 to disrupt the Nopp140 gene that encodes two splice variant ribosome biogenesis factors (RBFs). Disruption of Nopp140 induced nucleolar stress that arrested larvae in the second instar stage. While the majority of larval neuroblasts arrested development, the mushroom body (MB) neuroblasts continued to proliferate as shown by their maintenance of deadpan, a neuroblast-specific transcription factor, and by their continued EdU incorporation. MB neuroblasts in wild-type larvae appeared to contain more fibrillarin and Nopp140 in their nucleoli as compared to other neuroblasts, indicating that MB neuroblasts stockpile RBFs as they proliferate in late embryogenesis while other neuroblasts normally enter quiescence. A greater abundance of Nopp140 encoded by maternal transcripts in Nopp140-/- MB neuroblasts of 1----2-day-old larvae likely rendered these cells more resilient to nucleolar stress.
Collapse
Affiliation(s)
- Sonu Shrestha Baral
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Molly E Lieux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick J DiMario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
The Nopp140 gene in Drosophila melanogaster displays length polymorphisms in its large repetitive second exon. Mol Genet Genomics 2019; 294:1073-1083. [PMID: 31006039 DOI: 10.1007/s00438-019-01568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Nopp140, often called the nucleolar and Cajal body phosphoprotein (NOLC1), is an evolutionarily conserved chaperone for the transcription and processing of rRNA during ribosome subunit assembly. Metazoan Nopp140 contains an amino terminal LisH dimerization domain and a highly conserved carboxyl domain. A large central domain consists of alternating basic and acidic motifs of low sequence complexity. Orthologous versions of Nopp140 contain variable numbers of repeating basic-acidic units. While vertebrate Nopp140 genes use multiple exons to encode the central domain, the Nopp140 gene in Drosophila uses exclusively exon 2 to encode the central domain. Here, we define three overlapping repeat sequence patterns (P, P', and P″) within the central domain of D. melanogaster Nopp140. These repeat patterns are poorly conserved in other Drosophila species. We also describe a length polymorphism in exon 2 that pertains specifically to the P' pattern in D. melanogaster. The pattern displays either two or three 96 base pair repeats, respectively, referred to as Nopp140-Short and Nopp140-Long. Fly lines homozygous for one or the other allele, or heterozygous for both alleles, show no discernible phenotypes. PCR characterization of the long and short alleles shows a poorly defined, artifactual bias toward amplifying the long allele over the short allele. The significance of this polymorphism will be in discerning the largely unknown properties of Nopp140's large central domain in rDNA transcription and ribosome biogenesis.
Collapse
|
7
|
Andreyeva EN, Ogienko AA, Yushkova AA, Popova JV, Pavlova GA, Kozhevnikova EN, Ivankin AV, Gatti M, Pindyurin AV. Non3 is an essential Drosophila gene required for proper nucleolus assembly. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nucleolus is a dynamic non-membrane-bound nuclear organelle, which plays key roles not only in ribosome biogenesis but also in many other cellular processes. Consistent with its multiple functions, the nucleolus has been implicated in many human diseases, including cancer and degenerative pathologies of the nervous system and heart. Here, we report the characterization of the Drosophila Non3 (Novel nucleolar protein 3) gene, which encodes a protein homologous to the human Brix domain-containing Rpf2 that has been shown to control ribosomal RNA (rRNA) processing. We used imprecise P-element excision to generate four new mutant alleles in the Non3 gene. Complementation and phenotypic analyses showed that these Non3 mutations can be arranged in an allelic series that includes both viable and lethal alleles. The strongest lethal allele (Non3∆600) is a genetically null allele that carries a large deletion of the gene and exhibits early lethality when homozygous. Flies heterozygous for Non3∆600 occasionally exhibit a mild reduction in the bristle size, but develop normally and are fertile. However, heteroallelic combinations of viable Non3 mutations (Non3197, Non3310 and Non3259) display a Minute-like phenotype, consisting in delayed development and short and thin bristles, suggesting that they are defective in ribosome biogenesis. We also demonstrate that the Non3 protein localizes to the nucleolus of larval brain cells and it is required for proper nucleolar localization of Fibrillarin, a protein important for post-translational modification and processing of rRNAs. In summary, we generated a number of genetic and biochemical tools that were exploited for an initial characterization of Non3, and will be instrumental for future functional studies on this gene and its protein product.
Collapse
Affiliation(s)
| | - A. A. Ogienko
- Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University
| | - A. A. Yushkova
- Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University
| | - J. V. Popova
- Institute of Molecular and Cellular Biology, SB RAS; Institute of Cytology and Genetics, SB RAS
| | | | - E. N. Kozhevnikova
- Institute of Molecular and Cellular Biology, SB RAS; Institute of Cytology and Genetics, SB RAS
| | | | - M. Gatti
- Institute of Molecular and Cellular Biology, SB RAS; IBPM CNR and Department of Biology and Biotechnology, Sapienza University of Rome
| | - A. V. Pindyurin
- Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University; Institute of Cytology and Genetics, SB RAS
| |
Collapse
|
8
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
9
|
Wang Y, DiMario P. Loss of Drosophila nucleostemin 2 (NS2) blocks nucleolar release of the 60S subunit leading to ribosome stress. Chromosoma 2016; 126:375-388. [PMID: 27150106 DOI: 10.1007/s00412-016-0597-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022]
Abstract
Four nucleostemin-like proteins (nucleostemin (NS) 1-4) were identified previously in Drosophila melanogaster. NS1 and NS2 are nucleolar proteins, while NS3 and NS4 are cytoplasmic proteins. We showed earlier that NS1 (homologous to human GNL3) enriches within the granular components (GCs) of Drosophila nucleoli and is required for efficient maturation or nucleolar release of the 60S subunit. Here, we show that NS2 is homologous to the human nucleostemin-like protein, Ngp1 (GNL2), and that endogenous NS2 is expressed in both progenitor and terminally differentiated cell types. Exogenous GFP-NS2 enriched within nucleolar GCs versus endogenous fibrillarin that marked the dense fibrillar components (DFCs). Like NS1, depletion of NS2 in midgut cells blocked the release of the 60S subunit as detected by the accumulation of GFP-RpL11 within nucleoli, and this likely led to the general loss of 60S subunits as shown by immunoblot analyses of RpL23a and RpL34. At the ultrastructural level, nucleoli in midgut cells depleted of NS2 displayed enlarged GCs not only on the nucleolar periphery but interspersed within the DFCs. Depletion of NS2 caused ribosome stress: larval midgut cells displayed prominent autophagy marked by the appearance of autolysosomes containing mCherry-ATG8a and the appearance of rough endoplasmic reticulum (rER)-derived isolation membranes. Larval imaginal wing disc cells depleted of NS2 induced apoptosis as marked by anti-caspase 3 labeling; loss of these progenitor cells resulted in defective adult wings. We conclude that nucleolar proteins NS1 and NS2 have similar but non-overlapping roles in the final maturation or nucleolar release of 60S ribosomal subunits.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803-1715, USA
| | - Patrick DiMario
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803-1715, USA.
| |
Collapse
|
10
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
11
|
Deletion of Drosophila Nopp140 induces subcellular ribosomopathies. Chromosoma 2014; 124:191-208. [PMID: 25384888 DOI: 10.1007/s00412-014-0490-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 01/18/2023]
Abstract
The nucleolar and Cajal body phosphoprotein of 140 kDa (Nopp140) is considered a ribosome assembly factor, but its precise functions remain unknown. To approach this problem, we deleted the Nopp140 gene in Drosophila using FLP-FRT recombination. Genomic PCR, reverse transcriptase-PCR (RT-PCR), and immunofluorescence microscopy confirmed the loss of Nopp140, its messenger RNA (mRNA), and protein products from all tissues examined. Nopp140-/- larvae arrested in the second instar stage and most died within 8 days. While nucleoli appeared intact in Nopp140-/- cells, the C/D small nucleolar ribonucleoprotein (snoRNP) methyltransferase, fibrillarin, redistributed to the nucleoplasm in variable amounts depending on the cell type; RT-PCRs showed that 2'-O-methylation of ribosomal RNA (rRNA) in Nopp140-/- cells was reduced at select sites within both the 18S and 28S rRNAs. Ultrastructural analysis showed that Nopp140-/- cells were deficient in cytoplasmic ribosomes, but instead contained abnormal electron-dense cytoplasmic granules. Immunoblot analysis showed a loss of RpL34, and metabolic labeling showed a significant drop in protein translation, supporting the loss of functional ribosomes. Northern blots showed that pre-RNA cleavage pathways were generally unaffected by the loss of Nopp140, but that R2 retrotransposons that naturally reside within the 28S region of normally silent heterochromatic Drosophila ribosomal DNA (rDNA) genes were selectively expressed in Nopp140-/- larvae. Unlike copia elements and the related R1 retrotransposon, R2 expression appeared to be preferentially dependent on the loss of Nopp140 and not on environmental stresses. We believe the phenotypes described here define novel intracellular ribosomopathies resulting from the loss of Nopp140.
Collapse
|
12
|
Lee CC, Tsai YT, Kao CW, Lee LW, Lai HJ, Ma TH, Chang YS, Yeh NH, Lo SJ. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans. Cell Death Dis 2014; 5:e1158. [PMID: 24722283 PMCID: PMC5424100 DOI: 10.1038/cddis.2014.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Human diseases of impaired ribosome biogenesis resulting from disruption of rRNA biosynthesis or loss of ribosomal components are collectively described as ‘ribosomopathies'. Treacher Collins syndrome (TCS), a representative human ribosomopathy with craniofacial abnormalities, is attributed to mutations in the tcof1 gene that has a homologous gene called nopp140. Previous studies demonstrated that the dao-5 (dauer and aged animal overexpression gene 5) of Caenorhabditis elegans is a member of nopp140 gene family and plays a role in nucleogenesis in the early embryo. Here, we established a C. elegans model for studying Nopp140-associated ribosomopathy. A null dao-5 mutant ok542 with a semi-infertile phenotype showed a delay in gonadogenesis, as well as a higher incidence of germline apoptosis. These phenotypes in dao-5(ok542) are likely resulted from inefficient rDNA transcription that was observed by run-on analyses and chromatin immunoprecipitation (ChIP) assays measuring the RNA Pol I occupancy on the rDNA promoter. ChIP assays further showed that the modifications of acetylated histone 4 (H4Ac) and dimethylation at the lysine 9 of histone 3 (H3K9me2) around the rDNA promoter were altered in dao-5 mutants compared with the N2 wild type. In addition, activated CEP-1 (a C. elegans p53 homolog) activity was also linked to the loss of DAO-5 in terms of the transcriptional upregulation of two CEP-1 downstream effectors, EGL-1 and CED-13. We propose that the dao-5 mutant of C. elegans can be a valuable model for studying human Nopp140-associated ribosomopathy at the cellular and molecular levels.
Collapse
Affiliation(s)
- C-C Lee
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Y-T Tsai
- 1] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan [2] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - C-W Kao
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - L-W Lee
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - H-J Lai
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - T-H Ma
- 1] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan [2] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Y-S Chang
- 1] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan [2] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - N-H Yeh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - S J Lo
- 1] Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan [2] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
13
|
Neumüller RA, Gross T, Samsonova AA, Vinayagam A, Buckner M, Founk K, Hu Y, Sharifpoor S, Rosebrock AP, Andrews B, Winston F, Perrimon N. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal 2013; 6:ra70. [PMID: 23962978 PMCID: PMC3964804 DOI: 10.1126/scisignal.2004145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.
Collapse
Affiliation(s)
- Ralph A Neumüller
- 1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
James A, Cindass R, Mayer D, Terhoeve S, Mumphrey C, DiMario P. Nucleolar stress in Drosophila melanogaster: RNAi-mediated depletion of Nopp140. Nucleus 2013; 4:123-33. [PMID: 23412656 DOI: 10.4161/nucl.23944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nucleolar stress results when ribosome biogenesis is disrupted. An excellent example is the human Treacher Collins syndrome in which the loss of the nucleolar chaperone, Treacle, leads to p53-dependent apoptosis in embryonic neural crest cells and ultimately to craniofacial birth defects. Here, we show that depletion of the related nucleolar phosphoprotein, Nopp140, in Drosophila melanogaster led to nucleolar stress and eventual lethality when multiple tissues were depleted of Nopp140. We used TEM, immuno-blot analysis and metabolic protein labeling to show the loss of ribosomes. Targeted loss of Nopp140 in larval wing discs caused Caspase-dependent apoptosis which eventually led to defects in the adult wings. These defects were not rescued by a p53 gene deletion, as the craniofacial defects were in the murine model of TCS, thus suggesting that apoptosis caused by nucleolar stress in Drosophila is induced by a p53-independent mechanism. Loss of Nopp140 in larval polyploid midgut cells induced premature autophagy as marked by the accumulation of mCherry-ATG8a into autophagic vesicles. We also found elevated phenoloxidase A3 levels in whole larval lysates and within the hemolymph of Nopp140-depleted larvae vs. hemolymph from parental genotype larvae. Phenoloxidase A3 enrichment was coincident with the appearance of melanotic tumors in the Nopp140-depleted larvae. The occurrence of apoptosis, autophagy and phenoloxidase A3 release to the hemolymph upon nucleolar stress correlated well with the demonstrated activation of Jun N-terminal kinase (JNK) in Nopp140-depleted larvae. We propose that JNK is a central stress response effector that is activated by nucleolar stress in Drosophila larvae.
Collapse
Affiliation(s)
- Allison James
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:121-8. [PMID: 22498252 PMCID: PMC3842010 DOI: 10.1016/j.bbcan.2012.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs (ncRNAs) are important regulatory molecules involved in various physiological and cellular processes. Alterations of ncRNAs, particularly microRNAs, play crucial roles in tumorigenesis. Accumulating evidence indicates that small nucleolar RNAs (snoRNAs), another large class of small ncRNAs, are gaining prominence and more actively involved in carcinogenesis than previously thought. Some snoRNAs exhibit differential expression patterns in a variety of human cancers and demonstrate capability to affect cell transformation, tumorigenesis, and metastasis. We are beginning to comprehend the functional repercussions of snoRNAs in the development and progression of malignancy. In this review, we will describe current studies that have shed new light on the functions of snoRNAs in carcinogenesis and the potential applications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Kaiissar Mannoor
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| | - Jipei Liao
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Lee WK, Lee SY, Na JH, Jang SW, Park CR, Kim SY, Lee SH, Han KH, Yu YG. Mitoxantrone Binds to Nopp140, an Intrinsically Unstructured Protein, and Modulate its Interaction with Protein Kinase CK2. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.6.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC, Junqueira M, Shevchenko A, Mann M, Neugebauer KM, Buchholz F. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol 2011; 13:809-18. [PMID: 21642980 DOI: 10.1038/ncb2264] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 04/20/2011] [Indexed: 12/13/2022]
Abstract
TP53 (tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes.
Collapse
Affiliation(s)
- Dragomir B Krastev
- University of Technology Dresden, University Hospital and Medical Faculty Carl Gustav Carus, Department of Medical Systems Biology, Fetscherstraße 74, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marinho J, Casares F, Pereira PS. The Drosophila Nol12 homologue viriato is a dMyc target that regulates nucleolar architecture and is required for dMyc-stimulated cell growth. Development 2011; 138:349-57. [PMID: 21177347 DOI: 10.1242/dev.054411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nucleolus is a subnuclear factory, the activity of which is required beyond ribosome biogenesis for the regulation of cell growth, death and proliferation. In both Drosophila and mammalian cells, the activity of the nucleolus is regulated by the proto-oncogene Myc. Myc induces the transcription of genes required for ribosome biogenesis and the synthesis of rRNA by RNA polymerase I, a nucleolar event that is rate limiting for cell growth. Here, we show that the fruit fly Nol12 homologue Viriato is a key determinant of nucleolar architecture that is required for tissue growth and cell survival during Drosophila development. We further show that viriato expression is controlled by Drosophila Myc (dMyc), and that the ability of dMyc to stimulate nucleolar and cellular growth depends on viriato expression. Therefore, viriato acts downstream of dMyc to ensure a coordinated nucleolar response to dMyc-induced growth and, thereby, normal organ development.
Collapse
Affiliation(s)
- Joana Marinho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | | | | |
Collapse
|
19
|
Tortoriello G, de Celis JF, Furia M. Linking pseudouridine synthases to growth, development and cell competition. FEBS J 2010; 277:3249-63. [DOI: 10.1111/j.1742-4658.2010.07731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Rosby R, Cui Z, Rogers E, deLivron MA, Robinson VL, DiMario PJ. Knockdown of the Drosophila GTPase nucleostemin 1 impairs large ribosomal subunit biogenesis, cell growth, and midgut precursor cell maintenance. Mol Biol Cell 2009; 20:4424-34. [PMID: 19710426 DOI: 10.1091/mbc.e08-06-0592] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian nucleostemin (NS) is a nucleolar guanosine triphosphate-binding protein implicated in cell cycle progression, stem cell proliferation, and ribosome assembly. Drosophila melanogaster contains a four-member nucleostemin family (NS1-4). NS1 is the closest orthologue to human NS; it shares 33% identity and 67% similarity with human NS. We show that NS1 has intrinsic GTPase and ATPase activity and that it is present within nucleoli of most larval and adult cells. Endogenous NS1 and lightly expressed green fluorescent protein (GFP)-NS1 enrich within the nucleolar granular regions as expected, whereas overexpressed GFP-NS1 localized throughout the nucleolus and nucleoplasm, and to several transcriptionally active interbands of polytene chromosomes. Severe overexpression correlated with the appearance of melanotic tumors and larval/pupal lethality. Depletion of 60% of NS1 transcripts also lead to larval and pupal lethality. NS1 protein depletion>95 correlated with the loss of imaginal island (precursor) cells in the larval midgut and to an apparent block in the nucleolar release of large ribosomal subunits in terminally differentiated larval midgut polyploid cells. Ultrastructural examination of larval Malpighian tubule cells depleted for NS1 showed a loss of cytoplasmic ribosomes and a concomitant appearance of cytoplasmic preautophagosomes and lysosomes. We interpret the appearance of these structures as indicators of cell stress response.
Collapse
Affiliation(s)
- Raphyel Rosby
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | | | | | | | | | |
Collapse
|
21
|
Treacle recruits RNA polymerase I complex to the nucleolus that is independent of UBF. Biochem Biophys Res Commun 2009; 386:396-401. [PMID: 19527688 DOI: 10.1016/j.bbrc.2009.06.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/09/2009] [Indexed: 11/22/2022]
Abstract
Mutations in treacle lead to Treacher Collins syndrome (TCS), an autosomal dominant disorder of craniofacial development. Treacle associates with upstream binding factor (UBF) to regulate rRNA gene (rDNA) transcription, but the precise mechanisms mediated by treacle remain elusive. Here we show that the central repeated domain of treacle binds with RNA polymerase I (Pol I), while that the treacle C-terminus is involved in rDNA promoter recognition and UBF recruitment. Knockdown of treacle resulted in dispersion of Pol I and UBF away from nucleolus, whereas interactions of treacle with Pol I and rDNA promoter were not disrupted by UBF depletion. These findings indicate that treacle, but not UBF, is essential for nucleolar recruitment of Pol I transcription complex. Furthermore, C-terminally truncated treacle, mimicking TCS-associated mutations, failed to target to the nucleolus, possibly causing loss-of-function in the mutant treacle. Our observations support that TCS results from haploinsufficiency of treacle.
Collapse
|