1
|
Toscano E, Cimmino E, Boccia A, Sepe L, Paolella G. Cell populations simulated in silico within SimulCell accurately reproduce the behaviour of experimental cell cultures. NPJ Syst Biol Appl 2025; 11:48. [PMID: 40379622 DOI: 10.1038/s41540-025-00518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/08/2025] [Indexed: 05/19/2025] Open
Abstract
In silico simulations are used to understand cell behaviour by means of different approaches and tools, which range from reproducing average population trends to building lattice-based models to, more recently, creating populations of individual cell agents whose mass, volume and morphology behave according to more or less precise rules and models. In this work, a new agent-based simulator, SimulCell, was conceived, developed and used to predict the behaviour of eukaryotic cell cultures while growing attached to a flat surface. The system, starting from time-lapse microscopy experiments, uses growth, proliferation and migration models to create synthetic populations closely resembling original cultures. Support for cell-cell and cell-environment interaction makes cell agents able to react to changes in medium composition and other events, such as physical damage or chemical modifications occurring in the culture plate. The simulator is accessible through a web application and generates data that can be shown as tables and graphs or exported for further analyses.
Collapse
Affiliation(s)
- Elvira Toscano
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy.
| |
Collapse
|
2
|
Tarvestad-Laise KE, Ceresa BP. Modulating Growth Factor Receptor Signaling to Promote Corneal Epithelial Homeostasis. Cells 2023; 12:2730. [PMID: 38067157 PMCID: PMC10706396 DOI: 10.3390/cells12232730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The corneal epithelium is the first anatomical barrier between the environment and the cornea; it is critical for proper light refraction onto the retina and prevents pathogens (e.g., bacteria, viruses) from entering the immune-privileged eye. Trauma to the highly innervated corneal epithelium is extremely painful and if not resolved quickly or properly, can lead to infection and ultimately blindness. The healthy eye produces its own growth factors and is continuously bathed in tear fluid that contains these proteins and other nutrients to maintain the rapid turnover and homeostasis of the ocular surface. In this article, we review the roles of growth factors in corneal epithelial homeostasis and regeneration and some of the limitations to their use therapeutically.
Collapse
Affiliation(s)
- Kate E. Tarvestad-Laise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Department of Ophthalmology and Vision Sciences, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Lee EEL, O'Malley-Krohn I, Edsinger E, Wu S, Malamy J. Epithelial wound healing in Clytia hemisphaerica provides insights into extracellular ATP signaling mechanisms and P2XR evolution. Sci Rep 2023; 13:18819. [PMID: 37914720 PMCID: PMC10620158 DOI: 10.1038/s41598-023-45424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Epithelial wound healing involves the collective responses of many cells, including those at the wound margin (marginal cells) and those that lack direct contact with the wound (submarginal cells). How these responses are induced and coordinated to produce rapid, efficient wound healing remains poorly understood. Extracellular ATP (eATP) is implicated as a signal in epithelial wound healing in vertebrates. However, the role of eATP in wound healing in vivo and the cellular responses to eATP are unclear. Almost nothing is known about eATP signaling in non-bilaterian metazoans (Cnidaria, Ctenophora, Placozoa, and Porifera). Here, we show that eATP promotes closure of epithelial wounds in vivo in the cnidarian Clytia hemisphaerica (Clytia) indicating that eATP signaling is an evolutionarily ancient strategy in wound healing. Furthermore, eATP increases F-actin accumulation at the edges of submarginal cells. In Clytia, this indicates eATP is involved in coordinating cellular responses during wound healing, acting in part by promoting actin remodeling in cells at a distance from the wound. We also present evidence that eATP activates a cation channel in Clytia epithelial cells. This implies that the eATP signal is transduced through a P2X receptor (P2XR). Phylogenetic analyses identified four Clytia P2XR homologs and revealed two deeply divergent major branches in P2XR evolution, necessitating revision of current models. Interestingly, simple organisms such as cellular slime mold appear exclusively on one branch, bilaterians are found exclusively on the other, and many non-bilaterian metazoans, including Clytia, have P2XR sequences from both branches. Together, these results re-draw the P2XR evolutionary tree, provide new insights into the origin of eATP signaling in wound healing, and demonstrate that the cytoskeleton of submarginal cells is a target of eATP signaling.
Collapse
Affiliation(s)
- Elizabeth E L Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Isabel O'Malley-Krohn
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Eric Edsinger
- Whitney Laboratory for Marine Biosciences, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080, USA
| | - Stephanie Wu
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jocelyn Malamy
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate Immune System Activation, Inflammation and Corneal Wound Healing. Int J Mol Sci 2022; 23:14933. [PMID: 36499260 PMCID: PMC9740891 DOI: 10.3390/ijms232314933] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Corneal wounds resulting from injury, surgeries, or other intrusions not only cause pain, but also can predispose an individual to infection. While some inflammation may be beneficial to protect against microbial infection of wounds, the inflammatory process, if excessive, may delay corneal wound healing. An examination of the literature on the effect of inflammation on corneal wound healing suggests that manipulations that result in reductions in severe or chronic inflammation lead to better outcomes in terms of corneal clarity, thickness, and healing. However, some acute inflammation is necessary to allow efficient bacterial and fungal clearance and prevent corneal infection. This inflammation can be triggered by microbial components that activate the innate immune system through toll-like receptor (TLR) pathways. In particular, TLR2 and TLR4 activation leads to pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activation. Similarly, endogenous molecules released from disrupted cells, known as damage-associated molecular patterns (DAMPs), can also activate TLR2, TLR4 and NFκB, with the resultant inflammation worsening the outcome of corneal wound healing. In sterile keratitis without infection, inflammation can occur though TLRs to impact corneal wound healing and reduce corneal transparency. This review demonstrates the need for acute inflammation to prevent pathogenic infiltration, while supporting the idea that a reduction in chronic and/or excessive inflammation will allow for improved wound healing.
Collapse
Affiliation(s)
- Nyemkuna Fortingo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Sarah H. Sutton
- Department of Medical Illustration, Augusta University, Augusta, GA 30907, USA
| | - Mitchell A. Watsky
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
6
|
Benchaprathanphorn K, Sakulaue P, Siriwatwechakul W, Muangman P, Chinaroonchai K, Namviriyachote N, Viravaidya-Pasuwat K. Expansion of fibroblast cell sheets using a modified MEEK micrografting technique for wound healing applications. Sci Rep 2022; 12:18541. [PMID: 36329229 PMCID: PMC9633782 DOI: 10.1038/s41598-022-21913-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Cell sheet engineering, a scaffold-free approach to fabricate functional tissue constructs from several cell monolayers, has shown promise in tissue regeneration and wound healing. Unfortunately, these cell sheets are often too small to provide sufficient wound area coverage. In this study, we describe a process to enlarge cell sheets using MEEK micrografting, a technique extensively used to expand skin autografts for large burn treatments. Human dermal fibroblast cell sheets were placed on MEEK's prefolded gauze without any use of adhesive, cut along the premarked lines and stretched out at various expansion ratios (1:3, 1:6 and 1:9), resulting in regular distribution of many square islands of fibroblasts at a much larger surface area. The cellular processes essential for wound healing, including reattachment, proliferation, and migration, of the fibroblasts on expanded MEEK gauze were superior to those on nylon dressing which served as a control. The optimal expansion ratio with the highest migration rate was 1:6, possibly due to the activation of chemical signals caused by mechanical stretching and an effective intercellular communication distance. Therefore, the combination of cell sheet engineering with the MEEK micrografting technique could provide high quality cells with a large coverage area, which would be particularly beneficial in wound care applications.
Collapse
Affiliation(s)
- Kanokaon Benchaprathanphorn
- grid.412151.20000 0000 8921 9789Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Phongphot Sakulaue
- grid.412434.40000 0004 1937 1127School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Khlong Luang, 12120 Pathumthani Thailand
| | - Wanwipa Siriwatwechakul
- grid.412434.40000 0004 1937 1127School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Khlong Luang, 12120 Pathumthani Thailand
| | - Pornprom Muangman
- grid.416009.aTrauma Division, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Kusuma Chinaroonchai
- grid.416009.aTrauma Division, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Nantaporn Namviriyachote
- grid.416009.aTrauma Division, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- grid.412151.20000 0000 8921 9789Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand ,grid.412151.20000 0000 8921 9789Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand ,grid.412151.20000 0000 8921 9789Biological Engineering and Chemical Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140 Thailand
| |
Collapse
|
7
|
Lamtha T, Tabtimmai L, Songtawee N, Tansakul N, Choowongkomon K. Structural analysis of cannabinoids against EGFR-TK leads a novel target against EGFR-driven cell lines. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100132. [PMID: 36568260 PMCID: PMC9780064 DOI: 10.1016/j.crphar.2022.100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a member of the ErbB family of proteins and are involved in downstream signal transduction, plays prominent roles in cell growth regulation, proliferation, and the differentiation of many cell types. They are correlated with the stage and severity of cancer. Therefore, EGFRs are targeted proteins for the design of new drugs to treat cancers that overexpress these proteins. Currently, several bioactive natural extracts are being studied for therapeutic purposes. Cannabis has been reported in many studies to have beneficial medicinal effects, such as anti-inflammatory, analgesic, antibacterial, and anti-inflammatory effects, and antitumor activity. However, it is unclear whether cannabinoids reduce intracellular signaling by inhibiting tyrosine kinase phosphorylation. In this study, cannabinoids (CBD, CBG, and CBN) were simulated for binding to the EGFR-intracellular domain to evaluate the binding energy and binding mode based on molecular docking simulation. The results showed that the binding site was almost always located at the kinase active site. In addition, the compounds were tested for binding affinity and demonstrated their ability to inhibit kinase enzymes. Furthermore, the compounds potently inhibited cellular survival and apoptosis induction in either of the EGFR-overexpressing cell lines.
Collapse
Affiliation(s)
- Thomanai Lamtha
- Laboratory of Protein Engineering and Bioinformatics (PROTEB), Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand,Spectroscopic and Sensing Devices Research Group (SSDRG), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Laboratory of Protein Engineering and Bioinformatics (PROTEB), Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand,Corresponding author.
| |
Collapse
|
8
|
Maguire G. Chronic inflammation induced by microneedling and the use of bone marrow stem cell cytokines. J Tissue Viability 2022; 31:687-692. [DOI: 10.1016/j.jtv.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
|
9
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Canonical phospholipase D isoforms in visual function and ocular response to stress. Exp Eye Res 2022; 217:108976. [DOI: 10.1016/j.exer.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
10
|
Epidermal Growth Factor Receptor Expression in the Corneal Epithelium. Cells 2021; 10:cells10092409. [PMID: 34572058 PMCID: PMC8470622 DOI: 10.3390/cells10092409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023] Open
Abstract
A properly functioning cornea is critical to clear vision and healthy eyes. As the most anterior portion of the eye, it plays an essential role in refracting light onto the retina and as an anatomical barrier to the environment. Proper vision requires that all layers be properly formed and fully intact. In this article, we discuss the role of the epidermal growth factor receptor (EGFR) in maintaining and restoring the outermost layer of the cornea, the epithelium. It has been known for some time that the addition of epidermal growth factor (EGF) promotes the restoration of the corneal epithelium and patients using EGFR inhibitors as anti-cancer therapies are at increased risk of corneal erosions. However, the use of EGF in the clinic has been limited by downregulation of the receptor. More recent advances in EGFR signaling and trafficking in corneal epithelial cells have provided new insights in how to overcome receptor desensitization. We examine new strategies for overcoming the limitations of high ligand and receptor expression that alter trafficking of the ligand:receptor complex to sustain receptor signaling.
Collapse
|
11
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
12
|
Saint-Jean A, Reguart N, Eixarch A, Adán A, Castellà C, Sánchez-Dalmau B, Sainz-de-la-Maza M. Ocular surface adverse events of systemic epidermal growth factor receptor inhibitors (EGFRi): A prospective trial. J Fr Ophtalmol 2018; 41:955-962. [PMID: 30473235 DOI: 10.1016/j.jfo.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/20/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Controversy exists regarding the safety of agents that systemically inhibit epidermal growth factor receptor (EGFRi) in oncologic patients in terms of toxicity to the ocular surface. We performed a prospective clinical study comparing the ocular surface toxicity of systemic EGFRi between a case and a control group. METHODS Patients with lung or colon cancer were divided in two groups: 25 patients treated with systemic EGFRi and 25 control patients without EGFRi treatment. Patients in both groups were chemotherapy naive. Four visits were scheduled in a one year period comparing signs and symptoms in terms of symptom questionnaires (SIDEQ, OSDI and AVS), corneal fluorescein staining (Oxford test), tear production (Schirmer's test) and a quantitative evaluation of conjunctival chemosis and hyperemia. Basal epithelial cell density (CEBD) and corneal subepithelial nerve fiber density (CNFD) were measured and compared using confocal microscopy (Heidelberg Engineering, Germany). The differences in each variable were compared with the analysis of variance (ANOVA). A P value<0.05 was considered significant for all comparisons. RESULTS No statistically significant differences were found between patients under EGFRi treatment and the age-matched controls in the variables analyzed. When cases and controls were evaluated separately, the case group showed a significantly worse progression of signs (chemosis score, CFS, Schirmer's) as well as in terms of CEBD and CNFD (all P<0.05). CONCLUSION Systemic EGFRi may increase dry eye signs as well as decrease CEBD and CNFD. This study may help us to understand the true toxicity of EGFRi to the ocular surface.
Collapse
Affiliation(s)
- A Saint-Jean
- University of Barcelona, Clinica Baviera, Barcelona, Spain.
| | - N Reguart
- Thoracic Oncology, Medical Oncology Department, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - A Adán
- Head Ophthalmology Department, Hospital Clinic, Barcelona, Spain
| | - C Castellà
- Head Glaucoma Department, Hospital Joan XXIII, Tarragona, Spain
| | | | | |
Collapse
|
13
|
Pietak A, Levin M. Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:52-68. [PMID: 29626560 PMCID: PMC10464501 DOI: 10.1016/j.pbiomolbio.2018.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Positional information describes pre-patterns of morphogenetic substances that alter spatio-temporal gene expression to instruct development of growth and form. A wealth of recent data indicate bioelectrical properties, such as the transmembrane potential (Vmem), are involved as instructive signals in the spatiotemporal regulation of morphogenesis. However, the mechanistic relationships between Vmem and molecular positional information are only beginning to be understood. Recent advances in computational modeling are assisting in the development of comprehensive frameworks for mechanistically understanding how endogenous bioelectricity can guide anatomy in a broad range of systems. Vmem represents an extraordinarily strong electric field (∼1.0 × 106 V/m) active over the thin expanse of the plasma membrane, with the capacity to influence a variety of downstream molecular signaling cascades. Moreover, in multicellular networks, intercellular coupling facilitated by gap junction channels may induce directed, electrodiffusive transport of charged molecules between cells of the network to generate new positional information patterning possibilities and characteristics. Given the demonstrated role of Vmem in morphogenesis, here we review current understanding of how Vmem can integrate with molecular regulatory networks to control single cell state, and the unique properties bioelectricity adds to transport phenomena in gap junction-coupled cell networks to facilitate self-assembly of morphogen gradients and other patterns. Understanding how Vmem integrates with biochemical regulatory networks at the level of a single cell, and mechanisms through which Vmem shapes molecular positional information in multicellular networks, are essential for a deep understanding of body plan control in development, regeneration and disease.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center at Tufts, USA; Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
14
|
Handly LN, Wollman R. Wound-induced Ca 2+ wave propagates through a simple release and diffusion mechanism. Mol Biol Cell 2017; 28:1457-1466. [PMID: 28404746 PMCID: PMC5449146 DOI: 10.1091/mbc.e16-10-0695] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 01/10/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are critical mediators of information concerning tissue damage from damaged cells to neighboring healthy cells. ATP acts as an effective DAMP when released into extracellular space from damaged cells. Extracellular ATP receptors monitor tissue damage and activate a Ca2+ wave in the surrounding healthy cells. How the Ca2+ wave propagates through cells after a wound is unclear. Ca2+ wave activation can occur extracellularly via external receptors or intracellularly through GAP junctions. Three potential mechanisms to propagate the Ca2+ wave are source and sink, amplifying wave, and release and diffusion. Both source and sink and amplifying wave regulate ATP levels using hydrolysis or secretion, respectively, whereas release and diffusion relies on dilution. Here we systematically test these hypotheses using a microfluidics assay to mechanically wound an epithelial monolayer in combination with direct manipulation of ATP hydrolysis and release. We show that a release and diffusion model sufficiently explains Ca2+-wave propagation after an epithelial wound. A release and diffusion model combines the benefits of fast activation at short length scales with a self-limiting response to prevent unnecessary inflammatory responses harmful to the organism.
Collapse
Affiliation(s)
- L Naomi Handly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095
| | - Roy Wollman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 .,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095.,Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
15
|
Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology. J Mol Med (Berl) 2017; 95:535-552. [PMID: 28132078 DOI: 10.1007/s00109-017-1506-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 01/17/2023]
Abstract
A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A connexin43-based peptide mimetic, αCT1, was developed to competitively block interactions at the PDZ2 domain of ZO-1, thereby inhibiting ligands that selectively bind to this domain. We hypothesized that targeting ZO-1 signaling using αCT1 would maintain BRB integrity and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. RPE-cell barrier dysfunction was generated in mice using laser photocoagulation triggering choroidal neovascularization (CNV) or bright light exposure leading to morphological damage. αCT1 was delivered via eye drops. αCT1 treatment reduced CNV development and fluid leakage as determined by optical coherence tomography, and damage was correlated with disruption in cellular integrity of surrounding RPE cells. Light damage significantly disrupted RPE cell morphology as determined by ZO-1 and occludin staining and tiling pattern analysis, which was prevented by αCT1 pre-treatment. In vitro experiments using RPE and MDCK monolayers indicated that αCT1 stabilizes tight junctions, independent of its effects on Cx43. Taken together, stabilization of intercellular junctions by αCT1 was effective in ameliorating RPE dysfunction in models of AMD-like pathology. KEY MESSAGE The connexin43 mimetic αCT1 accumulates in the mouse retinal pigment epithelium following topical delivery via eye drops. αCT1 eye drops prevented RPE-cell barrier dysfunction in two mouse models. αCT1 stabilizes intercellular tight junctions. Stabilization of cellular junctions via αCT1 may serve as a novel therapeutic approach for both wet and dry age-related macular degeneration.
Collapse
|
16
|
Tanaka Y, Nakayama J. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model. Clin Interv Aging 2016; 11:1027-33. [PMID: 27536083 PMCID: PMC4975136 DOI: 10.2147/cia.s111530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.
Collapse
Affiliation(s)
- Yohei Tanaka
- Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center; Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
17
|
Huang SU, Yoon JJ, Ismail S, McGhee JJ, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate a wound-healing response to injury. Cell Biol Int 2015; 39:1274-87. [PMID: 26094955 DOI: 10.1002/cbin.10501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022]
Abstract
The cornea is the initial refractive interface of the eye. Its transparency is critical for clear vision and is maintained by stem cells which also act to repair injury inflicted by external insults, such as chemical and thermal burns. Damage to the epithelium compromises its clarity and can reduce or eliminate the stem cell population, diminishing the ability for self-repair. This condition has been termed "limbal stem cell deficiency"; severe cases can lead to corneal blindness. Sphere-forming cells isolated from peripheral cornea are a potential source of stem and progenitor cells for corneal repair. When provided with appropriate substrate, these spheres have the ability to adhere and for cells to migrate outwards akin to that of their natural environment. Direct compression injury and remote scratch injury experiments were conducted on the sphere cells to gauge their wound healing capacity. Measures of proliferation, differentiation, and migration were assessed by immunohistochemical detection of EdU incorporation, α-smooth muscle actin expression and confocal image analysis, respectively. Both modes of injury were observed to draw responses from the spheres indicating wound healing processes. Direct wounding induced a rapid, but transient increase in expression of α-SMA, a marker of corneal myofibroblasts, followed by a proliferative and increasing migratory response. The spheres were observed to respond to remote injury as entire units, with no directional response seen for targeted repair over the scratch injury area. These results give strength to the future use of these peripheral corneal spheres as transplantable units for the regeneration of corneal tissue.
Collapse
Affiliation(s)
- Stephanie U Huang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jinny J Yoon
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Salim Ismail
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jennifer J McGhee
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Sherwin
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Enyedi B, Niethammer P. Mechanisms of epithelial wound detection. Trends Cell Biol 2015; 25:398-407. [PMID: 25813429 DOI: 10.1016/j.tcb.2015.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
Efficient wound healing requires the coordinated responses of various cell types within an injured tissue. To react to the presence of a wound, cells have to first detect it. Judging from their initial biochemical and morphological responses, many cells including leukocytes, epithelial cells, and endothelial cells detect wounds from over hundreds of micrometers within seconds-to-minutes. Wound detection involves the conversion of an injury-induced homeostatic perturbation, such as cell lysis, an unconstrained epithelial edge, or permeability barrier breakdown, into a chemical or physical signal. The signal is spatially propagated through the tissue to synchronize protective responses of cells near the wound site and at a distance. This review summarizes the triggers and mechanisms of wound detection in animals.
Collapse
Affiliation(s)
- Balázs Enyedi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Gault WJ, Enyedi B, Niethammer P. Osmotic surveillance mediates rapid wound closure through nucleotide release. ACTA ACUST UNITED AC 2015; 207:767-82. [PMID: 25533845 PMCID: PMC4274268 DOI: 10.1083/jcb.201408049] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After wounding in zebrafish, osmolarity differences between the interstitial fluid and the external environment trigger ATP release that initiates rapid wound closure through long-range activation of basal epithelial cell motility. Osmotic cues from the environment mediate rapid detection of epithelial breaches by leukocytes in larval zebrafish tail fins. Using intravital luminescence and fluorescence microscopy, we now show that osmolarity differences between the interstitial fluid and the external environment trigger ATP release at tail fin wounds to initiate rapid wound closure through long-range activation of basal epithelial cell motility. Extracellular nucleotide breakdown, at least in part mediated by ecto-nucleoside triphosphate diphosphohydrolase 3 (Entpd3), restricts the range and duration of osmotically induced cell migration after injury. Thus, in zebrafish larvae, wound repair is driven by an autoregulatory circuit that generates pro-migratory tissue signals as a function of environmental exposure of the inside of the tissue.
Collapse
Affiliation(s)
- William J Gault
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Balázs Enyedi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
20
|
Szabolcsi V, Celio MR. De novo expression of parvalbumin in ependymal cells in response to brain injury promotes ependymal remodeling and wound repair. Glia 2014; 63:567-94. [PMID: 25421913 DOI: 10.1002/glia.22768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
The calcium-binding protein parvalbumin (PV) hallmarks subpopulations of interneurons in the murine brain. We serendipitously observed the de novo expression of PV in ependymal cells of the lateral ventricle wall following in vivo lesioning and brain slicing for the preparation of organotypic hippocampal slice cultures (OHSCs). In OHSCs, de novo PV-expression begins shortly after the onset of culturing, and the number of ependymal cells implicated in this process increases with time. PV-immunopositive ependymal cells aggregate and form compact cell clusters, which are characterized by lumen-formation and beating cilia. Scratches inflicted on such clusters with a sharp knife are rapidly closed. Exposure of OHSCs to NF-КB-inhibitors and to antioxidants reduces PV-expression in ependymal cells, thereby implicating injury-induced inflammation in this process. Indeed, in vivo stab injury enhances PV-expression in ependymal cells adjacent to the lesion, whereas neuraminidase denudation is without effect. PV-knock-out mice manifest an impaired wound-healing response to in vivo injury, and a reduced scratch-wound reparation capacity in OHSCs. Whole-transcriptome analysis of ependymal-cell clusters in OHSCs revealed down-regulation of genes involved in cytoskeletal rearrangement, cell motility and cell adhesion in PV-knock out mice as compared with wild-type mice. Our data indicate that the injury-triggered up-regulation of PV-expression is mediated by inflammatory cytokines, and promotes the motility and adhesion of ependymal cells, thereby contributing to leakage closure by the re-establishment of a continuous ependymal layer.
Collapse
Affiliation(s)
- Viktória Szabolcsi
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg, Rte Albert Gockel 1, CH-1700, Fribourg, Switzerland
| | | |
Collapse
|
21
|
Lee A, Derricks K, Minns M, Ji S, Chi C, Nugent MA, Trinkaus-Randall V. Hypoxia-induced changes in Ca(2+) mobilization and protein phosphorylation implicated in impaired wound healing. Am J Physiol Cell Physiol 2014; 306:C972-85. [PMID: 24671101 DOI: 10.1152/ajpcell.00110.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The process of wound healing must be tightly regulated to achieve successful restoration of injured tissue. Previously, we demonstrated that when corneal epithelium is injured, nucleotides and neuronal factors are released to the extracellular milieu, generating a Ca(2+) wave from the origin of the wound to neighboring cells. In the present study we sought to determine how the communication between epithelial cells in the presence or absence of neuronal wound media is affected by hypoxia. A signal-sorting algorithm was developed to determine the dynamics of Ca(2+) signaling between neuronal and epithelial cells. The cross talk between activated corneal epithelial cells in response to neuronal wound media demonstrated that injury-induced Ca(2+) dynamic patterns were altered in response to decreased O2 levels. These alterations were associated with an overall decrease in ATP and changes in purinergic receptor-mediated Ca(2+) mobilization and localization of N-methyl-d-aspartate receptors. In addition, we used the cornea in an organ culture wound model to examine how hypoxia impedes reepithelialization after injury. There was a change in the recruitment of paxillin to the cell membrane and deposition of fibronectin along the basal lamina, both factors in cell migration. Our results provide evidence that complex Ca(2+)-mediated signaling occurs between sensory neurons and epithelial cells after injury and is critical to wound healing. Information revealed by these studies will contribute to an enhanced understanding of wound repair under compromised conditions and provide insight into ways to effectively stimulate proper epithelial repair.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Kelsey Derricks
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Martin Minns
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Sophina Ji
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Cheryl Chi
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew A Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
22
|
Moleirinho S, Patrick C, Tilston-Lünel AM, Higginson JR, Angus L, Antkowiak M, Barnett SC, Prystowsky MB, Reynolds PA, Gunn-Moore FJ. Willin, an upstream component of the hippo signaling pathway, orchestrates mammalian peripheral nerve fibroblasts. PLoS One 2013; 8:e60028. [PMID: 23593160 PMCID: PMC3620498 DOI: 10.1371/journal.pone.0060028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/22/2013] [Indexed: 01/06/2023] Open
Abstract
Willin/FRMD6 was first identified in the rat sciatic nerve, which is composed of neurons, Schwann cells, and fibroblasts. Willin is an upstream component of the Hippo signaling pathway, which results in the inactivation of the transcriptional co-activator YAP through Ser127 phosphorylation. This in turn suppresses the expression of genes involved in cell growth, proliferation and cancer development ensuring the control of organ size, cell contact inhibition and apoptosis. Here we show that in the mammalian sciatic nerve, Willin is predominantly expressed in fibroblasts and that Willin expression activates the Hippo signaling cascade and induces YAP translocation from the nucleus to the cytoplasm. In addition within these cells, although it inhibits cellular proliferation, Willin expression induces a quicker directional migration towards scratch closure and an increased expression of factors linked to nerve regeneration. These results show that Willin modulates sciatic nerve fibroblast activity indicating that Willin may have a potential role in the regeneration of the peripheral nervous system.
Collapse
Affiliation(s)
- Susana Moleirinho
- Medical and Biological Sciences Building, School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
- Medical and Biological Sciences Building, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Calum Patrick
- Medical and Biological Sciences Building, School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Andrew M. Tilston-Lünel
- Medical and Biological Sciences Building, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Jennifer R. Higginson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Liselotte Angus
- Medical and Biological Sciences Building, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Maciej Antkowiak
- Medical and Biological Sciences Building, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Susan C. Barnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Michael B. Prystowsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Paul A. Reynolds
- Medical and Biological Sciences Building, School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
- * E-mail: fjg1@st- andrews.ac.uk (FGM); (PR)
| | - Frank J. Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
- * E-mail: fjg1@st- andrews.ac.uk (FGM); (PR)
| |
Collapse
|
23
|
Ye Q, Kantonen S, Henkels KM, Gomez-Cambronero J. A new signaling pathway (JAK-Fes-phospholipase D) that is enhanced in highly proliferative breast cancer cells. J Biol Chem 2013; 288:9881-9891. [PMID: 23404507 DOI: 10.1074/jbc.m113.450593] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The products of the oncogene Fes and JAK3 are tyrosine kinases, whose expressions are elevated in tumor growth, angiogenesis, and metastasis. Phosphatidic acid, as synthesized by phospholipase D (PLD), enhances cancer cell survival. We report a new signaling pathway that integrates the two kinases with the lipase. A new JAK3-Fes-PLD2 axis is responsible for the highly proliferative phenotype of MDA-MB-231 breast cancer cells. Conversely, this pathway is maintained at a low rate of expression and activity levels in untransformed cells such as MCF10A. We also deciphered the inter-regulation that exists between the two kinases (JAK3 and the oncogene Fes) and between these two kinases and the lipase (PLD2). Whereas JAK3 and Fes marginally activate PLD2 in non-transformed cells, these kinases greatly enhance (>200%) PLD activity following protein-protein interaction through the SH2 domain and the Tyr-415 residue of PLD2. We also found that phosphatidic acid enhances Fes activity in MDA-MB-231 cells providing a positive activation loop between Fes and PLD2. In summary, the JAK3, Fes and PLD2 interactions in transformed cells maintain PLD2 at an enhanced level that leads to abnormal cell growth. Modulating this new JAK3-Fes-PLD2 pathway could be important to control the highly invasive phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Qing Ye
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Samuel Kantonen
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435.
| |
Collapse
|
24
|
Ng MR, Besser A, Danuser G, Brugge JS. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. ACTA ACUST UNITED AC 2012; 199:545-63. [PMID: 23091067 PMCID: PMC3483134 DOI: 10.1083/jcb.201207148] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin-catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell-cell adhesion to regulate collective migration.
Collapse
Affiliation(s)
- Mei Rosa Ng
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
25
|
Dual modes of motility at the leading edge of migrating epithelial cell sheets. Proc Natl Acad Sci U S A 2012; 109:15799-804. [PMID: 23019364 DOI: 10.1073/pnas.1210992109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purse-string healing is driven by contraction of actin/myosin cables that span cells at wound edges, and it is the predominant mode of closing small round wounds in embryonic and some adult epithelia. Wounds can also heal by cell crawling, and my colleagues and I have shown previously that the presence of unconstrained, straight edges in sheets of epithelial cells is a sufficient signal to induce healing by crawling. Here, it is reported that the presence of highly concave edges, which are free or physically constrained by an inert material (agarose), is sufficient to induce formation of purse strings. It was determined that neither of the two types of healing required cell damage or other potential stimuli by using the particularly gentle procedure of introducing gaps by digesting agarose blocks imbedded in the cell sheets. Movement by crawling depends on signaling by the EGF receptor (EGFR); however, this was not required for purse-string contraction. A migrating epithelial cell sheet usually produces finger-like projections of crawling cells. The cells between fingers contain continuous actin cables, which were also determined to contain myosin IIA and exhibit additional characteristics of purse strings. When crawling was blocked by inhibition of EGFR signaling, the concave regions continued to move, suggesting that both mechanisms contribute to propel the sheets forward. Wounding epithelial cell sheets causes activation of the EGFR, which triggers movement by crawling. The EGFR was found to be activated only at straight and convex edges, which explains how both types of movement can coexist at leading epithelial edges.
Collapse
|
26
|
Gomez-Cambronero J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 2011; 23:1885-95. [PMID: 21740967 PMCID: PMC3204931 DOI: 10.1016/j.cellsig.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
27
|
Block ER, Tolino MA, Klarlund JK. Extracellular ATP stimulates epithelial cell motility through Pyk2-mediated activation of the EGF receptor. Cell Signal 2011; 23:2051-5. [PMID: 21840393 DOI: 10.1016/j.cellsig.2011.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 11/25/2022]
Abstract
Wounding usually causes considerable cell damage, and released ATP promotes migration of nearby epithelium. ATP binds to purinergic receptors on the cell surface and induces transactivation of the EGF receptor through signaling by the Src family kinases (SFKs). Here we tested whether ATP activates these kinases through Pyk2, a member of the focal adhesion kinase family. Pyk2 was rapidly and potently activated by treating corneal epithelial cells with ATP, and physical interaction of Pyk2 with the SFKs was enhanced. Disruption of Pyk2 signaling either by siRNA or by expression of a dominant-negative mutant led to inhibition of ATP-induced activation of the SFKs and the EGF receptor. Inhibiting Pyk2 activity also blocked ATP stimulation of healing of wounds in epithelial cell sheets. These data suggest that ATP stimulates sequential activation of Pyk2, SFKs, and the EGF receptor to induce cell migration.
Collapse
Affiliation(s)
- Ethan R Block
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
28
|
Ileal perforation induced by acute radiation injury under gefitinib treatment. Int J Clin Oncol 2011; 16:774-7. [PMID: 21706125 DOI: 10.1007/s10147-011-0249-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/21/2011] [Indexed: 12/14/2022]
Abstract
Enteritis is one of the side effects of radiotherapy to the abdominal cavity. Radiation enteritis involves damage to mucous membranes in the acute phase and to stromal tissues in the late phase. Perforation of the intestine tends to occur in the late phase, and rarely in the acute phase. However, we describe here a case of intestinal perforation occurring in the acute phase after irradiation in a patient who received gefitinib treatment. Gefitinib, one of the epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), is widely used to treat non-small cell lung cancer (NSCLC) patients, but is simultaneously known to inhibit wound healing. We suspect that gefitinib may affect regeneration of the small intestinal mucosa injured by irradiation. A 76-year-old woman had NSCLC with metastases to the 5th lumbar, sacral, and right iliac bones. To control the pain from bone metastasis, anterior-posterior opposing portal irradiation (total 35 Gy) was started, and was completed over 22 days. On day 25 after starting radiotherapy, the patient began to take gefitinib. On day 35, she presented with acute peritonitis, and an emergency laparotomy was performed. The terminal ileum was affected by radiation enteritis and there were two pin-hole perforations. In the surgical specimen, no cancerous lesions were detected, and immunohistochemical staining of phosphorylated EGFR (pEGFR) was negative. pEGFR has an important role in mucous membrane repair after irradiation. Intestinal perforation in the acute phase of radiation enteritis may be associated with impaired mucosal repair mechanisms due to the use of an EGFR-TKI such as gefitinib, as evidenced by the absence of pEGFR.
Collapse
|
29
|
Xu K, Yu FSX. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci 2011; 52:3301-8. [PMID: 21330660 DOI: 10.1167/iovs.10-5670] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE. The purpose of the study was to investigate the effects of hyperglycemia on EGFR (epidermal growth factor receptor)-mediated wound response and signal transduction in the corneal epithelium of rats with type I diabetes mellitus (DM). METHODS. Corneal epithelia were removed from streptozotocin (STZ)- and weight-matched normal rats. Wound healing was monitored by fluorescein staining at 24 or 48 hours after epithelial debridement. Phosphorylation of EGFR, AKT, ERK, and BAD was determined by Western blot analysis. The distribution of phospho-AKT and proliferating cell nuclear antigen (PCNA) in rat corneas was examined by immunohistochemistry. Cell death was evaluated by TUNEL staining. RESULTS. A significant delay in corneal epithelial wound healing was observed 48 hours after wounding in the diabetic rats compared with the weight-matched control rats. In the DM rat corneas, epithelial cells demonstrated diminished responses to wounding, as assessed by the phosphorylation of EGFR and its downstream signaling molecules, AKT and ERK. Furthermore, although the distribution pattern of phospho-AKT suggested a role for AKT in epithelial migration and proliferation in the normoglycemic rat corneas, it was abrogated in the healing epithelia of the DM rats. Consistent with impaired AKT activity, the number of PCNA-stained cells was also greatly reduced in the healing corneas of the diabetic rats. Finally, decreases in pBAD (Ser(136) and Ser(112)) and increases in TUNEL-positive cells were observed in both the uninjured and healing corneal epithelia of the DM rats, but not of the control rats. CONCLUSIONS. In the corneas of SZT rats, EGFR-PI3K-AKT and ERK, as well as their downstream BAD signaling pathways in migratory epithelium, were altered, resulting in increased apoptosis, decreased cell proliferation, and delayed wound closure.
Collapse
Affiliation(s)
- Keping Xu
- Departments of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan
| | | |
Collapse
|
30
|
Kenchegowda S, Bazan NG, Bazan HEP. EGF stimulates lipoxin A4 synthesis and modulates repair in corneal epithelial cells through ERK and p38 activation. Invest Ophthalmol Vis Sci 2011; 52:2240-9. [PMID: 21220563 DOI: 10.1167/iovs.10-6199] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effect of epidermal growth factor (EGF) on lipoxin A4 (LXA4) synthesis and how it regulates corneal epithelial wound healing through mitogen-activated kinases, extracellular regulated kinase (ERK) 1/2, and p38. METHODS Rabbit corneal epithelial (RCE) cells were stimulated with EGF or LXA4 at different times. In some experiments, cells were pretreated with 12/15-lipoxygenase (12/15-LOX) inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), ERK1/2 inhibitor PD98059, or p38 inhibitor SB203580. For wound-healing experiments, corneas from rabbits and 12/15-LOX (ALOX-15)-deficient mice were injured by epithelial removal and maintained in organ culture in the presence of EGF or LXA4 with or without inhibitors. Epithelial cell proliferation was assayed by immunofluorescence with Ki67 and cell counting. Scrape migration assays were performed in 6-well plates. LXA4 synthesis was analyzed by liquid chromatography-tandem mass spectrometry analysis. RESULTS EGF activated ERK1/2 and p38 in RCE cells in a sustained manner. EGF activation was partially inhibited by CDC. EGF and LXA4 increased corneal epithelial wound closure. ERK1/2 inhibition with PD98059 or p38 with SB203580 blocked the effect of LXA4 on wound healing. ALOX-15 corneas displayed inhibition of epithelial wound closure promoted by EGF, whereas LXA4 stimulation induced similar wound closure in wild-type and knockout mice. EGF-stimulated LXA4 synthesis in RCE cells was inhibited by CDC or the EGF receptor antagonist AG1478. CONCLUSIONS These results demonstrate that EGF-stimulated epithelial wound healing is partially mediated through a 12/15-LOX-LXA4 pathway, and activation of ERK1/2 and p38 is required for LXA4 action.
Collapse
Affiliation(s)
- Sachidananda Kenchegowda
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
31
|
Pan Q, Qiu WY, Huo YN, Yao YF, Lou MF. Low levels of hydrogen peroxide stimulate corneal epithelial cell adhesion, migration, and wound healing. Invest Ophthalmol Vis Sci 2011; 52:1723-34. [PMID: 21087961 DOI: 10.1167/iovs.10-5866] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Intracellular reactive oxygen species have been reported to associate with growth factor and integrin signalings in promoting cell adhesion in many cell types. This study is to explore if exogenous H(2)O(2) at low levels can be beneficial to cell adhesion, migration, and wound healing. METHODS Primary rabbit corneal epithelial cells treated with 0-70 μM H(2)O(2) were tested for viability by MTT assay, adhesion by centrifugation assay, focal contacts of vinculin and F-actin by immunofluorescence, activated Src(pY416), EGF receptor (pY845), vinculin(pY1065), FAK(pY397), and FAK(pY576) by immunoblotting. Cell migration was examined with 0-50 μM H(2)O(2) using the scratch wound technique. Corneal wound healing of ex vivo pig model and in vivo mouse model was examined using H(2)O(2) with and without antioxidant N-acetylcysteine (NAC). RESULTS Compared with the untreated control, H(2)O(2) at 10-50 μM stimulated cell viability and facilitated adhesion and migration with clear induction of vinculin-rich focal adhesions and F-actin-containing stress fibers by increasing activated Src, FAK(pY576), and vinculin(pY1065). H(2)O(2) also increased phosphorylation of EGFR(Y845) parallel to that of activated Src, but both were eliminated by NAC and PP1 (Src inhibitor). Finally, H(2)O(2) induced faster wound healing in cornea both in vitro and in vivo, but the healing was diminished by NAC. CONCLUSIONS These findings suggest that H(2)O(2) at low levels promotes cell adhesion, migration, and wound healing in cornea cells or tissue, and the interaction of H(2)O(2) with Src plays a major role.
Collapse
Affiliation(s)
- Qing Pan
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | | | | | | | | |
Collapse
|
32
|
Abstract
One of the primary functions of any epithelium is to act as a barrier. To maintain integrity, epithelia migrate rapidly to cover wounds, and there is intense interest in understanding how wounds are detected. Numerous soluble factors are present in the wound environment and epithelia can sense the presence of adjacent denuded extracellular matrix. However, the presence of such cues is expected to be highly variable, and here we focus on the presence of edges in the epithelial sheets as a stimulus, since they are universally and continuously present in wounds. Using a novel tissue culture model, free edges in the absence of any other identifiable cues were found to trigger activation of the epidermal growth factor receptor and increase cell motility. Edges bordered by inert physical barriers do not activate the receptor, indicating that activation is related to mechanical factors rather than to specific cell cell interactions.
Collapse
Affiliation(s)
- Jes K Klarlund
- Ophthalmology and Visual Sciences Research Center, The Eye and Ear Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
33
|
Abstract
Airway epithelia are continuously damaged by airborne pollutants, pathogens and allergens, and they rely on intrinsic mechanisms to restore barrier integrity. Epithelial repair is a multi-step process including cell migration into the wounded area, proliferation, differentiation and matrix deposition. Each step requires the secretion of various molecules, including growth factors, integrins and matrix metalloproteinases. Evidence is emerging that purinergic signaling promotes repair in human airway epithelia. An injury induces ATP release, which binds P2Y(2) receptors (P2Y(2)Rs) to initiate protein kinase C (PKC)-dependent oxidative activation of TNFα-converting enzyme (TACE), which then releases the membrane-bound ligands of the epidermal growth factor receptor (EGFR). The P2Y(2)R- and EGFR-dependent signaling cascades converge to induce mediator release, whereas the latter also induces cytoskeletal rearrangement for cell migration and proliferation. Similar roles for purinergic signaling are reported in pulmonary endothelial cells, smooth muscle cells and fibroblasts. In chronic airway diseases, the aberrant regulation of extracellular purines is implicated in the development of airway remodeling by mucus cell metaplasia and hypersecretion, excess collagen deposition, fibrosis and neovascularization. This chapter describes the crosstalk between these signaling cascades and discusses the impact of deregulated purinergic signaling in chronic lung diseases.
Collapse
|
34
|
Yang H, Wang Z, Capó-Aponte JE, Zhang F, Pan Z, Reinach PS. Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells. Exp Eye Res 2010; 91:462-71. [PMID: 20619260 DOI: 10.1016/j.exer.2010.06.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
Corneal epithelial injury induces release of endogenous metabolites that are cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1) agonists. We determined the functional contributions by CB1 and TRPV1 activation to eliciting responses underlying wound healing in human corneal epithelial cells (HCEC). Both the selective CB1 and TRPV1 agonists (i.e., WIN55,212-2 [WIN] and capsaicin [CAP], respectively) induced EGFR phosphorylation whereas either inhibition of its tyrosine kinase activity with AG1478 or functional blockage eliminated this response. Furthermore, EGFR transactivation was abolished by inhibitors of proteolytic release of heparin bound EGF (HB-EGF). CB1-induced Ca(2+) transients were reduced during exposure to either the CB1 antagonist, AM251 or AG1478. Both CAP and WIN induced transient increases in Erk1/2, p38, JNK1/2 MAPK and Akt/PI-3K phosphorylation status resulting in cell proliferation and migration increases which mirrored those elicited by EGF. Neither EGF nor WIN induced any increases in IL-6 and IL-8 release. On the other hand, CAP-induced 3- and 6-fold increases, which were fully attenuated during exposure to CPZ, but AG1478 only suppressed them by 21%. The mixed CB1 and TRPV1 antagonist, AM251, enhanced the CAP-induced rise in IL-8 release to a higher level than that elicited by CAP alone. In conclusion, CB1 and TRPV1 activation induces increases in HCEC proliferation and migration through EGFR transactivation leading to global MAPK and Akt/PI-3K pathway stimulation. On the other hand, the TRPV1-mediated increases in IL-6 and IL-8 release are elicited through both EGFR dependent and EGFR-independent signaling pathways.
Collapse
Affiliation(s)
- H Yang
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | | | | | | | | | | |
Collapse
|
35
|
Zhang F, Yang H, Pan Z, Wang Z, Wolosin JM, Gjorstrup P, Reinach PS. Dependence of resolvin-induced increases in corneal epithelial cell migration on EGF receptor transactivation. Invest Ophthalmol Vis Sci 2010; 51:5601-9. [PMID: 20538990 DOI: 10.1167/iovs.09-4468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To determine whether resolvin E1 (RvE1), an endogenous oxygenation product of eicosapentaenoic acid (EPA), induces increases in migration in human corneal epithelial cells (HCECs) and to identify signal pathways mediating this response. METHODS Migration was measured with the scratch wound assay. Western blot analysis identified changes in the phosphorylation status of prospective intracellular signal transduction mediators. Immunocytochemistry probed for intracellular paxillin localization and actin reorganization. RESULTS RvE1 enhanced HCEC migratory rates to levels comparable to those induced by epidermal growth factor (EGF). These increases were accompanied by increases in the phosphorylation status of epidermal growth factor receptor (EGFR), Akt, p38 MAPK, GSK-3α/β, and paxillin, which essentially persisted for up to 60 minutes. The EGFR inhibitor AG1478 blocked the subsequent effects of RvE1 to induce increases in phosphorylation status and cell migration. The PI3-K inhibitor LY294002 or wortmannin or the p38 inhibitor BIRB796 blocked resolvin-induced increases in cell migration. Either the matrix metalloproteinase (MMP) inhibitor GM6001 or the specific heparin-bound EGF-like growth factor inhibitor CRM197 suppressed RvE1-induced stimulation of EGFR/PI3-K/Akt phosphorylation and cell migration. CONCLUSIONS RvE1 enhances HCEC migration through MMP and sheddase-mediated EGFR transactivation. This response is dependent on PI3-K and p38-linked signaling eliciting paxillin (Tyr118) phosphorylation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biological Sciences, State University of New York, College of Optometry, New York, New York 10036, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Block ER, Tolino MA, Lozano JS, Lathrop KL, Sullenberger RS, Mazie AR, Klarlund JK. Free edges in epithelial cell sheets stimulate epidermal growth factor receptor signaling. Mol Biol Cell 2010; 21:2172-81. [PMID: 20462956 PMCID: PMC2893982 DOI: 10.1091/mbc.e09-12-1026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epithelia tend to migrate when edges are present, for instance, after wounding or during development. Using a new tissue culture model, we found that the existence of free edges is in itself a signal that causes activation of the epidermal growth factor and cell motility. The ability of epithelia to migrate and cover wounds is essential to maintaining their functions as physical barriers. Wounding induces many cues that may affect the transition to motility, including the immediate mechanical perturbation, release of material from broken cells, new interactions with adjacent extracellular matrix, and breakdown of physical separation of ligands from their receptors. Depending on the exact nature of wounds, some cues may be present only transiently or insignificantly. In many epithelia, activation of the epidermal growth factor receptor (EGFR) is a central event in induction of motility, and we find that its continuous activation is required for progression of healing of wounds in sheets of corneal epithelial cells. Here, we examine the hypothesis that edges, which are universally and continuously present in wounds, are a cue. Using a novel culture model we find that their presence is sufficient to cause activation of the EGFR and increased motility of cells in the absence of other cues. Edges that are bordered by agarose do not induce activation of the EGFR, indicating that activation is not due to loss of any specific type of cell–cell interaction but rather due to loss of physical constraints.
Collapse
Affiliation(s)
- Ethan R Block
- Ophthalmology and Visual Sciences Research Center, Eye and Ear Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Block ER, Tolino MA, Klarlund JK. Pyk2 activation triggers epidermal growth factor receptor signaling and cell motility after wounding sheets of epithelial cells. J Biol Chem 2010; 285:13372-9. [PMID: 20215112 DOI: 10.1074/jbc.m109.083089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) is a key signaling event that promotes cells to move and cover wounds in many epithelia. We have previously shown that wounding activates the EGFR through activation of the Src family kinases (SFKs), which induce proteolytic shedding of epidermal growth factor-like ligands from the cell surface. A major goal in wound healing research is to identify early signals that promote motility, and here we examined the hypothesis that members of the focal adhesion kinase family are upstream activators of the SFKs after wounding. We found that focal adhesion kinase is not activated by wounding but that a different family member, Pyk2 (PTK2B/RAFTK/CAKbeta), is activated rapidly and potently. Pyk2 interaction with c-Src is increased after wounding, as determined by co-immunoprecipitation experiments. Disruption of Pyk2 signaling either by small interfering RNA or by expression of a dominant negative mutant led to inhibition of wound-induced activation of the SFKs and the EGFR, and conversely, overexpression of wild-type Pyk2 stimulated SFK and EGFR kinase activities in cells. In wound healing studies, Pyk2 small interfering RNA or dominant negative inhibited cell migration. These results show that activation of Pyk2 is an early signal that promotes wound healing by stimulating the SFK/EGFR signaling pathway.
Collapse
Affiliation(s)
- Ethan R Block
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
38
|
Yu FSX, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull 2009; 81:229-35. [PMID: 19733636 DOI: 10.1016/j.brainresbull.2009.08.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
In this article, we briefly review recent findings in the effects of growth factors including the EGF family, KGF, HGF, IGF, insulin, and TGF-beta on corneal epithelial wound healing. We discuss the essential role of EGFR in inter-receptor cross-talk in response to wounding in corneal epithelium and bring forward a concept of "alarmins" to the field of wound healing research.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Kresge Eye Institute, Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, 4717 St. Antoine Blvd., Detroit, MI, 48201, USA.
| | | | | | | |
Collapse
|