1
|
Tsunemi T, Ishiguro Y, Yoroisaka A, Feng D, Shimada T, Niiyama S, Sasazawa Y, Ishikawa K, Akamatsu W, Hattori N. Alpha-Synuclein Inhibits the Secretion of Extracellular Vesicles through Disruptions in YKT6 Lipidation. J Neurosci 2025; 45:e2350232024. [PMID: 39794126 PMCID: PMC11905360 DOI: 10.1523/jneurosci.2350-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Parkinson's disease is characterized by the presence of alpha-synuclein (α-syn) primarily containing Lewy bodies in neurons. Despite decades of extensive research on α-syn accumulation, its molecular mechanisms have remained largely unexplored. Recent studies by us and others have suggested that extracellular vesicles (EVs), especially exosomes, can mediate the release of α-syn from cells and inhibiting this pathway could result in increased intracellular α-syn levels. In this study, we have discovered that elevated levels of α-syn themselves lead to reduced α-syn -containing EVs in α-syn-inducible H4 cells and induced pluripotent stem cell-derived dopaminergic (DA) neurons from both sexes. Our investigations have revealed that the impairment in EV secretion is not due to their generation but rather a consequence of changes in a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein, YKT6. Specifically, as α-syn levels increase, membrane-associated YKT6 is reduced. Pharmacological inhibition of farnesylation using FTI has led to decreased EV secretion and subsequent elevated levels of α-syn. In summary, our findings suggest that increased levels of α-syn impair YKT6-mediated EV secretion, establishing a detrimental cycle of intracellular α-syn accumulation in human DA neurons.
Collapse
Affiliation(s)
- Taiji Tsunemi
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuta Ishiguro
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Asako Yoroisaka
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Dou Feng
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyo Shimada
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shunichi Niiyama
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Development of Autophagy Modulating Drugs, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keiichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Wado Akamatsu
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Brain Science Central Building, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Robinson BP, Bass NR, Bhakt P, Spiliotis ET. Septin-coated microtubules promote maturation of multivesicular bodies by inhibiting their motility. J Cell Biol 2024; 223:e202308049. [PMID: 38668767 PMCID: PMC11046855 DOI: 10.1083/jcb.202308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Collapse
Affiliation(s)
| | - Naomi R. Bass
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
3
|
Ghosh S, Hom Choudhury S, Mukherjee K, Bhattacharyya SN. HuR-miRNA complex activates RAS GTPase RalA to facilitate endosome targeting and extracellular export of miRNAs. J Biol Chem 2024; 300:105750. [PMID: 38360271 PMCID: PMC10956062 DOI: 10.1016/j.jbc.2024.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Extracellular vesicles-mediated exchange of miRNA cargos between diverse types of mammalian cells is a major mechanism of controlling cellular miRNA levels and activity, thus regulating the expression of miRNA-target genes in both donor and recipient cells. Despite tremendous excitement related to extracellular vesicles-associated miRNAs as biomarkers or having therapeutic potential, the mechanism of selective packaging of miRNAs into endosomes and multivesicular bodies for subsequent extracellular export is poorly studied due to the lack of an in vitro assay system. Here, we have developed an in vitro assay with endosomes isolated from mammalian macrophage cells to follow miRNA packaging into endocytic organelles. The synthetic miRNAs, used in the assay, get imported inside the isolated endosomes during the in vitro reaction and become protected from RNase in a time- and concentration-dependent manner. The selective miRNA accumulation inside endosomes requires both ATP and GTP hydrolysis and the miRNA-binding protein HuR. The HuR-miRNA complex binds and stimulates the endosomal RalA GTPase to facilitate the import of miRNAs into endosomes and their subsequent export as part of the extracellular vesicles. The endosomal targeting of miRNAs is also very much dependent on the endosome maturation process that is controlled by Rab5 protein and ATP. In summary, we provide an in vitro method to aid in the investigation of the mechanism of miRNA packaging process for its export from mammalian macrophage cells.
Collapse
Affiliation(s)
- Syamantak Ghosh
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sourav Hom Choudhury
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Nebraska, USA.
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Nebraska, USA.
| |
Collapse
|
4
|
Shang L, Xie Q, Yang C, Kong L, Zhang Z. Extracellular Vesicles Facilitate the Transportation of Nanoparticles within and between Cells for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42378-42394. [PMID: 37658814 DOI: 10.1021/acsami.3c10237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The interaction between nanoparticles and cells is closely associated with the therapeutic effects of nanomedicine. Nanoparticles could be transported among cells, but the process-related mechanism remains to be further explored. In this study, it was found that endocytosed cationic polymer nanoparticles (cNPs) could be excreted in an extracellular vesicle (EV)-coated form (cNP@EVs). It was deduced that cNPs may pass through early endosomes, multivesicular bodies (MVBs), and autophagic MVBs within cells. Moreover, a high level of autophagy facilitated the exocytosis process. Since EVs were the effective vehicles for conveying biological information and substances, cNP@EVs were proved to be efficient forms for the intercellular transportation of nanoparticles and have the potential as efficient biomimetic drug delivery systems. These properties endowed cNP@EVs with deep penetration and enhanced antitumor activity. Our findings provided a proof-of-concept for understanding the transfer process of nanoparticles among cells and may help us to further utilize EV-mediated transportation of nanoparticles, therefore, expanding its clinical application.
Collapse
Affiliation(s)
- Lihuan Shang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Xie
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Contu VR, Sakai R, Fujiwara Y, Kabuta C, Wada K, Kabuta T. Nucleic acid uptake occurs independent of lysosomal acidification but dependent on ATP consumption during RNautophagy/DNautophagy. Biochem Biophys Res Commun 2023; 644:105-111. [PMID: 36640664 DOI: 10.1016/j.bbrc.2022.12.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
RNautophagy/DNautophagy (RDA) is an autophagic process that refers to the direct uptake of nucleic acids by lysosomes for degradation. Autophagy relies on lysosomes and lysosomal acidification is crucial for the degradation of intracellular components. However, whether lysosomal acidification interferes with nucleic acid uptake during RDA is unclear. In this study, we focused on vacuolar H+-ATPase (V-ATPase), the major proton pump responsible for maintaining an acidic pH in lysosomes. Our results show that lysosomes take up nucleic acids independently of the intralysosomal acidic pH during RDA. Isolated lysosomes treated with bafilomycin A1, a potent V-ATPase inhibitor, did not degrade, but took up RNA at similar levels as the control lysosomes. Similarly, the knockdown of Atp6v1a, the gene that encodes V-ATPase catalytic subunit A, did not affect the RNA uptake ability of isolated lysosomes. In addition, we demonstrated that nucleic acid uptake by isolated lysosomes necessitates ATP consumption, although V-ATPase is not required for the uptake process. These results broaden our understanding of the mechanisms underlying nucleic acid degradation via autophagy.
Collapse
Affiliation(s)
- Viorica Raluca Contu
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan; Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Ryohei Sakai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Yuuki Fujiwara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan; Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Chihana Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
6
|
Hullin-Matsuda F, Colosetti P, Rabia M, Luquain-Costaz C, Delton I. Exosomal lipids from membrane organization to biomarkers: Focus on an endolysosomal-specific lipid. Biochimie 2022; 203:77-92. [DOI: 10.1016/j.biochi.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
7
|
Sex Differentially Alters Secretion of Brain Extracellular Vesicles During Aging: A Potential Mechanism for Maintaining Brain Homeostasis. Neurochem Res 2022; 47:3428-3439. [PMID: 35904699 PMCID: PMC9546961 DOI: 10.1007/s11064-022-03701-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022]
Abstract
Extracellular vesicles (EVs) in the brain play a role in neuronal homeostasis by removing intracellular material and regulating cell-to-cell communication. Given that sex and aging differentially modulate brain networks, we investigated sex-dependent differences in EV levels and content in the brain during aging. EVs were isolated from the brains of 3, 6, 12, 18, and 24 month-old female and male C57BL/6 J mice, and the levels of different EV species determined. While the number of plasma membrane-derived microvesicles and a subset of late endosomes-derived exosomes increased with age in the brain of female mice, no significant changes were seen in males. Mitochondria-derived mitovesicles in the brain increased during aging in both sexes, a change that may reflect aging-dependent alterations in mitochondrial function. These findings reveal enhanced turnover during aging in female brains, suggesting a mechanism for advantageous successful female brain aging and sex-depending different susceptibility to age-related neurodegenerative diseases.
Collapse
|
8
|
Mavroeidi P, Vetsi M, Dionysopoulou D, Xilouri M. Exosomes in Alpha-Synucleinopathies: Propagators of Pathology or Potential Candidates for Nanotherapeutics? Biomolecules 2022; 12:957. [PMID: 35883513 PMCID: PMC9313025 DOI: 10.3390/biom12070957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
The pathological accumulation of alpha-synuclein governs the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, collectively termed alpha-synucleinopathies. Alpha-synuclein can be released in the extracellular space, partly via exosomes, and this extracellular protein pool may contribute to disease progression by facilitating the spread of pathological alpha-synuclein or activating immune cells. The content of exosomes depends on their origin and includes specific proteins, lipids, functional mRNAs and various non-coding RNAs. Given their ability to mediate intercellular communication via the transport of multilevel information, exosomes are considered to be transporters of toxic agents. Beyond neurons, glial cells also release exosomes, which may contain inflammatory molecules and this glia-to-neuron or neuron-to-glia transmission of exosomal alpha-synuclein may contribute to the propagation of pathology and neuroinflammation throughout the brain. In addition, as their content varies as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection, whereas targeted exosomes may be used as scaffolds to deliver therapeutic agents into the brain. This review summarizes the current knowledge regarding the role of exosomes in the progression of alpha-synuclein-related pathology and their potential use as biomarkers and nanotherapeutics in alpha-synucleinopathies.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (M.V.); (D.D.)
| |
Collapse
|
9
|
Shi L, Jian Y, Li M, Hao T, Yang C, Wang X. Filamin FLN-2 promotes MVB biogenesis by mediating vesicle docking on the actin cytoskeleton. J Cell Biol 2022; 221:e202201020. [PMID: 35575797 PMCID: PMC9115679 DOI: 10.1083/jcb.202201020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023] Open
Abstract
Multivesicular bodies (MVBs) contain intralumenal vesicles that are delivered to lysosomes for degradation or released extracellularly for intercellular signaling. Here, we identified Caenorhabditis elegans filamin FLN-2 as a novel regulator of MVB biogenesis. FLN-2 co-localizes with V-ATPase subunits on MVBs, and the loss of FLN-2 affects MVB biogenesis, reducing the number of MVBs in C. elegans hypodermis. FLN-2 associates with actin filaments and is required for F-actin organization. Like fln-2(lf) mutation, inactivation of the V0 or V1 sector of V-ATPase or inhibition of actin polymerization impairs MVB biogenesis. Super-resolution imaging shows that FLN-2 docks V-ATPase-decorated MVBs onto actin filaments. FLN-2 interacts via its calponin-homology domains with F-actin and the V1-E subunit, VHA-8. Our data suggest that FLN-2 mediates the docking of MVBs on the actin cytoskeleton, which is required for MVB biogenesis.
Collapse
Affiliation(s)
- Leiling Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Youli Jian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Meijiao Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tianchao Hao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
11
|
Gruenberg J. Life in the lumen: The multivesicular endosome. Traffic 2021; 21:76-93. [PMID: 31854087 PMCID: PMC7004041 DOI: 10.1111/tra.12715] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The late endosomes/endo‐lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA‐containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann‐Pick C. Then, the roles of intralumenal membranes in endo‐lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra‐endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo‐lysosomes.
Collapse
Affiliation(s)
- Jean Gruenberg
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Conrad KP. Might proton pump or sodium-hydrogen exchanger inhibitors be of value to ameliorate SARs-CoV-2 pathophysiology? Physiol Rep 2021; 8:e14649. [PMID: 33369281 PMCID: PMC7762781 DOI: 10.14814/phy2.14649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Discovering therapeutics for COVID-19 is a priority. Besides high-throughput screening of compounds, candidates might be identified based on their known mechanisms of action and current understanding of the SARs-CoV-2 life cycle. Using this approach, proton pump (PPIs) and sodium-hydrogen exchanger inhibitors (NHEIs) emerged, because of their potential to inhibit the release of extracellular vesicles (EVs; exosomes and/or microvesicles) that could promote disease progression, and to directly disrupt SARs-CoV-2 pathogenesis. If EVs exacerbate SARs-CoV-2 infection as suggested for other viruses, then inhibiting EV release by PPIs/NHEIs should be beneficial. Mechanisms underlying inhibition of EV release by these drugs remain uncertain, but may involve perturbing endosomal pH especially of multivesicular bodies where intraluminal vesicles (nascent exosomes) are formed. Additionally, PPIs might inhibit the endosomal sorting complex for transport machinery involved in EV biogenesis. Through perturbing endocytic vesicle pH, PPIs/NHEIs could also impede cleavage of SARs-CoV-2 spike protein by cathepsins necessary for viral fusion with the endosomal membrane. Although pulmonary epithelial cells may rely mainly on plasma membrane serine protease TMPRSS2 for cell entry, PPIs/NHEIs might be efficacious in ACE2-expressing cells where viral endocytosis is the major or a contributing entry pathway. These pharmaceutics might also perturb pH in the endoplasmic reticulum-Golgi intermediate and Golgi compartments, thereby potentially disrupting viral assembly and glycosylation of spike protein/ACE2, respectively. A caveat, however, is that facilitation not inhibition of avian infectious bronchitis CoV pathogenesis was reported in one study after increasing Golgi pH. Envelope protein-derived viroporins contributed to pulmonary edema formation in mice infected with SARs-CoV. If similar pathogenesis occurs with SARs-CoV-2, then blocking these channels with NHEIs could ameliorate disease pathogenesis. To ascertain their potential efficacy, PPIs/NHEIs need evaluation in cell and animal models at various phases of SARs-CoV-2 infection. If they prove to be therapeutic, the greatest benefit might be realized with the administration before the onset of severe cytokine release syndrome.
Collapse
Affiliation(s)
- Kirk P. Conrad
- Departments of Physiology and Functional Genomics, and of Obstetrics and GynecologyUniversity of Florida College of MedicineGainesvilleFLUSA
| |
Collapse
|
13
|
Vassileff N, Cheng L, Hill AF. Extracellular vesicles - propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases. J Cell Sci 2020; 133:133/23/jcs243139. [PMID: 33310868 DOI: 10.1242/jcs.243139] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are characterised by the irreversible degeneration of neurons in the central or peripheral nervous systems. These include amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD) and prion diseases. Small extracellular vesicles (sEVs), a type of EV involved in cellular communication, have been well documented as propagating neurodegenerative diseases. These sEVs carry cargo, such as proteins and RNA, to recipient cells but are also capable of promoting protein misfolding, thus actively contributing to the progression of these diseases. sEV secretion is also a compensatory process for lysosomal dysfunction in the affected cells, despite inadvertently propagating disease to recipient cells. Despite this, sEV miRNAs have biomarker potential for the early diagnosis of these diseases, while stem cell-derived sEVs and those generated through exogenous assistance demonstrate the greatest therapeutic potential. This Review will highlight novel advancements in the involvement of sEVs as propagators of neuropathology, biomarkers and potential therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Lesley Cheng
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Andrew F Hill
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
14
|
Wang G, Wang Y, Liu N, Liu M. The role of exosome lipids in central nervous system diseases. Rev Neurosci 2020; 31:743-756. [PMID: 32681787 DOI: 10.1515/revneuro-2020-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Central nervous system (CNS) diseases are common diseases that threaten human health. The CNS is highly enriched in lipids, which play important roles in maintaining normal physiological functions of the nervous system. Moreover, many CNS diseases are closely associated with abnormal lipid metabolism. Exosomes are a subtype of extracellular vesicles (EVs) secreted from multivesicular bodies (MVBs) . Through novel forms of intercellular communication, exosomes secreted by brain cells can mediate inter-neuronal signaling and play important roles in the pathogenesis of CNS diseases. Lipids are essential components of exosomes, with cholesterol and sphingolipid as representative constituents of its bilayer membrane. In the CNS, lipids are closely related to the formation and function of exosomes. Their dysregulation causes abnormalities in exosomes, which may, in turn, lead to dysfunctions in inter-neuronal communication and promote diseases. Therefore, the role of lipids in the treatment of neurological diseases through exosomes has received increasing attention. The aim of this review is to discuss the relationship between lipids and exosomes and their roles in CNS diseases.
Collapse
Affiliation(s)
- Ge Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
- Xiangya School of MedicineCentral South University, Changsha, 410078, Hunan, China
| | - Yong Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Ningyuan Liu
- Xiangya School of MedicineCentral South University, Changsha, 410078, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| |
Collapse
|
15
|
ESCRTs cut some slack. Nat Cell Biol 2020; 22:915-916. [PMID: 32753668 DOI: 10.1038/s41556-020-0557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Koritzinsky EH, Street JM, Chari RR, Glispie DM, Bellomo TR, Aponte AM, Star RA, Yuen PST. Circadian variation in the release of small extracellular vesicles can be normalized by vesicle number or TSG101. Am J Physiol Renal Physiol 2019; 317:F1098-F1110. [PMID: 31390267 DOI: 10.1152/ajprenal.00568.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous candidate biomarkers in urine extracellular vesicles (EVs) have been described for kidney diseases, but none are yet in clinical use, possibly due to a lack of proper normalization. Proper normalization corrects for normal biological variation in urine flow rate or concentration, which can vary by over one order of magnitude. Here, we observed inter- and intra-animal variation in urine excretion rates of small EVs (<200 nm in diameter) in healthy rats as a series of six 4-h fractions. To visualize intra-animal variation, we normalized a small EV excretion rate to a peak excretion rate, revealing a circadian pattern for each rat. This circadian pattern was distinct from urine volume, urine albumin, urine creatinine, and urine albumin-to-creatinine ratio. Furthermore, urine small EV excretion was not significantly altered by sex, food/water deprivation, or ischemic acute kidney injury. Urine excretion of the exosomal/small EV marker protein tumor susceptibility gene 101 (TSG101) displayed a similar circadian pattern to urine small EV excretion; both measurements were highly correlated (R2 = 0.85), with an average stoichiometry of 10.0 molecules of TSG101/vesicle in healthy rats. The observed stoichiometry of TSG101/vesicle in rat urine translated to human spot urine samples (10.2 molecules/vesicle) and cultured kidney-derived cell lines (human embryonic kidney-293 and normal rat kidney 52E cells). Small EV number and its surrogate, TSG101 protein, can normalize for circadian variation when testing candidate biomarkers in small EVs. Just as creatinine has emerged as the customary normalization factor for liquid-phase urine biomarkers, vesicle number and its surrogate, molecules of exosome/small EV-associated TSG101, should be considered as viable, normalizing factors for small EV biomarkers.
Collapse
Affiliation(s)
- Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rohit R Chari
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Deonna M Glispie
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tiffany R Bellomo
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Angel M Aponte
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
ALIX increases protein content and protective function of iPSC-derived exosomes. J Mol Med (Berl) 2019; 97:829-844. [DOI: 10.1007/s00109-019-01767-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
|
18
|
Junqueira-Neto S, Batista IA, Costa JL, Melo SA. Liquid Biopsy beyond Circulating Tumor Cells and Cell-Free DNA. Acta Cytol 2019; 63:479-488. [PMID: 30783027 DOI: 10.1159/000493969] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Liquid biopsy represents the analysis of tumor-derived material in the blood and other body fluids of cancer patients. This portrays a minimally invasive detection tool for molecular biomarkers. Liquid biopsy has emerged as a complementary or alternative method to surgical biopsy. This non-invasive detection tool overcomes the recurrent problems in the clinical assessment of tumors that stem from the lack of accessibility to the tumor tissue and its clonal heterogeneity. Moreover, body fluid-derived components have shown to reflect the genetic profile of both primary and metastatic lesions and provide a real-time monitoring of tumor dynamics, representing a great promise for personalized medicine. This review will highlight the latest breakthroughs and the current applications of several tumor-derived biomarkers that can be found in body fluids. The authors will focus on tumor-derived exosomes, tumor-educated platelets, and circulating tumor miRNAs and mRNAs, and how these can be used for tumor detection.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/isolation & purification
- Cell-Free Nucleic Acids/blood
- Cell-Free Nucleic Acids/isolation & purification
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/isolation & purification
- Exosomes/chemistry
- Exosomes/pathology
- Humans
- Liquid Biopsy/methods
- MicroRNAs/blood
- MicroRNAs/isolation & purification
- Monitoring, Physiologic
- Mutation
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/drug therapy
- Neoplasms/pathology
- Neoplastic Cells, Circulating/chemistry
- Neoplastic Cells, Circulating/pathology
- Precision Medicine/methods
- Prognosis
- RNA, Messenger/blood
- RNA, Messenger/isolation & purification
Collapse
Affiliation(s)
- Susana Junqueira-Neto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty of the University of Porto (FMUP), Porto, Portugal
| | - Inês A Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - José Luís Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Medical Faculty of the University of Porto (FMUP), Porto, Portugal
| | - Sónia A Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), Porto, Portugal,
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), Porto, Portugal,
- Medical Faculty of the University of Porto (FMUP), Porto, Portugal,
| |
Collapse
|
19
|
Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2018; 14:262-276. [PMID: 29032399 DOI: 10.1007/s12015-017-9776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.
Collapse
|
20
|
Exosomes-the enigmatic regulators of bone homeostasis. Bone Res 2018; 6:36. [PMID: 30534458 PMCID: PMC6286319 DOI: 10.1038/s41413-018-0039-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a heterogeneous group of cell-derived membranous structures, which mediate crosstalk interaction between cells. Recent studies have revealed a close relationship between exosomes and bone homeostasis. It is suggested that bone cells can spontaneously secret exosomes containing proteins, lipids and nucleic acids, which then to regulate osteoclastogenesis and osteogenesis. However, the network of regulatory activities of exosomes in bone homeostasis as well as their therapeutic potential in bone injury remain largely unknown. This review will detail and discuss the characteristics of exosomes, the regulatory activities of exosomes in bone homeostasis as well as the clinical potential of exosomes in bone injury. Vesicles known as exosomes may prove to be valuable clinical tools once their function is clarified. Exosomes were discovered in the 1980s but not observed in bone tissue until 2003. Minghao Zheng of the University of Western Australia, together with colleagues elsewhere, has reviewed the biology of exosomes, their role in maintaining bones, and their potential clinical uses. Exosomes carry lipids, proteins, and nucleic acids between cells. They are released by every type of bone cell, with the role of each exosome determined by its specific contents. Exosome-mediated crosstalk is involved in regulating bone remodeling, and exosomes have also been implicated in myelomas. Recent work has shown that exosome treatment can improve fracture healing. The authors conclude that a better understanding of the role of exosomes in bone homeostasis will unlock their significant clinical potential.
Collapse
|
21
|
Gireud-Goss M, Reyes S, Wilson M, Farley M, Memarzadeh K, Srinivasan S, Sirisaengtaksin N, Yamashita S, Tsunoda S, Lang FF, Waxham MN, Bean AJ. Distinct mechanisms enable inward or outward budding from late endosomes/multivesicular bodies. Exp Cell Res 2018; 372:1-15. [PMID: 30144444 DOI: 10.1016/j.yexcr.2018.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Regulating the residence time of membrane proteins on the cell surface can modify their response to extracellular cues and allow for cellular adaptation in response to changing environmental conditions. The fate of membrane proteins that are internalized from the plasma membrane and arrive at the limiting membrane of the late endosome/multivesicular body (MVB) is dictated by whether they remain on the limiting membrane, bud into internal MVB vesicles, or bud outwardly from the membrane. The molecular details underlying the disposition of membrane proteins that transit this pathway and the mechanisms regulating these trafficking events are unclear. We established a cell-free system that reconstitutes budding of membrane protein cargo into internal MVB vesicles and onto vesicles that bud outwardly from the MVB membrane. Both budding reactions are cytosol-dependent and supported by Saccharomyces cerevisiae (yeast) cytosol. We observed that inward and outward budding from the MVB membrane are mechanistically distinct but may be linked, such that inhibition of inward budding triggers a re-routing of cargo from inward to outward budding vesicles, without affecting the number of vesicles that bud outwardly from MVBs.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Sahily Reyes
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Marenda Wilson
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Madeline Farley
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Kimiya Memarzadeh
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | | | - Natalie Sirisaengtaksin
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Shinji Yamashita
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Department of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Marklew CJ, Booth A, Beales PA, Ciani B. Membrane remodelling by a lipidated endosomal sorting complex required for transport-III chimera, in vitro. Interface Focus 2018; 8:20180035. [PMID: 30443329 DOI: 10.1098/rsfs.2018.0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 01/28/2023] Open
Abstract
The complexity of eukaryotic cells is underscored by the compartmentalization of chemical signals by phospholipid membranes. A grand challenge of synthetic biology is building life from the 'bottom-up', for the purpose of generating systems simple enough to precisely interrogate biological pathways or for adapting biology to perform entirely novel functions. Achieving compartmentalization of chemistries in an addressable manner is a task exquisitely refined by nature and embodied in a unique membrane remodelling machinery that pushes membranes away from the cytosol, the ESCRT-III (endosomal sorting complex required for transport-III) complex. Here, we show efforts to engineer a single ESCRT-III protein merging functional features from its different components. The activity of such a designed ESCRT-III is shown by its ability to drive the formation of compartments encapsulating fluorescent cargo. It appears that the modular nature of ESCRT-III allows its functional repurposing into a minimal machinery that performs sophisticated membrane remodelling, therefore enabling its use to create eukaryotic-like multi-compartment architectures.
Collapse
Affiliation(s)
- C J Marklew
- Department of Chemistry and Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield, UK
| | - A Booth
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - P A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - B Ciani
- Department of Chemistry and Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Efficient Delivery of Macromolecules into Human Cells by Improving the Endosomal Escape Activity of Cell-Penetrating Peptides: Lessons Learned from dfTAT and its Analogs. Biomolecules 2018; 8:biom8030050. [PMID: 29997347 PMCID: PMC6165022 DOI: 10.3390/biom8030050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are typically prone to endocytic uptake into human cells. However, they are often inefficient at escaping from endosomes, which limits their ability to deliver cargos into cells. This review highlights the efforts that our laboratory has devoted toward developing CPPs that can mediate the leakage of endosomal membranes, and consequently gain better access to the intracellular milieu. In particular, we have identified a CPP named dimeric fluorescent TAT (dfTAT) with high endosomolytic activity. We describe how we have used this reagent and its analogs to develop efficient cytosolic delivery protocols and learn about molecular and cellular parameters that control the cell permeation process. Specifically, we discuss how late endosomes represent exploitable gateways for intracellular entry. We also describe how certain features in CPPs, including guanidinium content, charge density, multimerization, chirality, and susceptibility to degradation modulate the activity that these peptidic agents take toward endosomal membranes and cytosolic egress.
Collapse
|
24
|
Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci 2018; 19:E1444. [PMID: 29757220 PMCID: PMC5983649 DOI: 10.3390/ijms19051444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal regulation of calcium (Ca2+) storage in late endosomes (LE) and lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events, including endocytosis, exocytosis, and autophagy. Alterations in Ca2+ homeostasis within the LE/Lys compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour of Ca2+-binding proteins. This also includes Annexins (AnxA), which is a family of Ca2+-binding proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton interactions, Ca2+ signalling, and LE/Lys positioning. Although our knowledge regarding the way Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids, such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol (4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys, AnxA1, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route, in particular, cholesterol transfer between LE and other compartments, positioning Annexins at the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the current understanding how Annexins contribute to influence LE/Lys membrane transport and associated functions.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
25
|
López JA, Granados-López AJ. Future directions of extracellular vesicle-associated miRNAs in metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:115. [PMID: 28361080 DOI: 10.21037/atm.2017.01.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numerous studies have demonstrated the dynamic cell-to-cell communication mediated by extracellular vesicles (EV) in cancer cell survival and metastasis development. EV content includes proteins, lipids, DNA, and RNA like microRNAs. Non-protein coding microRNAs play a very active role in almost all cellular processes targeting mRNAs for silencing. Different miRNA profiles have been found in different cancer types, and clarification of miRNAs packed in EV from different types of cancers will allow the understanding of metastasis and the application of miRNAs as biomolecules in diagnostic, prognostic and therapeutic approaches to fight cancer. The profound review of Dhondt et al., 2016, provides a wide view of EV miRNAs involved in various steps of the metastasis process to illustrate how the cancer cell interaction with the near and long distance microenvironment allows metastasis. These studies will surely conduce to additional patient studies to prove the relevance of EV miRNAs in metastasis in vivo. It remains to be elucidated how the tumoral cell sorts the miRNAs for secretion to send a message, and to well recognize the type of EV performing this message delivering. It will be very useful to identify whether miRNAs are delivered with post-transcriptional modifications since this is an important feature for miRNAs activity and stability.
Collapse
Affiliation(s)
- Jesús Adrián López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico; Doctorado en Ciencias Básicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Angelica Judith Granados-López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico; Doctorado en Ciencias Básicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
26
|
Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev 2016; 32:63-73. [DOI: 10.1016/j.cytogfr.2016.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
|
27
|
Jaber N, Mohd-Naim N, Wang Z, DeLeon JL, Kim S, Zhong H, Sheshadri N, Dou Z, Edinger AL, Du G, Braga VMM, Zong WX. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci 2016; 129:4424-4435. [PMID: 27793976 DOI: 10.1242/jcs.192260] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
The class III phosphoinositide 3-kinase (PI3K) Vps34 (also known as PIK3C3 in mammals) produces phosphatidylinositol 3-phosphate [PI(3)P] on both early and late endosome membranes to control membrane dynamics. We used Vps34-deficient cells to delineate whether Vps34 has additional roles in endocytic trafficking. In Vps34-/- mouse embryonic fibroblasts (MEFs), transferrin recycling and EEA1 membrane localization were unaffected despite elevated Rab5-GTP levels. Strikingly, a large increase in Rab7-GTP levels, an accumulation of enlarged late endosomes, and decreased EGFR degradation were observed in Vps34-deficient cells. The hyperactivation of Rab7 in Vps34-deficient cells stemmed from the failure to recruit the Rab7 GTPase-activating protein (GAP) Armus (also known as TBC1D2), which binds to PI(3)P, to late endosomes. Protein-lipid overlay and liposome-binding assays reveal that the putative pleckstrin homology (PH) domain in Armus can directly bind to PI(3)P. Elevated Rab7-GTP led to the failure of intraluminal vesicle (ILV) formation and lysosomal maturation. Rab7 silencing and Armus overexpression alleviated the vacuolization seen in Vps34-deficient cells. Taken together, these results demonstrate that Vps34 has a previously unknown role in regulating Rab7 activity and late endosomal trafficking.
Collapse
Affiliation(s)
- Nadia Jaber
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Noor Mohd-Naim
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Seong Kim
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Hua Zhong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA
| | - Namratha Sheshadri
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Zhixun Dou
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vania M M Braga
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA .,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA.,Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick NJ08903, USA
| |
Collapse
|
28
|
MacDonald C, Stamnes MA, Katzmann DJ, Piper RC. Tetraspan cargo adaptors usher GPI-anchored proteins into multivesicular bodies. Cell Cycle 2016; 14:3673-8. [PMID: 26505929 DOI: 10.1080/15384101.2015.1100773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.
Collapse
Affiliation(s)
- Chris MacDonald
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| | - Mark A Stamnes
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| | - David J Katzmann
- b Biochemistry and Molecular Biology; Mayo Clinic College of Medicine ; Rochester , MN USA
| | - Robert C Piper
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| |
Collapse
|
29
|
Majumder P, Chakrabarti O. ESCRTs and associated proteins in lysosomal fusion with endosomes and autophagosomes. Biochem Cell Biol 2016; 94:443-450. [PMID: 27701906 DOI: 10.1139/bcb-2016-0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endolysosomal and autophagosomal degradation pathways are highly connected at various levels, sharing multiple molecular effectors that modulate them individually or simultaneously. These two lysosomal degradative pathways are primarily involved in the disposal of cargo internalized from the cell surface or long-lived proteins or aggregates and aged organelles present in the cytosol. Both of these pathways involve a number of carefully regulated vesicular fusion events that are dependent on ESCRT proteins. The ESCRT proteins especially ESCRT-I and III participate in the regulation of fusion events between autophagosome/amphisome and lysosome. Along with these, a number of functionally diverse ESCRT associated and regulatory proteins such as, endosomal PtdIns (3) P 5-kinase Fab1, ALIX, mahogunin ring finger 1, atrogin 1, syntaxin 17, ATG12-ATG3 complex, and protein kinase CK2α are involved in fusion events in either or both the lysosomal degradative pathways.
Collapse
Affiliation(s)
- Priyanka Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India.,Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India.,Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India
| |
Collapse
|
30
|
Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 2016; 5. [PMID: 27559612 PMCID: PMC5047747 DOI: 10.7554/elife.19276] [Citation(s) in RCA: 460] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small vesicles that are secreted from metazoan cells and may convey selected membrane proteins and small RNAs to target cells for the control of cell migration, development and metastasis. To study the mechanisms of RNA packaging into exosomes, we devised a purification scheme based on the membrane marker CD63 to isolate a single exosome species secreted from HEK293T cells. Using immunoisolated CD63-containing exosomes we identified a set of miRNAs that are highly enriched with respect to their cellular levels. To explore the biochemical requirements for exosome biogenesis and RNA packaging, we devised a cell-free reaction that recapitulates the species-selective enclosure of miR-223 in isolated membranes supplemented with cytosol. We found that the RNA-binding protein Y-box protein I (YBX1) binds to and is required for the sorting of miR-223 in the cell-free reaction. Furthermore, YBX1 serves an important role in the secretion of miRNAs in exosomes by HEK293T cells. DOI:http://dx.doi.org/10.7554/eLife.19276.001 Human cells release molecules into their surroundings via membrane-bound packets called exosomes. These molecules can then circulate throughout the body and are protected from degradation. Among the cargos carried by exosomes are small molecules of RNA known as microRNAs, which are involved in regulating gene activity. Only a select subset of the hundreds of microRNAs in a human cell end up packaged into exosomes. This suggests that there might be a specific mechanism that sorts those microRNAs that are destined for export. However, few proteins or other factors that might be involved in this sorting process had been identified to date. Shurtleff et al. set out to identify these factors and started by purifying exosomes from human cells grown in the laboratory and looking for microRNAs that were more abundant in the exosomes than the cells. One exosome-specific microRNA, called miR-223, was further studied via a test-tube based system that uses extracts from cells rather than cells themselves. These experiments confirmed that miR-223 is selectively packed into exosomes that formed in the test tube. Using this system, Shurtleff et al. then isolated a protein called Y-box Protein I (or YBX1 for short) that binds to RNA molecules and found that it was required for this selective packaging. YBX1 is known to be a constituent of exosomes released from intact cells and may therefore be required to sort other RNA molecules into exosomes. Future studies will explore how YBX1 recognizes those RNA molecules to be exported from cells via exosomes. Also, because exosomes have been implicated in some diseases such as cancer, it will be important to explore what role exosome-specific microRNAs play in both health and disease. DOI:http://dx.doi.org/10.7554/eLife.19276.002
Collapse
Affiliation(s)
- Matthew J Shurtleff
- Department of Plant and Microbial Biology, University of California, Berkeley, United States
| | - Morayma M Temoche-Diaz
- Department of Plant and Microbial Biology, University of California, Berkeley, United States
| | - Kate V Karfilis
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Sayaka Ri
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| |
Collapse
|
31
|
Johnson DE, Ostrowski P, Jaumouillé V, Grinstein S. The position of lysosomes within the cell determines their luminal pH. J Cell Biol 2016; 212:677-92. [PMID: 26975849 PMCID: PMC4792074 DOI: 10.1083/jcb.201507112] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Analysis of luminal lysosomal pH in combination with heterologous expression of lysosomal-associated proteins indicates that peripheral lysosomes are more alkaline than juxtanuclear ones and that depletion of Rab7 and its effector, RILP, are associated with and can account for the reduced acidification. We examined the luminal pH of individual lysosomes using quantitative ratiometric fluorescence microscopy and report an unappreciated heterogeneity: peripheral lysosomes are less acidic than juxtanuclear ones despite their comparable buffering capacity. An increased passive (leak) permeability to protons, together with reduced vacuolar H+–adenosine triphosphatase (V-ATPase) activity, accounts for the reduced acidifying ability of peripheral lysosomes. The altered composition of peripheral lysosomes is due, at least in part, to more limited access to material exported by the biosynthetic pathway. The balance between Rab7 and Arl8b determines the subcellular localization of lysosomes; more peripheral lysosomes have reduced Rab7 density. This in turn results in decreased recruitment of Rab-interacting lysosomal protein (RILP), an effector that regulates the recruitment and stability of the V1G1 component of the lysosomal V-ATPase. Deliberate margination of lysosomes is associated with reduced acidification and impaired proteolytic activity. The heterogeneity in lysosomal pH may be an indication of a broader functional versatility.
Collapse
Affiliation(s)
- Danielle E Johnson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Philip Ostrowski
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
32
|
Abstract
Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease.
Collapse
|
33
|
Intracellular and extracellular microRNA: An update on localization and biological role. ACTA ACUST UNITED AC 2016; 51:33-49. [PMID: 27396686 DOI: 10.1016/j.proghi.2016.06.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
Collapse
|
34
|
Alonso Y Adell M, Migliano SM, Teis D. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J 2016; 283:3288-302. [PMID: 26910595 DOI: 10.1111/febs.13688] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process. In this review, we summarize the current knowledge of structural and functional features of ESCRT-III/Vps4 assemblies in the growing pantheon of ESCRT-dependent pathways. We describe specific recruitment processes for ESCRT-III to different membranes, which could be useful to selectively inhibit ESCRT function during specific processes, while not affecting other ESCRT-dependent processes. Finally, we speculate how ESCRT-III and Vps4 might function together and highlight how the characterization of their precise spatiotemporal organization will improve our understanding of ESCRT-mediated membrane budding and scission in vivo.
Collapse
Affiliation(s)
| | - Simona M Migliano
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria
| | - David Teis
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
| |
Collapse
|
35
|
MacDonald C, Payne JA, Aboian M, Smith W, Katzmann DJ, Piper RC. A family of tetraspans organizes cargo for sorting into multivesicular bodies. Dev Cell 2015; 33:328-42. [PMID: 25942624 DOI: 10.1016/j.devcel.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/22/2015] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
The abundance of cell-surface membrane proteins is regulated by internalization and delivery into intralumenal vesicles (ILVs) of multivesicular bodies (MVBs). Many cargoes are ubiquitinated, allowing access to an ESCRT-dependent pathway into MVBs. Yet how nonubiquitinated proteins, such as glycosylphosphatidylinositol-anchored proteins, enter MVBs is unclear, supporting the possibility of mechanistically distinct ILV biogenesis pathways. Here we show that a family of highly ubiquitinated tetraspan Cos proteins provides a Ub signal in trans, allowing sorting of nonubiquitinated MVB cargo into the canonical ESCRT- and Ub-dependent pathway. Cos proteins create discrete endosomal subdomains that concentrate Ub cargo prior to their envelopment into ILVs, and the activity of Cos proteins is required not only for efficient sorting of canonical Ub cargo but also for sorting nonubiquitinated cargo into MVBs. Expression of these proteins increases during nutrient stress through an NAD(+)/Sir2-dependent mechanism that in turn accelerates the downregulation of a broad range of cell-surface proteins.
Collapse
Affiliation(s)
- Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mariam Aboian
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Radiology and Biomedical Imaging, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - William Smith
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
36
|
Sun S, Zhou X, Corvera J, Gallick GE, Lin SH, Kuang J. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov 2015; 1:15018. [PMID: 27462417 PMCID: PMC4860835 DOI: 10.1038/celldisc.2015.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Joe Corvera
- A&G Pharmaceuticals, Inc. , Baltimore, MD, USA
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
37
|
Li Z, Blissard G. The vacuolar protein sorting genes in insects: A comparative genome view. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:211-225. [PMID: 25486452 DOI: 10.1016/j.ibmb.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
In eukaryotic cells, regulated vesicular trafficking is critical for directing protein transport and for recycling and degradation of membrane lipids and proteins. Through carefully regulated transport vesicles, the endomembrane system performs a large and important array of dynamic cellular functions while maintaining the integrity of the cellular membrane system. Genetic studies in yeast Saccharomyces cerevisiae have identified approximately 50 vacuolar protein sorting (VPS) genes involved in vesicle trafficking, and most of these genes are also characterized in mammals. The VPS proteins form distinct functional complexes, which include complexes known as ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III. Little is known about the orthologs of VPS proteins in insects. Here, with the newly annotated Manduca sexta genome, we carried out genomic comparative analysis of VPS proteins in yeast, humans, and 13 sequenced insect genomes representing the Orders Hymenoptera, Diptera, Hemiptera, Phthiraptera, Lepidoptera, and Coleoptera. Amino acid sequence alignments and domain/motif structure analyses reveal that most of the components of ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III are evolutionarily conserved across yeast, insects, and humans. However, in contrast to the VPS gene expansions observed in the human genome, only four VPS genes (VPS13, VPS16, VPS33, and VPS37) were expanded in the six insect Orders. Additionally, VPS2 was expanded only in species from Phthiraptera, Lepidoptera, and Coleoptera. These studies provide a baseline for understanding the evolution of vesicular trafficking across yeast, insect, and human genomes, and also provide a basis for further addressing specific functional roles of VPS proteins in insects.
Collapse
Affiliation(s)
- Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Unravelling the pivotal role of Alix in MVB sorting and silencing of the activated EGFR. Biochem J 2015; 466:475-87. [PMID: 25510652 DOI: 10.1042/bj20141156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endosomal sorting complex required for transport (ESCRT)-III-mediated membrane invagination and scission are a critical step in multivesicular body (MVB) sorting of ubiquitinated membrane receptors, and generally thought to be required for degradation of these receptors in lysosomes. The adaptor protein Alix is critically involved in multiple ESCRT-III-mediated, membrane-remodelling processes in mammalian cells. However, Alix knockdown does not inhibit degradation of the activated epidermal growth factor receptor (EGFR) in mammalian cell lines, leading to a widely held notion that Alix is not critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells. In the present study, we demonstrate that, despite its non-essential role in degradation of the activated EGFR, Alix plays a critical role in its MVB sorting and silencing Epidermal growth factor (EGF) stimulation of mammalian cell lines induces Alix's interaction with the ubiquitinated EGFR via the Alix V domain, and increases Alix's association with membrane-bound charged multivesicular body protein 4 (CHMP4) via the Alix Bro1 domain. Under both continuous and pulse-chase EGF stimulation conditions, inhibition of Alix's interaction with membrane-bound CHMP4, inhibition of Alix dimerization through the V domain or Alix knockdown dramatically inhibits MVB sorting of the activated EGFR and promotes sustained activation of extracellular-signal regulated kinase (ERK)1/2. Under the continuous EGF stimulation conditions, these cell treatments also retard degradation of the activated EGFR. These findings indicate that Alix is critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells.
Collapse
|
39
|
Extracellular vesicles--Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin Cell Dev Biol 2015; 40:89-96. [PMID: 25704308 DOI: 10.1016/j.semcdb.2015.02.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/13/2022]
Abstract
Many cell types, including neurons, are known to release small membranous vesicles known as exosomes. In addition to their protein content these vesicles have recently been shown to contain messenger RNA (mRNA) and micro RNA (miRNA) species. Roles for these vesicles include cell-cell signalling, removal of unwanted proteins, and transfer of pathogens (including prion-like misfolded proteins) between cells, such as infectious prions. Prions are the infectious particles that are responsible for transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Exosomes are also involved in processing the amyloid precursor protein (APP), which is associated with Alzheimer's disease (AD). As exosomes can be isolated from circulating fluids such as serum, urine, and cerebrospinal fluid (CSF), they provide a potential source of biomarkers for neurological conditions. Here, we review the roles these vesicles play in neurodegenerative disease and highlight their potential in diagnosing these disorders through analysis of their RNA content.
Collapse
|
40
|
Abstract
Kufor-Rakeb syndrome (KRS) is caused by loss-of-function mutations in ATP13A2 (PARK9) and characterized by juvenile-onset parkinsonism, pyramidal signs, and cognitive decline. Previous studies suggested that PARK9 deficiency causes lysosomal dysfunction and α-synuclein (α-syn) accumulation, whereas PARK9 overexpression suppresses toxicity of α-syn. However, the precise mechanism of PARK9 effect on lysosomes and α-syn has been unknown. Here, we found that overexpressed PARK9 localized to multivesicular bodies (MVBs) in the human H4 cell line. The results from patient fibroblasts showed that loss of PARK9 function leads to decreased number of the intraluminal vesicles in MVBs and diminished release of exosomes into culture media. By contrast, overexpression of PARK9 results in increased release of exosomes in H4 cells and mouse primary cortical neurons. Moreover, loss of PARK9 function resulted in decreased secretion of α-syn into extracellular space, whereas overexpressed PARK9 promotes secretion of α-syn, at least in part via exosomes. Finally, we found that PARK9 regulates exosome biogenesis through functional interaction with the endosomal sorting complex required for transport machinery. Together, these data suggest the involvement of PARK9 in the biogenesis of exosomes and α-syn secretion and raise a possibility that disruption of these pathways in patients with KRS contributes to the disease pathogenesis.
Collapse
|
41
|
A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep 2014; 4:7532. [PMID: 25532487 PMCID: PMC4274508 DOI: 10.1038/srep07532] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/24/2014] [Indexed: 01/23/2023] Open
Abstract
Urinary extracellular vesicles provide a novel source for valuable biomarkers for kidney and urogenital diseases: Current isolation protocols include laborious, sequential centrifugation steps which hampers their widespread research and clinical use. Furthermore, large individual urine sample volumes or sizable target cohorts are to be processed (e.g. for biobanking), the storage capacity is an additional problem. Thus, alternative methods are necessary to overcome such limitations. We have developed a practical vesicle isolation technique to yield easily manageable sample volumes in an exceptionally cost efficient way to facilitate their full utilization in less privileged environments and maximize the benefit of biobanking. Urinary vesicles were isolated by hydrostatic dialysis with minimal interference of soluble proteins or vesicle loss. Large volumes of urine were concentrated up to 1/100 of original volume and the dialysis step allowed equalization of urine physico-chemical characteristics. Vesicle fractions were found suitable to any applications, including RNA analysis. In the yield, our hydrostatic filtration dialysis system outperforms the conventional ultracentrifugation-based methods and the labour intensive and potentially hazardous step of ultracentrifugations are eliminated. Likewise, the need for trained laboratory personnel and heavy initial investment is avoided. Thus, our method qualifies as a method for laboratories working with urinary vesicles and biobanking.
Collapse
|
42
|
Amorim NA, da Silva EML, de Castro RO, da Silva-Januário ME, Mendonça LM, Bonifacino JS, da Costa LJ, daSilva LLP. Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. J Biol Chem 2014; 289:27744-56. [PMID: 25118280 DOI: 10.1074/jbc.m114.560193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nef is an accessory protein of human immunodeficiency viruses that promotes viral replication and progression to AIDS through interference with various host trafficking and signaling pathways. A key function of Nef is the down-regulation of the coreceptor CD4 from the surface of the host cells. Nef-induced CD4 down-regulation involves at least two independent steps as follows: acceleration of CD4 endocytosis by a clathrin/AP-2-dependent pathway and targeting of internalized CD4 to multivesicular bodies (MVBs) for eventual degradation in lysosomes. In a previous work, we found that CD4 targeting to the MVB pathway was independent of CD4 ubiquitination. Here, we report that this targeting depends on a direct interaction of Nef with Alix/AIP1, a protein associated with the endosomal sorting complexes required for transport (ESCRT) machinery that assists with cargo recruitment and intraluminal vesicle formation in MVBs. We show that Nef interacts with both the Bro1 and V domains of Alix. Depletion of Alix or overexpression of the Alix V domain impairs lysosomal degradation of CD4 induced by Nef. In contrast, the V domain overexpression does not prevent cell surface removal of CD4 by Nef or protein targeting to the canonical ubiquitination-dependent MVB pathway. We also show that the Nef-Alix interaction occurs in late endosomes that are enriched in internalized CD4. Together, our results indicate that Alix functions as an adaptor for the ESCRT-dependent, ubiquitin-independent targeting of CD4 to the MVB pathway induced by Nef.
Collapse
Affiliation(s)
- Nathaly A Amorim
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Eulália M L da Silva
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Rodrigo O de Castro
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Mara E da Silva-Januário
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Luiza M Mendonça
- the Department of Virology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil, and
| | - Juan S Bonifacino
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Luciana J da Costa
- the Department of Virology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil, and
| | - Luis L P daSilva
- From the Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil,
| |
Collapse
|
43
|
Adell MAY, Vogel GF, Pakdel M, Müller M, Lindner H, Hess MW, Teis D. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. ACTA ACUST UNITED AC 2014; 205:33-49. [PMID: 24711499 PMCID: PMC3987140 DOI: 10.1083/jcb.201310114] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Five endosomal sorting complexes required for transport (ESCRTs) mediate the degradation of ubiquitinated membrane proteins via multivesicular bodies (MVBs) in lysosomes. ESCRT-0, -I, and -II interact with cargo on endosomes. ESCRT-II also initiates the assembly of a ringlike ESCRT-III filament consisting of Vps20, Snf7, Vps24, and Vps2. The AAA-adenosine triphosphatase Vps4 disassembles and recycles the ESCRT-III complex, thereby terminating the ESCRT pathway. A mechanistic role for Vps4 in intraluminal vesicle (ILV) formation has been unclear. By combining yeast genetics, biochemistry, and electron tomography, we find that ESCRT-III assembly on endosomes is required to induce or stabilize the necks of growing MVB ILVs. Yet, ESCRT-III alone is not sufficient to complete ILV biogenesis. Rather, binding of Vps4 to ESCRT-III, coordinated by interactions with Vps2 and Snf7, is coupled to membrane neck constriction during ILV formation. Thus, Vps4 not only recycles ESCRT-III subunits but also cooperates with ESCRT-III to drive distinct membrane-remodeling steps, which lead to efficient membrane scission at the end of ILV biogenesis in vivo.
Collapse
Affiliation(s)
- Manuel Alonso Y Adell
- Division of Cell Biology and 2 Division of Clinical Biochemistry, Biocenter; and 3 Division of Histology and Embryology; Innsbruck Medical University, Innsbruck 6020, Austria
| | | | | | | | | | | | | |
Collapse
|
44
|
Bissig C, Gruenberg J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 2014; 24:19-25. [DOI: 10.1016/j.tcb.2013.10.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023]
|
45
|
Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:108-20. [PMID: 24140720 DOI: 10.1016/j.bbalip.2013.10.004] [Citation(s) in RCA: 602] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse (CRCT), Team "Sterol Metabolism and Therapeutic Innovation in Oncology", BP3028, CHU Purpan, Toulouse F-31300, France; Institut Claudius Regaud, 20-24 Rue du Pont Saint-Pierre, 31052 Toulouse Cedex, France; Université Paul Sabatier Toulouse 3, 118 Route de Narbonne, Toulouse, France.
| | | | | | | |
Collapse
|
46
|
Abstract
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
47
|
Record M, Poirot M, Silvente-Poirot S. Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie 2013; 96:67-74. [PMID: 23827857 DOI: 10.1016/j.biochi.2013.06.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023]
Abstract
Dysregulation of lipid metabolism involves cellular communication mediated by cell contacts or exchange of bioactive lipids bound to soluble carriers or to lipoproteins. An increasing field is that of cellular communication mediated by nanovesicles called exosomes. Those vesicles are released from an internal compartment of viable cells, circulate in all biological fluids and can transfer material from cell-to-cells. Involvement of exosome trafficking in the transcellular metabolism of eicosanoids and cholesterol-related diseases including cancer is developed hereafter.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse (CRCT), Team «Sterol Metabolism and Therapeutic Innovation in Oncology», BP3028, CHU Purpan, Toulouse F-31300, France; Institut Claudius Regaud, 20-24 Rue du Pont Saint-Pierre, 31052 Toulouse Cedex, France; Université Paul Sabatier, 118 Route de Narbonne, Toulouse, France.
| | | | | |
Collapse
|
48
|
Bissig C, Lenoir M, Velluz MC, Kufareva I, Abagyan R, Overduin M, Gruenberg J. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev Cell 2013; 25:364-73. [PMID: 23664863 DOI: 10.1016/j.devcel.2013.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/13/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium- and phospholipid-binding proteins, the all-helical triangle-shaped fold of the Bro1 domain confers selectivity for LBPA via a pair of hydrophobic residues in a flexible loop, which undergoes a conformational change upon membrane association. Both LBPA and calcium binding are necessary for endosome association and virus infection, as are ALIX ESCRT binding and dimerization capacity. We conclude that LBPA recruits ALIX onto late endosomes via the calcium-bound Bro1 domain, triggering a conformational change in ALIX to mediate the delivery of viral nucleocapsids to the cytosol during infection.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Soma-Nagae T, Nada S, Kitagawa M, Takahashi Y, Mori S, Oneyama C, Okada M. The lysosomal signaling anchor p18/LAMTOR1 controls epidermal development by regulating lysosome-mediated catabolic processes. J Cell Sci 2013; 126:3575-84. [DOI: 10.1242/jcs.121913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The lysosomal adaptor protein p18 is an essential anchor of a scaffolding complex for the mTORC1 and MAPK pathways, which play crucial roles in controlling cell growth and energy homeostasis. To elucidate the in vivo function of the p18-mediated pathway, we conditionally ablated p18 in the mouse epidermis. Mutant mice were born with severe defects in formation of the stratum corneum and died within 12 h after birth due to dehydration caused by loss of skin barrier function. Mutant epidermal cells can grow and differentiate into granular cells, but exhibit functional defects in corneocyte maturation. Electron microscopy identified abnormal immature cells, overlying the mutant granular cells, which accumulated autophagosomes, glycogen granules and dead nuclei. Cell culture analysis showed that loss of p18 attenuated lysosome function, resulting in accumulation of immature lysosomes and autophagosomes. Analyses of lysosome behavior revealed that p18 is required for functional interaction between lysosomes and target organelles including autophagosomes. These findings suggest that p18-mediated pathways control lysosome-mediated catabolic processes crucial role for development of mouse epidermis.
Collapse
|
50
|
Bohdanowicz M, Grinstein S. Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis. Physiol Rev 2013; 93:69-106. [DOI: 10.1152/physrev.00002.2012] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endocytosis, phagocytosis, and macropinocytosis are fundamental processes that enable cells to sample their environment, eliminate pathogens and apoptotic bodies, and regulate the expression of surface components. While a great deal of effort has been devoted over many years to understanding the proteins involved in these processes, the important contribution of phospholipids has only recently been appreciated. This review is an attempt to collate and analyze the rapidly emerging evidence documenting the role of phospholipids in clathrin-mediated endocytosis, phagocytosis, and macropinocytosis. A primer on phospholipid biosynthesis, catabolism, subcellular distribution, and transport is presented initially, for reference, together with general considerations of the effects of phospholipids on membrane curvature and charge. This is followed by a detailed analysis of the critical functions of phospholipids in the internalization processes and in the maturation of the resulting vesicles and vacuoles as they progress along the endo-lysosomal pathway.
Collapse
Affiliation(s)
- Michal Bohdanowicz
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|