1
|
Lorentzon E, Lee J, Masaryk J, Keuenhof K, Karlsson N, Galipaud C, Madsen R, Höög JL, Levin DE, Tamás MJ. Direct binding of arsenicals to nuclear transport factors disrupts nucleocytoplasmic transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632748. [PMID: 39868121 PMCID: PMC11761705 DOI: 10.1101/2025.01.13.632748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Human exposure to arsenicals is associated with devastating diseases such as cancer and neurodegeneration. At the same time, arsenic-based drugs are used as therapeutic agents. The ability of arsenic to directly bind to proteins is correlated with its toxic and therapeutic effects highlighting the importance of elucidating arsenic-protein interactions. In this study, we took a proteomic approach and identified 174 proteins that bind to arsenic in Saccharomyces cerevisiae. Proteins involved in nucleocytoplasmic transport were markedly enriched among the arsenic-binding proteins, and we demonstrate that arsenic-binding to nuclear import factors results in their relocation from the nuclear envelope and subsequent aggregation in the cytosol. Similarly, nuclear pore proteins that make up the nuclear pore complex mislocalized and aggregated in arsenic-exposed cells. Consequently, arsenic was shown to inhibit nuclear protein import and export. We propose a model in which arsenic-binding to nuclear transport factors leads to their mislocalization and aggregation, which disrupts nucleocytoplasmic transport and causes arsenic sensitivity.
Collapse
Affiliation(s)
- Emma Lorentzon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Jakub Masaryk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Katharina Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Nora Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Charlotte Galipaud
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Rebecca Madsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Johanna L. Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - David E. Levin
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
2
|
Ran X, Yan X, Ma G, Liang Z, Zhuang H, Tang X, Chen X, Cao X, Liu X, Huang Y, Wang Y, Zhang X, Luo P, Shen L. Integration of proteomics and metabolomics analysis investigate mechanism of As-induced immune injury in rat spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116913. [PMID: 39208582 DOI: 10.1016/j.ecoenv.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50 mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Collapse
Affiliation(s)
- Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China; Guizhou Ecological Food Innovation Engineering Research Center, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
4
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
5
|
Isik E, Balkan Ç, Karl V, Karakaya HÇ, Hua S, Rauch S, Tamás MJ, Koc A. Identification of novel arsenic resistance genes in yeast. Microbiologyopen 2022; 11:e1284. [PMID: 35765185 PMCID: PMC9055376 DOI: 10.1002/mbo3.1284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is a toxic metalloid that affects human health by causing numerous diseases and by being used in the treatment of acute promyelocytic leukemia. Saccharomyces cerevisiae (budding yeast) has been extensively utilized to elucidate the molecular mechanisms underlying arsenic toxicity and resistance in eukaryotes. In this study, we applied a genomic DNA overexpression strategy to identify yeast genes that provide arsenic resistance in wild-type and arsenic-sensitive S. cerevisiae cells. In addition to known arsenic-related genes, our genetic screen revealed novel genes, including PHO86, VBA3, UGP1, and TUL1, whose overexpression conferred resistance. To gain insights into possible resistance mechanisms, we addressed the contribution of these genes to cell growth, intracellular arsenic, and protein aggregation during arsenate exposure. Overexpression of PHO86 resulted in higher cellular arsenic levels but no additional effect on protein aggregation, indicating that these cells efficiently protect their intracellular environment. VBA3 overexpression caused resistance despite higher intracellular arsenic and protein aggregation levels. Overexpression of UGP1 led to lower intracellular arsenic and protein aggregation levels while TUL1 overexpression had no impact on intracellular arsenic or protein aggregation levels. Thus, the identified genes appear to confer arsenic resistance through distinct mechanisms but the molecular details remain to be elucidated.
Collapse
Affiliation(s)
- Esin Isik
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Çiğdem Balkan
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Vivien Karl
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | | | - Sansan Hua
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ahmet Koc
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
- Department of Genetics, School of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
6
|
Hu T, Shen L, Huang Q, Wu C, Zhang H, Zeng Q, Wang G, Wei S, Zhang S, Zhang J, Khan NU, Shen X, Luo P. Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Front Pharmacol 2021; 12:749035. [PMID: 34899304 PMCID: PMC8660860 DOI: 10.3389/fphar.2021.749035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to understand the mechanism of sodium arsenite (NaAsO2)-induced apoptosis of L-02 human hepatic cells, and how Dictyophora polysaccharide (DIP) protects L-02 cells from arsenic-induced apoptosis. The results revealed that DIP pretreatment inhibited NaAsO2 induced L-02 cells apoptosis by increasing anti-apoptotic Bcl-2 expression and decreasing pro-apoptotic Bax expression. Proteomic analysis showed that arsenic treatment disrupted the expression of metabolism and apoptosis associated proteins, including ribosomal proteins (RPs). After pretreatment with DIP, the expression levels of these proteins were reversed or restored. For the first time, it was observed that the significant decrease of cytoplasmic RPs and the increase of mitochondrial RPs were related to human normal cell apoptosis induced by arsenic. This is also the first report that the protective effect of DIP on cells was related to RPs. The results highlight the relationship between RPs and apoptosis, as well as the relationship between RPs and DIP attenuating arsenic-induced apoptosis.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Changyan Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shuling Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiangchun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
De Francisco P, Martín-González A, Rodriguez-Martín D, Díaz S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12226. [PMID: 34831982 PMCID: PMC8618186 DOI: 10.3390/ijerph182212226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
Collapse
Affiliation(s)
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Daniel Rodriguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain;
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| |
Collapse
|
8
|
Andersson S, Romero A, Rodrigues JI, Hua S, Hao X, Jacobson T, Karl V, Becker N, Ashouri A, Rauch S, Nyström T, Liu B, Tamás MJ. Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. J Cell Sci 2021; 134:jcs258338. [PMID: 34085697 PMCID: PMC8214759 DOI: 10.1242/jcs.258338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Antonia Romero
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Joana Isabel Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sansan Hua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Therese Jacobson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Vivien Karl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Nathalie Becker
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| |
Collapse
|
9
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
10
|
Paris JR, Usher J. Functional genomic characterization of metallothioneins in brown trout (Salmo trutta L.). using synthetic genetic analysis. Sci Rep 2019; 9:11827. [PMID: 31413359 PMCID: PMC6694099 DOI: 10.1038/s41598-019-48303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/02/2019] [Indexed: 11/25/2022] Open
Abstract
Metal pollution has made a significant impact on the earth's ecosystems and tolerance to metals in a wide variety of species has evolved. Metallothioneins, a group of cysteine-rich metal-ion binding proteins, are known to be a key physiological mechanism in regulating protection against metal toxicity. Many rivers across the southwest of England are detrimentally affected by metal pollution, but brown trout (Salmo trutta L.) populations are known to reside within them. In this body of work, two isoforms of metallothionein (MetA and MetB) isolated from trout occupying a polluted and a control river are examined. Using synthetic genetic array (SGA) analyses in the model yeast, Saccharomyces cerevisiae, functional genomics is used to explore the role of metallothionein isoforms in driving metal tolerance. By harnessing this experimental system, S. cerevisiae is used to (i) determine the genetic interaction maps of MetA and MetB isoforms; (ii) identify differences between the genetic interactions in both isoforms and (iii) demonstrate that pre-exposure to metals in metal-tolerant trout influences these interactions. By using a functional genomics approach leveraged from the model yeast Saccharomyces cerevisiae, we demonstrate how such approaches could be used in understanding the ecology and evolution of a non-model species.
Collapse
Affiliation(s)
- Josephine R Paris
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Jane Usher
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
11
|
FlbA-Regulated Gene rpnR Is Involved in Stress Resistance and Impacts Protein Secretion when Aspergillus niger Is Grown on Xylose. Appl Environ Microbiol 2019; 85:AEM.02282-18. [PMID: 30413474 DOI: 10.1128/aem.02282-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/20/2018] [Indexed: 11/20/2022] Open
Abstract
Proteins are secreted throughout the mycelium of Aspergillus niger except for the sporulating zone. A link between sporulation and repression of protein secretion was underlined by the finding that inactivation of the sporulation gene flbA results in mycelial colonies that secrete proteins throughout the colony. However, ΔflbA strain hyphae also lyse and have thinner cell walls. This pleiotropic phenotype is associated with differential expression of 36 predicted transcription factor genes, one of which, rpnR, was inactivated in this study. Sporulation, biomass, and secretome complexity were not affected in the ΔrpnR deletion strain of the fungus. In contrast, ribosomal subunit expression and protein secretion into the medium were reduced when A. niger was grown on xylose. Moreover, the ΔrpnR strain showed decreased resistance to H2O2 and the proteotoxic stress-inducing agent dithiothreitol. Taking the data together, RpnR is involved in proteotoxic stress resistance and impacts protein secretion when A. niger is grown on xylose.IMPORTANCE Aspergillus niger secretes a large amount and diversity of industrially relevant enzymes into the culture medium. This makes the fungus a widely used industrial cell factory. For instance, carbohydrate-active enzymes of A. niger are used in biofuel production from lignocellulosic feedstock. These enzymes represent a major cost factor in this process. Higher production yields could substantially reduce these costs and therefore contribute to a more sustainable economy and less dependence on fossil fuels. Enzyme secretion is inhibited in A. niger by asexual reproduction. The sporulation protein FlbA is involved in this process by impacting the expression of 36 predicted transcription factor genes. Here, we show that one of these predicted transcriptional regulators, RpnR, regulates protein secretion and proteotoxic stress resistance. The gene is thus an interesting target to improve enzyme production in A. niger.
Collapse
|
12
|
Conrad M, Kankipati HN, Kimpe M, Van Zeebroeck G, Zhang Z, Thevelein JM. The nutrient transceptor/PKA pathway functions independently of TOR and responds to leucine and Gcn2 in a TOR-independent manner. FEMS Yeast Res 2018; 17:3950251. [PMID: 28810702 PMCID: PMC5812495 DOI: 10.1093/femsyr/fox048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
Two nutrient-controlled signalling pathways, the PKA and TOR pathway, play a major role in nutrient regulation of growth as well as growth-correlated properties in yeast. The relationship between the two pathways is not well understood. We have used Gap1 and Pho84 transceptor-mediated activation of trehalase and phosphorylation of fragmented Sch9 as a read-out for rapid nutrient activation of PKA or TORC1, respectively. We have identified conditions in which L-citrulline-induced activation of Sch9 phosphorylation is compromised, but not activation of trehalase: addition of the TORC1 inhibitor, rapamycin and low levels of L-citrulline. The same disconnection was observed for phosphate activation in phosphate-starved cells. The leu2 auxotrophic mutation reduces amino acid activation of trehalase, which is counteracted by deletion of GCN2. Both effects were also independent of TORC1. Our results show that rapid activation of the TOR pathway by amino acids is not involved in rapid activation of the PKA pathway and that effects of Gcn2 inactivation as well as leu2 auxotrophy all act independently of the TOR pathway. Hence, rapid nutrient signalling to PKA and TOR in cells arrested by nutrient starvation acts through parallel pathways.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marlies Kimpe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
13
|
Golla U, Swagatika S, Chauhan S, Tomar RS. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget 2017; 8:98426-98454. [PMID: 29228701 PMCID: PMC5716741 DOI: 10.18632/oncotarget.21416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
KP1019 ([trans-RuCl4(1H-indazole)2]; FFC14A) is one of the promising ruthenium-based anticancer drugs undergoing clinical trials. Despite the pre-clinical and clinical success of KP1019, the mode of action and various factors capable of modulating its effects are largely unknown. Here, we used transcriptomics and genetic screening approaches in budding yeast model and deciphered various genetic targets and plethora of cellular pathways including cellular signaling, metal homeostasis, vacuolar transport, and lipid homeostasis that are primarily targeted by KP1019. We also demonstrated that KP1019 modulates the effects of TOR (target of rapamycin) signaling pathway and induces accumulation of neutral lipids (lipid droplets) in both yeast and HeLa cells. Interestingly, KP1019-mediated effects were found augmented with metal ions (Al3+/Ca2+/Cd2+/Cu2+/Mn2+/Na+/Zn2+), and neutralized by Fe2+, antioxidants, osmotic stabilizer, and ethanolamine. Additionally, our comprehensive screening of yeast histone H3/H4 mutant library revealed several histone residues that could significantly modulate the KP1019-induced toxicity. Altogether, our findings in both the yeast and HeLa cells provide molecular insights into mechanisms of action of KP1019 and various factors (chemical/genetic/epigenetic) that can alter the therapeutic efficiency of this clinically important anticancer drug.
Collapse
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| |
Collapse
|
14
|
Lu YJ, Swamy KBS, Leu JY. Experimental Evolution Reveals Interplay between Sch9 and Polyploid Stability in Yeast. PLoS Genet 2016; 12:e1006409. [PMID: 27812096 PMCID: PMC5094715 DOI: 10.1371/journal.pgen.1006409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
Polyploidization has crucial impacts on the evolution of different eukaryotic lineages including fungi, plants and animals. Recent genome data suggest that, for many polyploidization events, all duplicated chromosomes are maintained and genome reorganizations occur much later during evolution. However, newly-formed polyploid genomes are intrinsically unstable and often quickly degenerate into aneuploidy or diploidy. The transition between these two states remains enigmatic. In this study, laboratory evolution experiments were conducted to investigate this phenomenon. We show that robust tetraploidy is achieved in evolved yeast cells by increasing the abundance of Sch9—a protein kinase activated by the TORC1 (Target of Rapamycin Complex 1) and other signaling pathways. Overexpressing SCH9, but not TOR1, allows newly-formed tetraploids to exhibit evolved phenotypes and knocking out SCH9 diminishes the evolved phenotypes. Furthermore, when cells were challenged with conditions causing ancestral cells to evolve aneuploidy, tetraploidy was maintained in the evolved lines. Our results reveal a determinant role for Sch9 during the early stage of polyploid evolution. Polyploidy is frequently observed in eukaryotes, including in human liver cells and cancer. Evolutionary studies also suggest that polyploidy has contributed to species diversification and novel adaptation in fungi, plants and animals. However, artificially-constructed polyploids often display chromosome instability and quickly convert to aneuploids. This phenomenon conflicts with observations that many species derived from ancient genome duplications have maintained the extra number of chromosomes following polyploidization. What happened during the early stages of these polyploidy events that stabilized the duplicated genomes? We used laboratory evolution experiments to investigate this process. After being propagated in a rich medium at 23°C for 1000 generations, newly-constructed tetraploid yeast cells had evolved stable genomes. In addition, evolved cells acquired resistance to stresses specific to tetraploids and exhibited a more diploid-like transcriptome profile. Further analyses indicated that Sch9—the functional ortholog of mammalian S6 kinase involved in protein homeostasis, G1 progression, stress response and nutrient signaling—contributed to the evolved phenotypes. Evolved cells increased the protein abundance and stability of Sch9. Reconstitution experiments showed that overexpression of SCH9 enabled ancestral cells to display the evolved phenotypes and eliminating SCH9 diminished the evolved phenotypes. Finally, we show that evolved cells were able to maintain their genomes even under a condition that causes newly-formed tetraploids to evolve aneuploidy. Our results reveal that at the early stages after genome duplication, stable polyploidy can be achieved by fine-tuning a conserved key regulator coordinating multiple cellular processes.
Collapse
Affiliation(s)
- Yi-Jin Lu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Saccharomyces cerevisiae TORC1 Controls Histone Acetylation by Signaling Through the Sit4/PP6 Phosphatase to Regulate Sirtuin Deacetylase Nuclear Accumulation. Genetics 2016; 203:1733-46. [PMID: 27343235 PMCID: PMC4981274 DOI: 10.1534/genetics.116.188458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/15/2016] [Indexed: 01/09/2023] Open
Abstract
The epigenome responds to changes in the extracellular environment, yet how this information is transmitted to the epigenetic regulatory machinery is unclear. Using a Saccharomyces cerevisiae yeast model, we demonstrate that target of rapamycin complex 1 (TORC1) signaling, which is activated by nitrogen metabolism and amino acid availability, promotes site-specific acetylation of histone H3 and H4 N-terminal tails by opposing the activity of the sirtuin deacetylases Hst3 and Hst4. TORC1 does so through suppression of the Tap42-regulated Sit4 (PP6) phosphatase complex, as sit4Δ rescues histone acetylation under TORC1-repressive conditions. We further demonstrate that TORC1 inhibition, and subsequent PP6 activation, causes a selective, rapid, nuclear accumulation of Hst4, which correlates with decreased histone acetylation. This increased Hst4 nuclear localization precedes an elevation in Hst4 protein expression, which is attributed to reduced protein turnover, suggesting that nutrient signaling through TORC1 may limit Hst4 nuclear accumulation to facilitate Hst4 degradation and maintain histone acetylation. This pathway is functionally relevant to TORC1 signaling since the stress sensitivity of a nonessential TORC1 mutant (tco89Δ) to hydroxyurea and arsenic can be reversed by combining tco89Δ with either hst3Δ, hst4Δ, or sit4Δ. Surprisingly, while hst3Δ or hst4Δ rescues the sensitivity tco89Δ has to low concentrations of the TORC1 inhibitor rapamycin, sit4Δ fails to do so. These results suggest Sit4 provides an additional function necessary for TORC1-dependent cell growth and proliferation. Collectively, this study defines a novel mechanism by which TORC1 suppresses a PP6-regulated sirtuin deacetylase pathway to couple nutrient signaling to epigenetic regulation.
Collapse
|
16
|
Guerra-Moreno A, Isasa M, Bhanu MK, Waterman DP, Eapen VV, Gygi SP, Hanna J. Proteomic Analysis Identifies Ribosome Reduction as an Effective Proteotoxic Stress Response. J Biol Chem 2015; 290:29695-706. [PMID: 26491016 DOI: 10.1074/jbc.m115.684969] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 11/06/2022] Open
Abstract
Stress responses are adaptive cellular programs that identify and mitigate potentially dangerous threats. Misfolded proteins are a ubiquitous and clinically relevant stress. Trivalent metalloids, such as arsenic, have been proposed to cause protein misfolding. Using tandem mass tag-based mass spectrometry, we show that trivalent arsenic results in widespread reorganization of the cell from an anabolic to a catabolic state. Both major pathways of protein degradation, the proteasome and autophagy, show increased abundance of pathway components and increased functional output, and are required for survival. Remarkably, cells also showed a down-regulation of ribosomes at the protein level. That this represented an adaptive response and not an adverse toxic effect was indicated by enhanced survival of ribosome mutants after arsenic exposure. These results suggest that a major source of toxicity of trivalent arsenic derives from misfolding of newly synthesized proteins and identifies ribosome reduction as a rapid, effective, and reversible proteotoxic stress response.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, and
| | - Meera K Bhanu
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - David P Waterman
- Rosenstiel Basic Medical Sciences Research Center and the Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | - Vinay V Eapen
- Rosenstiel Basic Medical Sciences Research Center and the Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, and
| | - John Hanna
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
17
|
Zhao D, Li T, shen M, Wang J, Zhao Z. Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: Evidence from RNA-seq data. Microbiol Res 2015; 170:27-35. [DOI: 10.1016/j.micres.2014.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
|
18
|
Workman JJ, Chen H, Laribee RN. Environmental signaling through the mechanistic target of rapamycin complex 1: mTORC1 goes nuclear. Cell Cycle 2014; 13:714-25. [PMID: 24526113 PMCID: PMC3979908 DOI: 10.4161/cc.28112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a well-known regulator of cell growth and proliferation in response to environmental stimuli and stressors. To date, the majority of mTORC1 studies have focused on its function as a cytoplasmic effector of translation regulation. However, recent studies have identified additional, nuclear-specific roles for mTORC1 signaling related to transcription of the ribosomal DNA (rDNA) and ribosomal protein (RP) genes, mitotic cell cycle control, and the regulation of epigenetic processes. As this area of study is still in its infancy, the purpose of this review to highlight these significant findings and discuss the relevance of nuclear mTORC1 signaling dysregulation as it pertains to health and disease.
Collapse
Affiliation(s)
- Jason J Workman
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| |
Collapse
|
19
|
Saad S, Peter M, Dechant R. In scarcity and abundance: metabolic signals regulating cell growth. Physiology (Bethesda) 2014; 28:298-309. [PMID: 23997189 DOI: 10.1152/physiol.00005.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although nutrient availability is a major driver of cell growth, and continuous adaptation to nutrient supply is critical for the development and survival of all organisms, the molecular mechanisms of nutrient sensing are only beginning to emerge. Here, we highlight recent advances in the field of nutrient sensing and discuss arising principles governing how metabolism might regulate growth-promoting pathways. In addition, we discuss signaling functions of metabolic enzymes not directly related to their metabolic activity.
Collapse
Affiliation(s)
- Shady Saad
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
20
|
Abstract
Although considered as essential cofactors for a variety of enzymatic reactions and for important structural and functional roles in cell metabolism, metals at high concentrations are potent toxic pollutants and pose complex biochemical problems for cells. We report results of single dose acute toxicity testing in the model organism S. cerevisiae. The effects of moderate toxic concentrations of 10 different human health relevant metals, Ag+, Al3+, As3+, Cd2+, Co2+, Hg2+, Mn2+, Ni2+, V3+, and Zn2+, following short-term exposure were analyzed by transcription profiling to provide the identification of early-on target genes or pathways. In contrast to common acute toxicity tests where defined endpoints are monitored we focused on the entire genomic response. We provide evidence that the induction of central elements of the oxidative stress response by the majority of investigated metals is the basic detoxification process against short-term metal exposure. General detoxification mechanisms also comprised the induction of genes coding for chaperones and those for chelation of metal ions via siderophores and amino acids. Hierarchical clustering, transcription factor analyses, and gene ontology data further revealed activation of genes involved in metal-specific protein catabolism along with repression of growth-related processes such as protein synthesis. Metal ion group specific differences in the expression responses with shared transcriptional regulators for both, up-regulation and repression were also observed. Additionally, some processes unique for individual metals were evident as well. In view of current concerns regarding environmental pollution our results may support ongoing attempts to develop methods to monitor potentially hazardous areas or liquids and to establish standardized tests using suitable eukaryotic a model organism.
Collapse
|
21
|
Wu L, Yi H, Zhang H. Reactive oxygen species and Ca2+are involved in sodium arsenite-induced cell killing in yeast cells. FEMS Microbiol Lett 2013; 343:57-63. [DOI: 10.1111/1574-6968.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Huilan Yi
- School of Life Science; Shanxi University; Taiyuan; China
| | - Hufang Zhang
- College of Agriculture; Shanxi Agricultural University; Taigu; China
| |
Collapse
|
22
|
Gómez-Herreros F, de Miguel-Jiménez L, Morillo-Huesca M, Delgado-Ramos L, Muñoz-Centeno MC, Chávez S. TFIIS is required for the balanced expression of the genes encoding ribosomal components under transcriptional stress. Nucleic Acids Res 2012; 40:6508-19. [PMID: 22544605 PMCID: PMC3413141 DOI: 10.1093/nar/gks340] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription factor IIS (TFIIS) stimulates RNA cleavage by RNA polymerase II by allowing backtracked enzymes to resume transcription elongation. Yeast cells do not require TFIIS for viability, unless they suffer severe transcriptional stress due to NTP-depleting drugs like 6-azauracil or mycophenolic acid. In order to broaden our knowledge on the role of TFIIS under transcriptional stress, we carried out a genetic screening for suppressors of TFIIS-lacking cells’ sensitivity to 6-azauracil and mycophenolic acid. Five suppressors were identified, four of which were related to the transcriptional regulation of those genes encoding ribosomal components [rRNAs and ribosomal proteins (RP)], including global regulator SFP1. This led us to discover that RNA polymerase II is hypersensitive to the absence of TFIIS under NTP scarcity conditions when transcribing RP genes. The absence of Sfp1 led to a profound alteration of the transcriptional response to NTP-depletion, thus allowing the expression of RP genes to resist these stressful conditions in the absence of TFIIS. We discuss the effect of transcriptional stress on ribosome biogenesis and propose that TFIIS contributes to prevent a transcriptional imbalance between rDNA and RP genes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6. E-41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Chow EWL, Morrow CA, Djordjevic JT, Wood IA, Fraser JA. Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification. Mol Biol Evol 2012; 29:1987-2000. [PMID: 22334577 DOI: 10.1093/molbev/mss066] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The subtelomeric regions of organisms ranging from protists to fungi undergo a much higher rate of rearrangement than is observed in the rest of the genome. While characterizing these ~40-kb regions of the human fungal pathogen Cryptococcus neoformans, we have identified a recent gene amplification event near the right telomere of chromosome 3 that involves a gene encoding an arsenite efflux transporter (ARR3). The 3,177-bp amplicon exists in a tandem array of 2-15 copies and is present exclusively in strains with the C. neoformans var. grubii subclade VNI A5 MLST profile. Strains bearing the amplification display dramatically enhanced resistance to arsenite that correlates with the copy number of the repeat; the origin of increased resistance was verified as transport-related by functional complementation of an arsenite transporter mutant of Saccharomyces cerevisiae. Subsequent experimental evolution in the presence of increasing concentrations of arsenite yielded highly resistant strains with the ARR3 amplicon further amplified to over 50 copies, accounting for up to ~1% of the whole genome and making the copy number of this repeat as high as that seen for the ribosomal DNA. The example described here therefore represents a rare evolutionary intermediate-an array that is currently in a state of dynamic flux, in dramatic contrast to relatively common, static relics of past tandem duplications that are unable to further amplify due to nucleotide divergence. Beyond identifying and engineering fungal isolates that are highly resistant to arsenite and describing the first reported instance of microevolution via massive gene amplification in C. neoformans, these results suggest that adaptation through gene amplification may be an important mechanism that C. neoformans employs in response to environmental stresses, perhaps including those encountered during infection. More importantly, the ARR3 array will serve as an ideal model for further molecular genetic analyses of how tandem gene duplications arise and expand.
Collapse
Affiliation(s)
- Eve W L Chow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
24
|
Chen SCA, Lewis RE, Kontoyiannis DP. Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence 2011; 2:280-95. [PMID: 21701255 PMCID: PMC3173675 DOI: 10.4161/viru.2.4.16764] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Conventional antineoplastic, novel immunosuppressive agents and antibiotics used in cancer treatment can directly affect the growth, development and virulence of Candida and Aspergillus species. Cytotoxic and cisplatin compounds have anti-Candida activity and may be synergistic with antifungal drugs; they also inhibit Candida and Aspergillus filamentation/conidation and effect increased virulence in vitro. Glucocorticoids enhance Candida adherence to epithelial cells, germination in serum and in vitro secretion of phospholipases and proteases, as well as growth of A. fumigatus. Calcineurin and target of rapamycin inhibitors perturb Candida and Aspergillus morphogenesis, stress responses and survival in serum, reduce azole tolerance in Candida, but yield conflicting in vivo data. Inhibition of candidal heat shock protein 90 and candidal-specific histone deacetylase represent feasible therapeutic approaches for candidiasis. Tyrosine kinase inhibitors inhibit fungal cell entry into epithelial cells and phagocytosis. Quinolone and other antibiotics may augment activity of azole and polyene agents. The correlation of in vitro effects with clinically meaningful in vivo systems is warranted.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, University of Sydney, Westmead, NSW Australia
| | | | | |
Collapse
|
25
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
26
|
Abstract
In the past several decades the budding yeast Saccharomyces cerevisiae has emerged as a prominent model for aging research. The creation of a single-gene deletion collection covering the majority of open reading frames in the yeast genome and advances in genomic technologies have opened yeast research to genome-scale screens for a variety of phenotypes. A number of screens have been performed looking for genes that modify secondary age-associated phenotypes such as stress resistance or growth rate. More recently, moderate-throughput methods for measuring replicative life span and high-throughput methods for measuring chronological life span have allowed for the first unbiased screens aimed at directly identifying genes involved in determining yeast longevity. In this chapter we discuss large-scale life span studies performed in yeast and their implications for research related to the basic biology of aging.
Collapse
Affiliation(s)
- George L Sutphin
- Department of Pathology and the Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195-7470, USA,
| | | | | | | |
Collapse
|
27
|
Todorova TT, Kujumdzieva AV, Vuilleumier S. Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic. Arch Microbiol 2010; 192:909-18. [PMID: 20740275 DOI: 10.1007/s00203-010-0614-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 06/30/2010] [Accepted: 08/02/2010] [Indexed: 12/01/2022]
Abstract
The response of Saccharomyces cerevisiae to arsenic involves a large ensemble of genes, many of which are associated with glutathione-related metabolism. The role of the glutathione S-transferase (GST) product of the URE2 gene involved in resistance of S. cerevisiae to a broad range of heavy metals was investigated. Glutathione peroxidase activity, previously reported for the Ure2p protein, was unaffected in cell-free extracts of an ure2Δ mutant of S. cerevisiae. Glutathione levels in the ure2Δ mutant were lowered about threefold compared to the isogenic wild-type strain but, as in the wild-type strain, increased 2-2.5-fold upon addition of either arsenate (As(V)) or arsenite (As(III)). However, lack of URE2 specifically caused sensitivity to arsenite but not to arsenate. The protective role of URE2 against arsenite depended solely on the GST-encoding 3'-end portion of the gene. The nitrogen source used for growth was suggested to be an important determinant of arsenite toxicity, in keeping with non-enzymatic roles of the URE2 gene product in GATA-type regulation.
Collapse
Affiliation(s)
- Tatina T Todorova
- Faculty of Biology, Department of General and Applied Microbiology, Sofia University St. Kliment Ohridski, 1164, Sofia, Bulgaria
| | | | | |
Collapse
|
28
|
Batova M, Klobucnikova V, Oblasova Z, Gregan J, Zahradnik P, Hapala I, Subik J, Schüller C. Chemogenomic and transcriptome analysis identifies mode of action of the chemosensitizing agent CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine). BMC Genomics 2010; 11:153. [PMID: 20202201 PMCID: PMC2841119 DOI: 10.1186/1471-2164-11-153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/04/2010] [Indexed: 01/24/2023] Open
Abstract
Background CTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism. It increases the susceptibility of Saccharomyces cerevisiae, Candida albicans and Candida glabrata cells to cycloheximide, 5-fluorocytosine and azole antimycotic drugs. Here we elucidate CTBT mode of action with a combination of systematic genetic and transcriptome analysis. Results To identify the cellular processes affected by CTBT, we screened the systematic haploid deletion mutant collection for CTBT sensitive mutants. We identified 169 hypersensitive deletion mutants. The deleted genes encode proteins mainly involved in mitochondrial functions, DNA repair, transcription and chromatin remodeling, and oxidative stress response. We found that the susceptibility of yeast cells to CTBT depends on molecular oxygen. Transcriptome analysis of the immediate early response to CTBT revealed rapid induction of oxidant and stress response defense genes. Many of these genes depend on the transcription factors Yap1 and Cin5. Yap1 accumulates rapidly in the nucleus in CTBT treated cells suggesting acute oxidative stress. Moreover, molecular calculations supported a superoxide generating activity of CTBT. Superoxide production in vivo by CTBT was found associated to mitochondria as indicated by oxidation of MitoSOX Red. Conclusion We conclude that CTBT causes intracellular superoxide production and oxidative stress in fungal cells and is thus enhancing antimycotic drug effects by a secondary stress.
Collapse
Affiliation(s)
- Monika Batova
- Comenius University in Bratislava, Department of Microbiology and Virology, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
29
|
TOR signaling in invertebrates. Curr Opin Cell Biol 2009; 21:825-36. [DOI: 10.1016/j.ceb.2009.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 01/31/2023]
|
30
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kössler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schüller C, Carmona-Gutierrez D, Breitenbach-Koller L, Mück C, Jansen-Dürr P, Criollo A, Kroemer G, Madeo F, Breitenbach M. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 2009; 1:622-36. [PMID: 20157544 PMCID: PMC2806038 DOI: 10.18632/aging.100065] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/10/2009] [Indexed: 11/25/2022]
Abstract
Yeast
mother cell-specific aging constitutes a model of replicative aging as it
occurs in stem cell populations of higher eukaryotes. Here, we present a
new long-lived yeast deletion mutation,afo1 (for aging factor one),
that confers a 60% increase in replicative lifespan. AFO1/MRPL25
codes for a protein that is contained in the large subunit of the
mitochondrial ribosome. Double mutant experiments indicate that the
longevity-increasing action of the afo1 mutation is independent of
mitochondrial translation, yet involves the cytoplasmic Tor1p as well as
the growth-controlling transcription factor Sfp1p. In their final cell
cycle, the long-lived mutant cells do show the phenotypes of yeast
apoptosis indicating that the longevity of the mutant is not caused by an
inability to undergo programmed cell death. Furthermore, the afo1 mutation
displays high resistance against oxidants. Despite the respiratory
deficiency the mutant has paradoxical increase in growth rate compared to
generic petite mutants. A comparison of the single and double mutant
strains for afo1 and fob1 shows that the longevity phenotype
of afo1 is independent of the formation of ERCs (ribosomal DNA
minicircles). AFO1/MRPL25 function establishes a new connection
between mitochondria, metabolism and aging.
Collapse
Affiliation(s)
- Gino Heeren
- Department of Cell Biology, Division of Genetics, University of Salzburg, 5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|