1
|
Xu X, Huang Y, Yang F, Sun X, Lin R, Feng J, Yang M, Shao J, Liu X, Zhou T, Xie S, Yang Y. NudCL2 is required for cytokinesis by stabilizing RCC2 with Hsp90 at the midbody. Protein Cell 2024; 15:766-782. [PMID: 38801297 PMCID: PMC11443449 DOI: 10.1093/procel/pwae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells. Midbody, a protein-dense organelle that forms at the intercellular bridge, is indispensable for successful cytokinesis. However, the regulatory mechanism of cytokinesis at the midbody still remains elusive. Here, we unveil a critical role for NudC-like protein 2 (NudCL2), a co-chaperone of heat shock protein 90 (Hsp90), in cytokinesis regulation by stabilizing regulator of chromosome condensation 2 (RCC2) at the midbody in mammalian cells. NudCL2 localizes at the midbody, and its downregulation results in cytokinesis failure, multinucleation, and midbody disorganization. Using iTRAQ-based quantitative proteomic analysis, we find that RCC2 levels are decreased in NudCL2 knockout (KO) cells. Moreover, Hsp90 forms a complex with NudCL2 to stabilize RCC2, which is essential for cytokinesis. RCC2 depletion mirrors phenotypes observed in NudCL2-downregulated cells. Importantly, ectopic expression of RCC2 rescues the cytokinesis defects induced by NudCL2 deletion, but not vice versa. Together, our data reveal the significance of the NudCL2/Hsp90/RCC2 pathway in cytokinesis at the midbody.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuliang Huang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Yang
- Research Center for Children’s Health and Innovation, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaoxia Sun
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rijin Lin
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaxing Feng
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mingyang Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaqi Shao
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Tianhua Zhou
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Center for RNA Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shanshan Xie
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuehong Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Zhang S, Wang T, Wang H, Gao B, Sun C. Identification of potential biomarkers of myopia based on machine learning algorithms. BMC Ophthalmol 2023; 23:388. [PMID: 37740201 PMCID: PMC10517464 DOI: 10.1186/s12886-023-03119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE This study aims to identify potential myopia biomarkers using machine learning algorithms, enhancing myopia diagnosis and prognosis prediction. METHODS GSE112155 and GSE15163 datasets from the GEO database were analyzed. We used "limma" for differential expression analysis and "GO plot" and "clusterProfiler" for functional and pathway enrichment analyses. The LASSO and SVM-RFE algorithms were employed to screen myopia-related biomarkers, followed by ROC curve analysis for diagnostic performance evaluation. Single-gene GSEA enrichment analysis was executed using GSEA 4.1.0. RESULTS The functional analysis of differentially expressed genes indicated their role in carbohydrate generation and polysaccharide synthesis. We identified 23 differentially expressed genes associated with myopia, four of which were highly effective diagnostic biomarkers. Single gene GSEA results showed these genes control the ubiquitin-mediated protein hydrolysis pathway. CONCLUSION Our study identifies four key myopia biomarkers, providing a foundation for future clinical and experimental validation studies.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| | - Tao Wang
- Sanitary Inspection Center, Zibo Center for Disease Control and Prevention, Zibo, 255000 PR China
| | - Huaihua Wang
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| | - Bingfang Gao
- Department of Pathology, Zibo Hospital of Integrated Traditional Chinese and Western Medicine Zibo, Zibo, 255000 PR China
| | - Chao Sun
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| |
Collapse
|
3
|
Foley K, Ward N, Hou H, Mayer A, McKee C, Xia H. Regulation of PP1 interaction with I-2, neurabin, and F-actin. Mol Cell Neurosci 2023; 124:103796. [PMID: 36442541 PMCID: PMC10038014 DOI: 10.1016/j.mcn.2022.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Reversible phosphorylation is a fundamental regulatory mechanism required for many biological processes and is coordinated by the opposing actions of protein kinases and phosphatases. Protein phosphatase 1 (PP1) is a major protein phosphatase that plays an important role in many fundamental physiological processes including synaptic transmission and memory formation. Here we investigate the regulation of PP1 by prominent signaling proteins and synaptic scaffolds including GSK3β, inhibitor-2 (I-2), neurabin (Nrb), and actin. While GSK3β is known to regulate PP1 via phosphorylation of the PP1-binding protein I-2, we found that GSK3β directly regulates PP1 via inhibitory phosphorylation in neurons. Additionally, using bioluminescence resonance energy transfer (BRET), we found that GSK3β alters PP1-I-2 interaction in living cells. The effect of GSK3β on PP1-I-2 interaction is independent of the PP1 C-terminal tail, contrary to predictions based on previous findings from purified proteins. I-2 has been shown to form a trimeric complex with PP1 and Nrb, a major synaptic scaffold for promoting PP1 localization to the actin cytoskeleton. Utilizing BRET, we found that Nrb promotes PP1-actin interaction, however no BRET was detected between I-2 and F-actin. Finally, we found that stabilizing F-actin promotes Nrb-PP1 binding and may also lead to conformational changes between Nrb-I-2 and Nrb-F-actin complexes. Overall, our findings elaborate the dynamic regulation of PP1 complexes by GSK3β, targeting proteins, and actin polymerization.
Collapse
Affiliation(s)
- Karl Foley
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hailong Hou
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Abigail Mayer
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cody McKee
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Houhui Xia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Foley K, Altimimi H, Hou H, Zhang Y, McKee C, Papasergi-Scott MM, Yang H, Mayer A, Ward N, MacLean DM, Nairn AC, Stellwagen D, Xia H. Protein phosphatase-1 inhibitor-2 promotes PP1γ positive regulation of synaptic transmission. Front Synaptic Neurosci 2022; 14:1021832. [PMID: 36276179 PMCID: PMC9582336 DOI: 10.3389/fnsyn.2022.1021832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitor-2 (I-2) is a prototypic inhibitor of protein phosphatase-1 (PP1), a major serine-threonine phosphatase that regulates synaptic plasticity and learning and memory. Although I-2 is a potent inhibitor of PP1 in vitro, our previous work has elucidated that, in vivo, I-2 may act as a positive regulator of PP1. Here we show that I-2 and PP1γ, but not PP1α, positively regulate synaptic transmission in hippocampal neurons. Moreover, we demonstrated that I-2 enhanced PP1γ interaction with its major synaptic scaffold, neurabin, by Förster resonance energy transfer (FRET)/Fluorescence lifetime imaging microscopy (FLIM) studies, while having a limited effect on PP1 auto-inhibitory phosphorylation. Furthermore, our study indicates that the effect of I-2 on PP1 activity in vivo is dictated by I-2 threonine-72 phosphorylation. Our work thus demonstrates a molecular mechanism by which I-2 positively regulates PP1 function in synaptic transmission.
Collapse
|
5
|
Specificity determinants of phosphoprotein phosphatases controlling kinetochore functions. Essays Biochem 2021; 64:325-336. [PMID: 32501472 DOI: 10.1042/ebc20190065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP-SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.
Collapse
|
6
|
Bresch AM, Yerich N, Wang R, Sperry AO. The PP1 regulator PPP1R2 coordinately regulates AURKA and PP1 to control centrosome phosphorylation and maintain central spindle architecture. BMC Mol Cell Biol 2020; 21:84. [PMID: 33238888 PMCID: PMC7687763 DOI: 10.1186/s12860-020-00327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Maintenance of centrosome number in cells is essential for accurate distribution of chromosomes at mitosis and is dependent on both proper centrosome duplication during interphase and their accurate distribution to daughter cells at cytokinesis. Two essential regulators of cell cycle progression are protein phosphatase 1 (PP1) and Aurora A kinase (AURKA), and their activities are each regulated by the PP1 regulatory subunit, protein phosphatase 1 regulatory subunit 2 (PPP1R2). We observed an increase in centrosome number after overexpression of these proteins in cells. Each of these proteins is found on the midbody in telophase and overexpression of PPP1R2 and its mutants increased cell ploidy and disrupted cytokinesis. This suggests that the increase in centrosome number we observed in PPP1R2 overexpressing cells was a consequence of errors in cell division. Furthermore, overexpression of PPP1R2 and its mutants increased midbody length and disrupted midbody architecture. Additionally, we show that overexpression of PPP1R2 alters activity of AURKA and PP1 and their phosphorylation state at the centrosome. RESULTS Overexpression of PPP1R2 caused an increase in the frequency of supernumerary centrosomes in cells corresponding to aberrant cytokinesis reflected by increased nuclear content and cellular ploidy. Furthermore, AURKA, PP1, phospho PPP1R2, and PPP1R2 were all localized to the midbody at telophase, and PP1 localization there was dependent on binding of PPP1R2 with PP1 and AURKA as well as its phosphorylation state. Additionally, overexpression of both PPP1R2 and its C-terminal AURKA binding site altered enzymatic activity of AURKA and PP1 at the centrosome and disrupted central spindle structure. CONCLUSIONS Results from our study reveal the involvement of PPP1R2 in coordinating PP1 and AURKA activity during cytokinesis. Overexpression of PPP1R2 or its mutants disrupted the midbody at cytokinesis causing accumulation of centrosomes in cells. PPP1R2 recruited PP1 to the midbody and interference with its targeting resulted in elongated and severely disrupted central spindles supporting an important role for PPP1R2 in cytokinesis.
Collapse
Affiliation(s)
- Alan-Michael Bresch
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Nadiya Yerich
- University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Rong Wang
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Ann O Sperry
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
7
|
Protein phosphatase-1: dual activity regulation by Inhibitor-2. Biochem Soc Trans 2020; 48:2229-2240. [DOI: 10.1042/bst20200503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023]
Abstract
Inhibitor-2 (I2) ranks amongst the most ancient regulators of protein phosphatase-1 (PP1). It is a small, intrinsically disordered protein that was originally discovered as a potent inhibitor of PP1. However, later investigations also characterized I2 as an activator of PP1 as well as a chaperone for PP1 folding. Numerous studies disclosed the importance of I2 for diverse cellular processes but did not describe a unifying molecular principle of PP1 regulation. We have re-analyzed the literature on I2 in the light of current insights of PP1 structure and regulation. Extensive biochemical data, largely ignored in the recent I2 literature, provide substantial indirect evidence for a role of I2 as a loader of active-site metals. In addition, I2 appears to function as a competitive inhibitor of PP1 in higher eukaryotes. The published data also demonstrate that several segments of I2 that remain unstructured in the PP1 : I2 complex are in fact essential for PP1 regulation. Together, the available data identify I2 as a dynamic activity-modulator of PP1.
Collapse
|
8
|
Khalife J, Fréville A, Gnangnon B, Pierrot C. The Multifaceted Role of Protein Phosphatase 1 in Plasmodium. Trends Parasitol 2020; 37:154-164. [PMID: 33036936 DOI: 10.1016/j.pt.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.
Collapse
Affiliation(s)
- Jamal Khalife
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France.
| | - Aline Fréville
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Bénédicte Gnangnon
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Christine Pierrot
- Center for Infection and Immunity of Lille, Biology of Apicomplexan Parasites, UMR 9017 CNRS, U1019 INSERM, Université de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
9
|
Bancroft J, Holder J, Geraghty Z, Alfonso-Pérez T, Murphy D, Barr FA, Gruneberg U. PP1 promotes cyclin B destruction and the metaphase-anaphase transition by dephosphorylating CDC20. Mol Biol Cell 2020; 31:2315-2330. [PMID: 32755477 PMCID: PMC7851957 DOI: 10.1091/mbc.e20-04-0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid segregation and anaphase. The anaphase-promoting complex/cyclosome and its coactivator CDC20 (APC/CCDC20) form the main ubiquitin E3 ligase for these two proteins. APC/CCDC20 is regulated by CDK1-cyclin B and counteracting PP1 and PP2A family phosphatases through modulation of both activating and inhibitory phosphorylation. Here, we report that PP1 promotes cyclin B destruction at the onset of anaphase by removing specific inhibitory phosphorylation in the N-terminus of CDC20. Depletion or chemical inhibition of PP1 stabilizes cyclin B and results in a pronounced delay at the metaphase-to-anaphase transition after chromosome alignment. This requirement for PP1 is lost in cells expressing CDK1 phosphorylation-defective CDC206A mutants. These CDC206A cells show a normal spindle checkpoint response and rapidly destroy cyclin B once all chromosomes have aligned and enter into anaphase in the absence of PP1 activity. PP1 therefore facilitates the metaphase-to-anaphase transition by promoting APC/CCDC20-dependent destruction of cyclin B in human cells.
Collapse
Affiliation(s)
- James Bancroft
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Zoë Geraghty
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Daniel Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
10
|
Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM, Berry L, Seveno M, Braun-Breton C, Kosber AL, Elsworth B, Arriola JSN, Lebrun M, Gygi SP, Lamarque MH, Duraisingh MT. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat Commun 2020; 11:3532. [PMID: 32669539 PMCID: PMC7363832 DOI: 10.1038/s41467-020-17306-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alexandra Miliu
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Jonathan M Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Arianna M Bonilla
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Laurence Berry
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Marie Seveno
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Catherine Braun-Breton
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Jose S N Arriola
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France.
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
11
|
Luo W, Xu C, Phillips S, Gardenswartz A, Rosenblum JM, Ayello J, Lessnick SL, Hao HX, Cairo MS. Protein phosphatase 1 regulatory subunit 1A regulates cell cycle progression in Ewing sarcoma. Oncotarget 2020; 11:1691-1704. [PMID: 32477459 PMCID: PMC7233808 DOI: 10.18632/oncotarget.27571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022] Open
Abstract
Ewing sarcoma (ES) is a malignant pediatric bone and soft tissue tumor. Patients with metastatic ES have a dismal outcome which has not been improved in decades. The major challenge in the treatment of metastatic ES is the lack of specific targets and rational combinatorial therapy. We recently found that protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is specifically highly expressed in ES and promotes tumor growth and metastasis in ES. In the current investigation, we show that PPP1R1A regulates ES cell cycle progression in G1/S phase by down-regulating cell cycle inhibitors p21Cip1 and p27Kip1, which leads to retinoblastoma (Rb) protein hyperphosphorylation. In addition, we show that PPP1R1A promotes normal transcription of histone genes during cell cycle progression. Importantly, we demonstrate a synergistic/additive effect of the combinatorial therapy of PPP1R1A and insulin-like growth factor 1 receptor (IGF-1R) inhibition on decreasing ES cell proliferation and migration in vitro and limiting xenograft tumor growth and metastasis in vivo. Taken together, our findings suggest a role of PPP1R1A as an ES specific cell cycle modulator and that simultaneous targeting of PPP1R1A and IGF-1R pathways is a promising specific and effective strategy to treat both primary and metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Changxin Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Sarah Phillips
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | | | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Huai-Xiang Hao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Immunology and Microbiology, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
12
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
13
|
The RIF1-PP1 Axis Controls Abscission Timing in Human Cells. Curr Biol 2019; 29:1232-1242.e5. [DOI: 10.1016/j.cub.2019.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023]
|
14
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Wang F, Wang L, Fisher LA, Li C, Wang W, Peng A. Phosphatase 1 Nuclear Targeting Subunit (PNUTS) Regulates Aurora Kinases and Mitotic Progression. Mol Cancer Res 2018; 17:10-19. [PMID: 30190438 DOI: 10.1158/1541-7786.mcr-17-0670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
Mitotic progression is regulated largely by reversible phosphorylation events that are mediated by mitotic kinases and phosphatases. Protein phosphatase 1 (PP1) has been shown to play a crucial role in regulation of mitotic entry, progression, and exit. We previously observed, in Xenopus egg extracts, that phosphatase 1 nuclear targeting subunit (PPP1R10/PNUTS) acts as a mitotic regulator by negatively modulating PP1. This study investigates the role of PNUTS in mitotic progression in mammalian cells, and demonstrates that PNUTS expression is elevated in mitosis and depletion partially blocks mitotic entry. Cells that enter mitosis after PNUTS knockdown exhibit frequent chromosome mis-segregation. Aurora A/B kinase complexes and several kinetochore components are identified as PNUTS-associated proteins. PNUTS depletion suppresses the activation of Aurora A/B kinases, and disrupts the spatiotemporal regulation of the chromosomal passenger complex (CPC). PNUTS dynamically localizes to kinetochores, and is required for the activation of the spindle assembly checkpoint. Finally, PNUTS depletion sensitizes the tumor cell response to Aurora inhibition, suggesting that PNUTS is a potential drug target in combination anticancer therapy. IMPLICATIONS: Delineation of how PNUTS governs the mitotic activation and function of Aurora kinases will improve the understanding of the complex phospho-regulation in mitotic progression, and suggest new options to enhance the therapeutic efficacy of Aurora inhibitors.
Collapse
Affiliation(s)
- Feifei Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska.,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska
| | - Laura A Fisher
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska.
| |
Collapse
|
16
|
Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:859-873. [PMID: 29797049 DOI: 10.1007/s00210-018-1515-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/13/2018] [Indexed: 01/16/2023]
Abstract
About half of the cardiac serine/threonine phosphatase activity is due to the activity of protein phosphatase type 1 (PP1). The activity of PP1 can be inhibited by an endogenous protein for which the expression inhibitor-2 (I-2) has been coined. We have previously described a transgenic mouse overexpressing a truncated form of I-2. Here, we have described and initially characterized several founders that overexpress the non-truncated (i.e., full length) I-2 in the mouse heart (TG) and compared them with non-transgenic littermates (WT). The founder with the highest overexpression of I-2 displayed under basal conditions no difference in contractile parameters (heart rate, developed tension, and its first derivate) compared to WT. The relative level of PP1 inhibition was similar in mice overexpressing the non-truncated as well as the truncated form of I-2. For comparison, we overexpressed I-2 by an adenoviral system in several cell lines (myocytes from a tumor-derived cell line (H9C2), neonatal rat cardiomyocytes, smooth muscle cells from rat aorta (A7R5)). We noted gene dosage-dependent staining for I-2 protein in infected cells together with reduced PP1 activity. Finally, I-2 expression in neonatal rat cardiomyocytes led to an increase of Ca2+ transients by about 60%. In summary, we achieved immunologically confirmed overexpression of wild-type I-2 in cardiovascular cells which was biochemically able to inhibit PP1 in the whole heart (using I-2 transgenic mice) as well as in isolated cells including cardiomyocytes (using I-2 coding virus) indirectly underscoring the importance of PP1 for cardiovascular function.
Collapse
|
17
|
McElroy SL, Winham SJ, Cuellar-Barboza AB, Colby CL, Ho AMC, Sicotte H, Larrabee BR, Crow S, Frye MA, Biernacka JM. Bipolar disorder with binge eating behavior: a genome-wide association study implicates PRR5-ARHGAP8. Transl Psychiatry 2018; 8:40. [PMID: 29391396 PMCID: PMC5804024 DOI: 10.1038/s41398-017-0085-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022] Open
Abstract
Bipolar disorder (BD) is associated with binge eating behavior (BE), and both conditions are heritable. Previously, using data from the Genetic Association Information Network (GAIN) study of BD, we performed genome-wide association (GWA) analyses of BD with BE comorbidity. Here, utilizing data from the Mayo Clinic BD Biobank (969 BD cases, 777 controls), we performed a GWA analysis of a BD subtype defined by BE, and case-only analysis comparing BD subjects with and without BE. We then performed a meta-analysis of the Mayo and GAIN results. The meta-analysis provided genome-wide significant evidence of association between single nucleotide polymorphisms (SNPs) in PRR5-ARHGAP8 and BE in BD cases (rs726170 OR = 1.91, P = 3.05E-08). In the meta-analysis comparing cases with BD with comorbid BE vs. non-BD controls, a genome-wide significant association was observed at SNP rs111940429 in an intergenic region near PPP1R2P5 (p = 1.21E-08). PRR5-ARHGAP8 is a read-through transcript resulting in a fusion protein of PRR5 and ARHGAP8. PRR5 encodes a subunit of mTORC2, a serine/threonine kinase that participates in food intake regulation, while ARHGAP8 encodes a member of the RhoGAP family of proteins that mediate cross-talk between Rho GTPases and other signaling pathways. Without BE information in controls, it is not possible to determine whether the observed association reflects a risk factor for BE in general, risk for BE in individuals with BD, or risk of a subtype of BD with BE. The effect of PRR5-ARHGAP8 on BE risk thus warrants further investigation.
Collapse
Affiliation(s)
- Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Colin L Colby
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ada Man-Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Hugues Sicotte
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Scott Crow
- University of Minnesota, Minneapolis, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Rogers S, McCloy R, Watkins DN, Burgess A. Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit. Bioessays 2017; 38 Suppl 1:S24-32. [PMID: 27417119 DOI: 10.1002/bies.201670905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022]
Abstract
Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.
Collapse
Affiliation(s)
- Samuel Rogers
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Rachael McCloy
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - D Neil Watkins
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia.,Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Andrew Burgess
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia
| |
Collapse
|
19
|
Ahsan N, Chen M, Salvato F, Wilson RS, Shyama Prasad Rao R, Thelen JJ. Comparative proteomic analysis provides insight into the biological role of protein phosphatase inhibitor-2 from Arabidopsis. J Proteomics 2017; 165:51-60. [DOI: 10.1016/j.jprot.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 01/21/2023]
|
20
|
The Toxoplasma gondii inhibitor-2 regulates protein phosphatase 1 activity through multiple motifs. Parasitol Res 2017; 116:2417-2426. [PMID: 28667522 DOI: 10.1007/s00436-017-5543-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Toxoplasma gondii has a complex life cycle characterized by multiple differentiation steps that are essential for its survival in both human and definitive feline host. Several studies have demonstrated the importance of phosphorylations by protein kinases during the life cycle of T. gondii. However, very little is known about protein phosphatases and their regulators in the parasite. We report the molecular and functional characterization of the T. gondii ortholog of the inhibitor-2 protein, designated TgI2. We show that TgI2 encompasses conserved motifs involved in the interaction and modulation of the phosphatase activity of T. gondii protein phosphatase 1, named TgPP1. We show that a specific combination of motifs is involved in binding and/or inhibition of the TgPP1 activity. We show here that the TgI2 protein is a potent inhibitor of TgPP1 phosphatase activity. TgI2 SILK and RVxF motifs are critical for regulating the activity of TgPP1, a feature that is common with the higher eukaryotes inhibitor-2 protein.
Collapse
|
21
|
Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O’Connell KF. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet 2017; 13:e1006543. [PMID: 28103229 PMCID: PMC5289615 DOI: 10.1371/journal.pgen.1006543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/02/2017] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle. The centrosomes are responsible for organizing the mitotic spindle a microtubule-based structure that centers, then segregates, the chromosomes during cell division. When a cell divides it normally possesses two centrosomes, allowing it to build a bipolar spindle and accurately segregate the chromosomes to two daughter cells. Appropriate control of centrosome number is therefore crucial to maintaining genome stability. Centrosome number is largely controlled by their regulated duplication. In particular, the protein Plk4, which is essential for duplication, must be strictly limited as an overabundance leads to excess centrosome duplication. We have identified protein phosphatase 1 as a critical regulator of the C. elegans Plk4 homolog (known as ZYG-1). When protein phosphatase 1 is down-regulated, ZYG-1 levels increase leading to centrosome amplification. Thus our work identifies a novel mechanism that limits centrosome duplication.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
- * E-mail: (NP); (KFO)
| | - Jyoti Iyer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Anar Naik
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
| | - Michael P. Dougherty
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Markus Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
- * E-mail: (NP); (KFO)
| |
Collapse
|
22
|
Al-Khafaji AS, Davies MP, Risk JM, Marcus MW, Koffa M, Gosney JR, Shaw RJ, Field JK, Liloglou T. Aurora B expression modulates paclitaxel response in non-small cell lung cancer. Br J Cancer 2017; 116:592-599. [PMID: 28095398 PMCID: PMC5344288 DOI: 10.1038/bjc.2016.453] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
Background: Taxanes are mitotic poisons widely used in the treatment of non-small cell
lung cancer (NSCLC), however, little is known about potential molecular
modulators of response to these compounds. Aurora B (AURKB) is a critical
regulator of the mitotic spindle assembly, previously shown overexpressed in
NSCLC. Here we investigated the hypothesis that AURKB expression modulates
the efficacy of taxanes in NSCLC cells. Methods: AURKB mRNA expression was determined by qPCR in 132 frozen NSCLC
tissues and nine NSCLC cell lines. Aurora B expression was knocked down in
cell lines using multiple shRNA constructs. Barasertib was used to
specifically inhibit AURKB activity, determined by the level of H3S10
phosphorylation. Results: Frequent AURKB mRNA upregulation was observed in NSCLC tissues
(P<0.0001), being more prominent in squamous carcinomas
(P<0.0001). Aurora B expression in cell lines strongly
correlated with sensitivity to both docetaxel (P=0.004)
and paclitaxel (P=0.007). Aurora B knockdown derivatives
consistently showed a dose-dependent association between low-AURKB
expression and resistance to paclitaxel. Specific chemical inhibition of
Aurora B activity also demonstrated a strong dose-dependent efficiency in
triggering paclitaxel resistance. Conclusions: Aurora B activity is an important modulator of taxane response in NSCLC
cells. This may lead to further insights into taxane sensitivity of NSCLC
tumours.
Collapse
Affiliation(s)
- Ahmed Sk Al-Khafaji
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK.,Department of Biology, Collage ofScience, University of Baghdad, Baghdad,Iraq
| | - Michael Pa Davies
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Janet M Risk
- Mersey Head and Neck OncologyResearch Group, Department of Molecular and Clinical Cancer Medicine,Institute of Translational Medicine, University of Liverpool,Liverpool, UK
| | - Michael W Marcus
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Maria Koffa
- Department of Molecular Biology andGenetics, Democritus University of Thrace,Alexandroupolis, Greece
| | - John R Gosney
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Richard J Shaw
- Mersey Head and Neck OncologyResearch Group, Department of Molecular and Clinical Cancer Medicine,Institute of Translational Medicine, University of Liverpool,Liverpool, UK
| | - John K Field
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Triantafillos Liloglou
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| |
Collapse
|
23
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
24
|
Rebelo S, Santos M, Martins F, da Cruz e Silva EF, da Cruz e Silva OA. Protein phosphatase 1 is a key player in nuclear events. Cell Signal 2015; 27:2589-98. [DOI: 10.1016/j.cellsig.2015.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
|
25
|
Korrodi-Gregório L, Abrantes J, Muller T, Melo-Ferreira J, Marcus K, da Cruz e Silva OAB, Fardilha M, Esteves PJ. Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evol Biol 2013; 13:242. [PMID: 24195737 PMCID: PMC3840573 DOI: 10.1186/1471-2148-13-242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/29/2013] [Indexed: 01/23/2023] Open
Abstract
Background Pseudogenes are traditionally considered “dead” genes, therefore lacking biological functions. This view has however been challenged during the last decade. This is the case of the Protein phosphatase 1 regulatory subunit 2 (PPP1R2) or inhibitor-2 gene family, for which several incomplete copies exist scattered throughout the genome. Results In this study, the pseudogenization process of PPP1R2 was analyzed. Ten PPP1R2-related pseudogenes (PPP1R2P1-P10), highly similar to PPP1R2, were retrieved from the human genome assembly present in the databases. The phylogenetic analysis of mammalian PPP1R2 and related pseudogenes suggested that PPP1R2P7 and PPP1R2P9 retroposons appeared before the great mammalian radiation, while the remaining pseudogenes are primate-specific and retroposed at different times during Primate evolution. Although considered inactive, four of these pseudogenes seem to be transcribed and possibly possess biological functions. Given the role of PPP1R2 in sperm motility, the presence of these proteins was assessed in human sperm, and two PPP1R2-related proteins were detected, PPP1R2P3 and PPP1R2P9. Signatures of negative and positive selection were also detected in PPP1R2P9, further suggesting a role as a functional protein. Conclusions The results show that contrary to initial observations PPP1R2-related pseudogenes are not simple bystanders of the evolutionary process but may rather be at the origin of genes with novel functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal.
| |
Collapse
|
26
|
Uhrig RG, Labandera AM, Moorhead GB. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. TRENDS IN PLANT SCIENCE 2013; 18:505-13. [PMID: 23790269 DOI: 10.1016/j.tplants.2013.05.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 05/20/2023]
Abstract
The major plant serine/threonine protein phosphatases belong to the phosphoprotein phosphatase (PPP) family. Over the past few years the complement of Arabidopsis thaliana PPP family of catalytic subunits has been cataloged and many regulatory subunits identified. Specific roles for PPPs have been characterized, including roles in auxin and brassinosteroid signaling, in phototropism, in regulating the target of rapamycin pathway, and in cell stress responses. In this review, we provide a framework for understanding the PPP family by exploring the fundamental role of the phosphatase regulatory subunits that drive catalytic engine specificity. Although there are fewer plant protein phosphatases compared with their protein kinase partners, their function is now recognized to be as dynamic and as regulated as that of protein kinases.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biological Sciences, University of Calgary, Canada
| | | | | |
Collapse
|
27
|
DeVaul N, Wang R, Sperry AO. PPP1R42, a PP1 binding protein, regulates centrosome dynamics in ARPE-19 cells. Biol Cell 2013; 105:359-71. [PMID: 23718219 DOI: 10.1111/boc.201300019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The centrosome is the primary site for microtubule nucleation in cells and orchestrates reorganisation of the microtubule cytoskeleton during the cell cycle. The activities of the centrosome must be closely aligned with progression of the cell cycle; misregulation of centrosome separation and duplication is a hallmark of cancer. In a subset of cells, including the developing spermatid, the centrosome becomes specialised to form the basal body thereby supporting growth of the axoneme in morphogenesis of cilia and flagella, structures critical for signalling and motility. Mammalian spermatogenesis is an excellent model system to investigate the transformations in cellular architecture that accompany these changes including formation of the flagellum. We have previously identified a leucine-rich repeat protein (PPP1R42) that contains a protein phosphatase-1 binding site and translocates from the apical nucleus to the centrosome at the base of the flagellum during spermiogenesis. In this manuscript, we examine localisation and function of PPP1R42 in a ciliated epithelial cell model as a first step in understanding the role of this protein in centrosome function and flagellar formation. RESULTS We demonstrate that PPP1R42 localises to the basal body in ARPE-19 retinal epithelial cells. Co-localisation and co-immunoprecipitation experiments further show that PPP1R42 interacts with γ-tubulin. Inhibition of PPP1R42 with small interfering RNAs causes accumulation of centrosomes indicating premature centrosome separation. Importantly, the activity of two signalling molecules that regulate centrosome separation, PP1 phosphatase and NEK2 kinase, changes when PPP1R42 is inhibited: PP1 activity is reduced with a corresponding increase in NEK2 activity. CONCLUSIONS We have identified a role for the PP1-binding protein, PPP1R42, in centrosome separation in ciliated ARPE-19 cells. Our finding that inhibition of PPP1R42 expression increases the number of centrosomes per cell is consistent with our model that PPP1R42 is a positive regulator of PP1. PPP1R42 depletion reduces the activity of PP1 leading to activation of NEK2, the kinase responsible for phosphorylation of centrosomal linker proteins promoting centrosome separation. This work identifies a new molecule localised to the centrosome and basal body with a role in the complex signalling network responsible for controlling centrosome activities.
Collapse
Affiliation(s)
- Nicole DeVaul
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | | | | |
Collapse
|
28
|
Fréville A, Cailliau-Maggio K, Pierrot C, Tellier G, Kalamou H, Lafitte S, Martoriati A, Pierce RJ, Bodart JF, Khalife J. Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC Biol 2013; 11:80. [PMID: 23837822 PMCID: PMC3735429 DOI: 10.1186/1741-7007-11-80] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/18/2013] [Indexed: 01/21/2023] Open
Abstract
Background It is clear that the coordinated and reciprocal actions of kinases and phosphatases are fundamental in the regulation of development and growth of the malaria parasite. Protein Phosphatase type 1 is a key enzyme playing diverse and essential roles in cell survival. Its dephosphorylation activity/specificity is governed by the interaction of its catalytic subunit (PP1c) with regulatory proteins. Among these, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. In vivo studies in various organisms revealed a defect in chromosome segregation and cell cycle progression when the function of I2 is blocked. Results In this report, we present evidence that Plasmodium falciparum, the causative agent of the most deadly form of malaria, expresses a structural homolog of mammalian I2, named PfI2. Biochemical, in vitro and in vivo studies revealed that PfI2 binds PP1 and inhibits its activity. We further showed that the motifs 12KTISW16 and 102HYNE105 are critical for PfI2 inhibitory activity. Functional studies using the Xenopus oocyte model revealed that PfI2 is able to overcome the G2/M cell cycle checkpoint by inducing germinal vesicle breakdown. Genetic manipulations in P. falciparum suggest an essential role of PfI2 as no viable mutants with a disrupted PfI2 gene were detectable. Additionally, peptides derived from PfI2 and competing with RVxF binding sites in PP1 exhibit anti-plasmodial activity against blood stage parasites in vitro. Conclusions Taken together, our data suggest that the PfI2 protein could play a role in the regulation of the P. falciparum cell cycle through its PfPP1 phosphatase regulatory activity. Structure-activity studies of this regulator led to the identification of peptides with anti-plasmodial activity against blood stage parasites in vitro suggesting that PP1c-regulator interactions could be a novel means to control malaria.
Collapse
Affiliation(s)
- Aline Fréville
- Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, University of Lille Nord de France, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019 Lille, Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Korrodi-Gregório L, Ferreira M, Vintém AP, Wu W, Muller T, Marcus K, Vijayaraghavan S, Brautigan DL, da Cruz E Silva OAB, Fardilha M, da Cruz E Silva EF. Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa. BMC Cell Biol 2013; 14:15. [PMID: 23506001 PMCID: PMC3606321 DOI: 10.1186/1471-2121-14-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background Protein Ser/Thr Phosphatase PPP1CC2 is an alternatively spliced isoform of PPP1C that is highly enriched in testis and selectively expressed in sperm. Addition of the phosphatase inhibitor toxins okadaic acid or calyculin A to caput and caudal sperm triggers and stimulates motility, respectively. Thus, the endogenous mechanisms of phosphatase inhibition are fundamental for controlling sperm function and should be characterized. Preliminary results have shown a protein phosphatase inhibitor activity resembling PPP1R2 in bovine and primate spermatozoa. Results Here we show conclusively, for the first time, that PPP1R2 is present in sperm. In addition, we have also identified a novel protein, PPP1R2P3. The latter was previously thought to be an intron-less pseudogene. We show that the protein corresponding to the pseudogene is expressed. It has PPP1 inhibitory potency similar to PPP1R2. The potential phosphosites in PPP1R2 are substituted by non-phosphorylable residues, T73P and S87R, in PPP1R2P3. We also confirm that PPP1R2/PPP1R2P3 are phosphorylated at Ser121 and Ser122, and report a novel phosphorylation site, Ser127. Subfractionation of sperm structures show that PPP1CC2, PPP1R2/PPP1R2P3 are located in the head and tail structures. Conclusions The conclusive identification and localization of sperm PPP1R2 and PPP1R2P3 lays the basis for future studies on their roles in acrosome reaction, sperm motility and hyperactivation. An intriguing possibility is that a switch in PPP1CC2 inhibitory subunits could be the trigger for sperm motility in the epididymis and/or sperm hyperactivation in the female reproductive tract.
Collapse
Affiliation(s)
- Luis Korrodi-Gregório
- Laboratory of Signal Transduction, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Porter IM, Schleicher K, Porter M, Swedlow JR. Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun 2013; 4:2677. [PMID: 24157919 PMCID: PMC3826647 DOI: 10.1038/ncomms3677] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022] Open
Abstract
Mitotic entry and progression require the activation of several mitotic kinases and the proper regulation and localization of several phosphatases. The activity and localization of each of these enzymes is tightly controlled through a series of specific activators, inhibitors and regulatory subunits. Two proteins, Ensa and Arpp-19, were recently identified as specific inhibitors of PP2A-B55 and are critical for allowing full activity of Cdk1/cyclin B and entry into mitosis. Here we show that Bod1, a protein required for proper chromosome alignment at mitosis, shares sequence similarity with Ensa and Arpp-19 and specifically inhibits the kinetochore-associated PP2A-B56 holoenzyme. PP2A-B56 regulates the stability of kinetochore-microtubule attachments by dephosphorylating several kinetochore proteins. Loss of Bod1 changes the balance of phosphorylation at kinetochores, causing defects in kinetochore function. Bod1, Ensa and Arpp-19 define a family of specific PP2A inhibitors that regulate specific PP2A holoenzymes at distinct locations and points in the cell cycle.
Collapse
Affiliation(s)
- Iain M. Porter
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Katharina Schleicher
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael Porter
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jason R. Swedlow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
31
|
Suppressors of ipl1-2 in components of a Glc7 phosphatase complex, Cdc48 AAA ATPase, TORC1, and the kinetochore. G3-GENES GENOMES GENETICS 2012; 2:1687-701. [PMID: 23275890 PMCID: PMC3516489 DOI: 10.1534/g3.112.003814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/24/2012] [Indexed: 01/26/2023]
Abstract
Ipl1/Aurora B is the catalytic subunit of a protein kinase complex required for chromosome segregation and nuclear division. Before anaphase, Ipl1 is required to establish proper kinetochore-microtubule associations and to regulate the spindle assembly checkpoint (SAC). The phosphatase Glc7/PP1 opposes Ipl1 for these activities. To investigate Ipl1 and Glc7 regulation in more detail, we isolated and characterized mutations in the yeast Saccharomyces cerevisiae that raise the restrictive temperature of the ipl-2 mutant. These suppressors include three intragenic, second-site revertants in IPL1; 17 mutations in Glc7 phosphatase components (GLC7, SDS22, YPI1); two mutations in SHP1, encoding a regulator of the AAA ATPase Cdc48; and a mutation in TCO89, encoding a subunit of the TOR Complex 1. Two revertants contain missense mutations in microtubule binding components of the kinetochore. rev76 contains the missense mutation duo1-S115F, which alters an essential component of the DAM1/DASH complex. The mutant is cold sensitive and arrests in G2/M due to activation of the SAC. rev8 contains the missense mutation ndc80-K204E. K204 of Ndc80 corresponds to K166 of human Ndc80 and the human Ndc80 K166E variant was previously shown to be defective for microtubule binding in vitro. In a wild-type IPL1 background, ndc80-K204E cells grow slowly and the SAC is activated. The slow growth and cell cycle delay of ndc80-K204E cells are partially alleviated by the ipl1-2 mutation. These data provide biological confirmation of a biochemically based model for the effect of phosphorylation on Ndc80 function.
Collapse
|
32
|
Eto M, Brautigan DL. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 2012; 64:732-9. [PMID: 22815089 DOI: 10.1002/iub.1067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/05/2012] [Indexed: 01/23/2023]
Abstract
Protein phosphatase activity acts as a primary determinant of the extent and duration of phosphorylation of cellular proteins in response to physiological stimuli. Ser/Thr protein phosphatase-1 (PP1) belongs to the PPP superfamily, and is associated with regulatory subunits that confer substrate specificity, allosteric regulation, and subcellular compartmentalization. In addition, all eukaryotic cells contain multiple heat-stable proteins that originally were thought to inhibit phosphatase catalytic subunits released from the regulatory subunits, as a fail-safe mechanism. However, discovery of C-kinase-activated PP1 inhibitor, Mr of 17 kDa (CPI-17) required fresh thinking about the endogenous inhibitors as specific regulators of particular phosphatase complexes, acting in addition to, not instead of, regulatory subunits. The cellular actions of the endogenous inhibitors are controlled by phosphorylation, connecting them to kinase pathways. More recent progress has unveiled additional functions of PP1 inhibitor-2 (I-2), including regulation of protein kinases. Transcriptional mechanisms govern the expression levels of CPI-17 in response to stimuli. If true for other inhibitor proteins, they have the potential of being diagnostic markers for pathological conditions. We discuss specific examples of PP1 inhibitor proteins regulating particular cellular functions and the rationale for incorporating phosphatase inhibitor proteins in development of new therapeutic strategies.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
33
|
Wurzenberger C, Held M, Lampson MA, Poser I, Hyman AA, Gerlich DW. Sds22 and Repo-Man stabilize chromosome segregation by counteracting Aurora B on anaphase kinetochores. ACTA ACUST UNITED AC 2012; 198:173-83. [PMID: 22801782 PMCID: PMC3410419 DOI: 10.1083/jcb.201112112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repo-Man and Sds22 counteract Aurora B phosphorylation of Dsn1 and thus regulate the kinetochore–microtubule interface during anaphase. During mitotic spindle assembly, Aurora B kinase is part of an error correction mechanism that detaches microtubules from kinetochores that are under low mechanical tension. During anaphase, however, kinetochore–microtubule attachments must be maintained despite a drop of tension after removal of sister chromatid cohesion. Consistent with this requirement, Aurora B relocates away from chromosomes to the central spindle at the metaphase–anaphase transition. By ribonucleic acid interference screening using a phosphorylation biosensor, we identified two PP1-targeting subunits, Sds22 and Repo-Man, which counteracted Aurora B–dependent phosphorylation of the outer kinetochore component Dsn1 during anaphase. Sds22 or Repo-Man depletion induced transient pauses during poleward chromosome movement and a high incidence of chromosome missegregation. Thus, our study identifies PP1-targeting subunits that regulate the microtubule–kinetochore interface during anaphase for faithful chromosome segregation.
Collapse
Affiliation(s)
- Claudia Wurzenberger
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Barr FA, Elliott PR, Gruneberg U. Protein phosphatases and the regulation of mitosis. J Cell Sci 2011; 124:2323-34. [PMID: 21709074 DOI: 10.1242/jcs.087106] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dynamic control of protein phosphorylation is necessary for the regulation of many cellular processes, including mitosis and cytokinesis. Indeed, although the central role of protein kinases is widely appreciated and intensely studied, the importance of protein phosphatases is often overlooked. Recent studies, however, have highlighted the considerable role of protein phosphatases in both the spatial and temporal control of protein kinase activity, and the modulation of substrate phosphorylation. Here, we will focus on recent advances in our understanding of phosphatase structure, and the importance of phosphatase function in the control of mitotic spindle formation, chromosome architecture and cohesion, and cell division.
Collapse
Affiliation(s)
- Francis A Barr
- University of Liverpool, Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK.
| | | | | |
Collapse
|
35
|
Inhibitor-2 induced M-phase arrest in Xenopus cycling egg extracts is dependent on MAPK activation. Cell Mol Biol Lett 2011; 16:669-88. [PMID: 21956525 PMCID: PMC6275968 DOI: 10.2478/s11658-011-0030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/16/2011] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily-conserved protein phosphatase 1 (PP1) plays a central role in dephosphorylation of phosphoproteins during the M phase of the cell cycle. We demonstrate here that the PP1 inhibitor inhibitor-2 protein (Inh-2) induces an M-phase arrest in Xenopus cycling egg extracts. Interestingly, the characteristics of this M-phase arrest are similar to those of mitogen-activated protein kinase (p42MAPK)-induced M-phase arrest. This prompted us to investigate whether Inh-2-induced M-phase arrest was dependent on activation of the p42MAPK pathway. We demonstrate here that MAPK activity is required for Inh-2-induced M-phase arrest, as inhibition of MAPK by PD98059 allowed cycling extracts to exit M phase, despite the presence of Inh-2. We next investigated whether Inh-2 phosphorylation by the MAPK pathway was required to induce an M-phase arrest. We discovered that while p90Rsk (a MAPK protein required for M-phase arrest) is able to phosphorylate Inh-2, this phosphorylation is not required for Inh-2 function. Overall, our results suggest a novel mechanism linking p42MAPK and PP1 pathways during M phase of the cell cycle.
Collapse
|
36
|
Wurzenberger C, Gerlich DW. Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 2011; 12:469-82. [PMID: 21750572 DOI: 10.1038/nrm3149] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mitosis-to-interphase transition involves dramatic cellular reorganization from a state that supports chromosome segregation to a state that complies with all functions of an interphase cell. This process, termed mitotic exit, depends on the removal of mitotic phosphorylations from a broad range of substrates. Mitotic exit regulation involves inactivation of mitotic kinases and activation of counteracting protein phosphatases. The key mitotic exit phosphatase in budding yeast, Cdc14, is now well understood. By contrast, in animal cells, it is now emerging that mitotic exit relies on distinct regulatory networks, including the protein phosphatases PP1 and PP2A.
Collapse
Affiliation(s)
- Claudia Wurzenberger
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETHZ), HPM D11.3, Schafmattstrasse 18, 8093 Zürich, Switzerland
| | | |
Collapse
|
37
|
Sami F, Smet-Nocca C, Khan M, Landrieu I, Lippens G, Brautigan DL. Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2. Biochemistry 2011; 50:6567-78. [PMID: 21714498 DOI: 10.1021/bi200553e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pin1 is a prolyl isomerase that recognizes phosphorylated Ser/Thr-Pro sites, and phosphatase inhibitor-2 (I-2) is phosphorylated during mitosis at a PSpTP site that is expected to be a Pin1 substrate. However, we previously discovered I-2, but not phospho-I-2, bound to Pin1 as an allosteric modifier of Pin1 substrate specificity [Li, M., et al. (2008) Biochemistry 47, 292]. Here, we use binding assays and NMR spectroscopy to map the interactions on Pin1 and I-2 to elucidate the organization of this complex. Despite having sequences that are ∼50% identical, human, Xenopus, and Drosophila I-2 proteins all exhibited identical, saturable binding to GST-Pin1 with K(0.5) values of 0.3 μM. The (1)H-(15)N heteronuclear single-quantum coherence spectra for both the WW domain and isomerase domain of Pin1 showed distinctive shifts upon addition of I-2. Conversely, as shown by NMR spectroscopy, specific regions of I-2 were affected by addition of Pin1. A single-residue I68A substitution in I-2 weakened binding to Pin1 by half and essentially eliminated binding to the isolated WW domain. On the other hand, truncation of I-2 to residue 152 had a minimal effect on binding to the WW domain but eliminated binding to the isomerase domain. Size exclusion chromatography revealed that wild-type I-2 and Pin1 formed a large (>300 kDa) complex and I-2(I68A) formed a complex of half the size that we propose are a heterotetramer and a heterodimer, respectively. Pin1 and I-2 are conserved among eukaryotes from yeast to humans, and we propose they make up an ancient partnership that provides a means for regulating Pin1 specificity and function.
Collapse
Affiliation(s)
- Furqan Sami
- Center for Cell Signaling and Department of Microbiology, University of Virginia School of Medicine, Box 800577-MSB7225, Charlottesville, Virginia 22908, United States
| | | | | | | | | | | |
Collapse
|
38
|
Identification and characterization of AtI-2, an Arabidopsis homologue of an ancient protein phosphatase 1 (PP1) regulatory subunit. Biochem J 2011; 435:73-83. [PMID: 21222654 DOI: 10.1042/bj20101035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2). Bioinformatic analysis revealed remarkable conservation of three regions of plant I-2 that play key roles in binding to PP1 and regulating its function. The sequence-related properties of plant I-2 were compared across eukaryotes, indicating a lack of I-2 in some species and the emergence points from key motifs during the evolution of this ancient regulator. Biochemical characterization of AtI-2 (Arabidopsis I-2) revealed its ability to inhibit all plant PP1 isoforms and inhibitory dependence requiring the primary interaction motif known as RVXF. Arabidopsis I-2 was shown to be a phosphoprotein in vivo that was enriched in the nucleus. TAP (tandem affinity purification)-tag experiments with plant I-2 showed in vivo association with several Arabidopsis PP1 isoforms and identified other potential I-2 binding proteins.
Collapse
|
39
|
Cannon JF. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:27-59. [PMID: 20800758 DOI: 10.1016/s0065-2164(10)73002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, and its close relatives are unique among eukaryotes in having a single gene, GLC7, encoding protein phosphatase-1 (PP1). This enzyme with a highly conserved amino acid sequence controls many processes in all eukaryotic cells. Therefore, the study of Glc7 function offers a unique opportunity to gain a comprehensive understanding of this critical regulatory enzyme. This review summarizes our current knowledge of how Glc7 function modulates processes in the cytoplasm and nucleus. Additionally, global Glc7 regulation is described.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
40
|
Posch M, Khoudoli GA, Swift S, King EM, DeLuca JG, Swedlow JR. Sds22 regulates aurora B activity and microtubule-kinetochore interactions at mitosis. J Cell Biol 2010; 191:61-74. [PMID: 20921135 PMCID: PMC2953433 DOI: 10.1083/jcb.200912046] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 09/08/2010] [Indexed: 11/22/2022] Open
Abstract
We have studied Sds22, a conserved regulator of protein phosphatase 1 (PP1) activity, and determined its role in modulating the activity of aurora B kinase and kinetochore-microtubule interactions. Sds22 is required for proper progression through mitosis and localization of PP1 to mitotic kinetochores. Depletion of Sds22 increases aurora B T-loop phosphorylation and the rate of recovery from monastrol arrest. Phospho-aurora B accumulates at kinetochores in Sds22-depleted cells juxtaposed to critical kinetochore substrates. Sds22 modulates sister kinetochore distance and the interaction between Hec1 and the microtubule lattice and, thus, the activation of the spindle assembly checkpoint. These results demonstrate that Sds22 specifically defines PP1 function and localization in mitosis. Sds22 regulates PP1 targeting to the kinetochore, accumulation of phospho-aurora B, and force generation at the kinetochore-microtubule interface.
Collapse
Affiliation(s)
- Markus Posch
- Wellcome Trust Centre for Gene Regulation and Expression and Light Microscopy Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Guennadi A. Khoudoli
- Wellcome Trust Centre for Gene Regulation and Expression and Light Microscopy Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sam Swift
- Wellcome Trust Centre for Gene Regulation and Expression and Light Microscopy Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Emma M. King
- Wellcome Trust Centre for Gene Regulation and Expression and Light Microscopy Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jason R. Swedlow
- Wellcome Trust Centre for Gene Regulation and Expression and Light Microscopy Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
41
|
Marsh JA, Dancheck B, Ragusa MJ, Allaire M, Forman-Kay JD, Peti W. Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 2010; 18:1094-103. [PMID: 20826336 PMCID: PMC2936704 DOI: 10.1016/j.str.2010.05.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/07/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three nonhomologous, intrinsically disordered proteins: I-2, spinophilin, and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, preformed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex.
Collapse
Affiliation(s)
- Joseph A. Marsh
- Molecular Structure & Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada & Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Barbara Dancheck
- Department of Molecular Pharmacology, Physiology and Biotechnology & Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Michael J. Ragusa
- Department of Molecular Pharmacology, Physiology and Biotechnology & Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Marc Allaire
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Julie D. Forman-Kay
- Molecular Structure & Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada & Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology & Department of Chemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
42
|
Carmena M, Ruchaud S, Earnshaw WC. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 2010; 21:796-805. [PMID: 19836940 PMCID: PMC2806521 DOI: 10.1016/j.ceb.2009.09.008] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 02/06/2023]
Abstract
The conserved Aurora family of protein kinases have emerged as crucial regulators of mitosis and cytokinesis. Despite their high degree of homology, Aurora A and B have very distinctive localisations and functions: Aurora A associates with the spindle poles to regulate entry into mitosis, centrosome maturation and spindle assembly; Aurora B is a member of the Chromosomal Passenger Complex (CPC) that transfers from the inner centromere in early mitosis to the spindle midzone, equatorial cortex and midbody in late mitosis and cytokinesis. Aurora B functions include regulation of chromosome–microtubule interactions, cohesion, spindle stability and cytokinesis. This review will focus on how interacting proteins make this functional diversity possible by targeting the kinases to different subcellular locations and regulating their activity.
Collapse
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh, Scotland, UK.
| | | | | |
Collapse
|
43
|
Self-organization of intracellular gradients during mitosis. Cell Div 2010; 5:5. [PMID: 20181052 PMCID: PMC2829544 DOI: 10.1186/1747-1028-5-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/29/2010] [Indexed: 12/21/2022] Open
Abstract
Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.
Collapse
|
44
|
Bollen M, Gerlich DW, Lesage B. Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 2009; 19:531-41. [PMID: 19734049 DOI: 10.1016/j.tcb.2009.06.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 12/16/2022]
Abstract
While the importance of protein kinases for the spatial and temporal control of mitotic events has long been recognized, mitotic phosphatases have only recently come into the limelight. It is now well established that protein phosphatases counteract mitotic kinases, so contributing to the generation of switch-like responses at mitotic stage transitions. In addition, the timely dephosphorylation of mitotic phosphoproteins by tightly regulated phosphatases is required for the assembly and stability of the mitotic spindle, the initiation of anaphase, and exit from mitosis. Mitotic phosphatases also emerge as effectors of the DNA damage and spindle assembly checkpoints. These new findings show that protein phosphatases regulate every step of mitosis and provide novel insights into the dynamic and versatile nature of mitotic phosphoregulation.
Collapse
Affiliation(s)
- Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Molecular Cell Biology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
45
|
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19:606-16. [PMID: 19733077 DOI: 10.1016/j.tcb.2009.07.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The intercellular canal containing the midbody is one of the most prominent structures in dividing animal cells, yet its function in the completion of cytokinesis by abscission remains largely unknown. This is because of its small size, which makes it difficult to investigate the cytoskeletal and membrane dynamics underlying abscission by standard light microscopy. The advent of new fluorescent probes and imaging technologies, along with sophisticated perturbation tools, provides new possibilities to elucidate the molecular control of this essential cell biological process. Here we discuss the control of midbody assembly and current models for the mechanism of abscission in animal cells. We highlight new methodologies that will facilitate testing and refining of these models.
Collapse
Affiliation(s)
- Patrick Steigemann
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
46
|
Vanoosthuyse V, Hardwick KG. A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol 2009; 19:1176-81. [PMID: 19592249 PMCID: PMC2791888 DOI: 10.1016/j.cub.2009.05.060] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 12/23/2022]
Abstract
The spindle checkpoint is a surveillance system acting in mitosis to delay anaphase onset until all chromosomes are properly attached to the mitotic spindle [1, 2]. When the checkpoint is activated, the Mad2 and Mad3 proteins directly bind and inhibit Cdc20, which is an essential activator of an E3 ubiquitin ligase known as the anaphase-promoting complex (APC) [3]. When the checkpoint is satisfied, Cdc20-APC is activated and polyubiquitinates securin and cyclin, leading to the dissolution of sister chromatid cohesion and mitotic progression. Several protein kinases play critical roles in spindle checkpoint signaling, but the mechanism (or mechanisms) by which they inhibit mitotic progression remains unclear [4]. Furthermore, it is not known whether their activity needs to be reversed by protein phosphatases before anaphase onset can occur. Here we employ fission yeast to show that Aurora (Ark1) kinase activity is directly required to maintain spindle checkpoint arrest, even in the presence of many unattached kinetochores. Upon Ark1 inhibition, checkpoint complexes are disassembled and cyclin B is rapidly degraded. Importantly, checkpoint silencing and cyclin B degradation require the kinetochore-localized isoform of protein phosphatase 1 (PP1Dis2). We propose that PP1Dis2-mediated dephosphorylation of checkpoint components forms a novel spindle checkpoint silencing mechanism.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
47
|
Wang W, Brautigan DL. Phosphatase inhibitor 2 promotes acetylation of tubulin in the primary cilium of human retinal epithelial cells. BMC Cell Biol 2008; 9:62. [PMID: 19036150 PMCID: PMC2630314 DOI: 10.1186/1471-2121-9-62] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/26/2008] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Primary cilia are flagella-like projections from the centriole of mammalian cells that have a key role in cell signaling. Human diseases are linked to defects in primary cilia. Microtubules make up the axoneme of cilia and are selectively acetylated and this is thought to contribute to the stability of the structure. However, mechanisms to regulate tubulin acetylation in cilia are poorly understood. RESULTS Endogenous phosphatase inhibitor-2 (I-2) was found concentrated in cilia of human epithelial cells, and was localized to cilia early in the process of formation, prior to the full acetylation of microtubules. Knockdown of I-2 by siRNA significantly reduced the acetylation of microtubules in cilia, without a net decrease in whole cell tubulin acetylation. There was a reduction in the percentage of I-2 knockdown cells with a primary cilium, but no apparent alteration in the cilium length, suggesting no change in microtubule-based transport processes. Inhibition of either histone deacetylases with trichostatin A, or protein phosphatase-1 with calyculin A in I-2 knockdown cells partially rescued the acetylation of microtubules in cilia and the percentage of cells with a primary cilium. CONCLUSION The regulatory protein I-2 localizes to the primary cilium where it affects both Ser/Thr phosphorylation and is required for full tubulin acetylation. Rescue of tubulin acetylation in I-2 knockdown cells by different chemical inhibitors shows that deacetylases and phosphatases are functionally interconnected to regulate microtubules. As a multifunctional protein, I-2 may link cell cycle progression to structure and stability of the primary cilium.
Collapse
Affiliation(s)
- Weiping Wang
- Center for Cell Signaling, University of Virginia, School of Medicine, Charlottesville, Virginia, 22908, USA
- Department of Microbiology, University of Virginia, School of Medicine, Charlottesville, Virginia, 22908, USA
| | - David L Brautigan
- Center for Cell Signaling, University of Virginia, School of Medicine, Charlottesville, Virginia, 22908, USA
- Department of Microbiology, University of Virginia, School of Medicine, Charlottesville, Virginia, 22908, USA
| |
Collapse
|