1
|
Deryusheva S, Liu JL, Nizami ZF, Talross GJS, Gerbi SA. An incredible life in science: Joseph G. Gall (1928-2024). RNA (NEW YORK, N.Y.) 2025; 31:453-464. [PMID: 39919787 PMCID: PMC12046345 DOI: 10.1261/rna.080406.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Affiliation(s)
- Svetlana Deryusheva
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland 21218, USA
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Zehra F Nizami
- PartitionBio, Science Village, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Susan A Gerbi
- Brown University Division of Biology and Medicine, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| |
Collapse
|
2
|
Abstract
The nucleus of higher eukaryotes contains a number of structures that concentrate specific biomolecules and play distinct roles in nuclear metabolism. In recent years, the molecular mechanisms controlling their formation have been intensively studied. In this brief review, I focus on coilin and Cajal bodies. Coilin is a key scaffolding protein of Cajal bodies that is evolutionarily conserved in metazoans. Cajal bodies are thought to be one of the archetypal nuclear structures involved in the metabolism of several short non-coding nuclear RNAs. Yet surprisingly little is known about the structure and function of coilin, and a comprehensive model to explain the origin of Cajal bodies is also lacking. Here, I summarize recent results on Cajal bodies and coilin and discuss them in the context of the last three decades of research in this field.
Collapse
Affiliation(s)
- David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Taliansky ME, Love AJ, Kołowerzo-Lubnau A, Smoliński DJ. Cajal bodies: Evolutionarily conserved nuclear biomolecular condensates with properties unique to plants. THE PLANT CELL 2023; 35:3214-3235. [PMID: 37202374 PMCID: PMC10473218 DOI: 10.1093/plcell/koad140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Proper orchestration of the thousands of biochemical processes that are essential to the life of every cell requires highly organized cellular compartmentalization of dedicated microenvironments. There are 2 ways to create this intracellular segregation to optimize cellular function. One way is to create specific organelles, enclosed spaces bounded by lipid membranes that regulate macromolecular flux in and out of the compartment. A second way is via membraneless biomolecular condensates that form due to to liquid-liquid phase separation. Although research on these membraneless condensates has historically been performed using animal and fungal systems, recent studies have explored basic principles governing the assembly, properties, and functions of membraneless compartments in plants. In this review, we discuss how phase separation is involved in a variety of key processes occurring in Cajal bodies (CBs), a type of biomolecular condensate found in nuclei. These processes include RNA metabolism, formation of ribonucleoproteins involved in transcription, RNA splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles of CBs, we discuss unique plant-specific functions of CBs in RNA-based regulatory pathways such as nonsense-mediated mRNA decay, mRNA retention, and RNA silencing. Finally, we summarize recent progress and discuss the functions of CBs in responses to pathogen attacks and abiotic stresses, responses that may be regulated via mechanisms governed by polyADP-ribosylation. Thus, plant CBs are emerging as highly complex and multifunctional biomolecular condensates that are involved in a surprisingly diverse range of molecular mechanisms that we are just beginning to appreciate.
Collapse
Affiliation(s)
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
4
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
5
|
Song W, Podicheti R, Rusch DB, Tracey WD. Transcriptome-wide analysis of pseudouridylation in Drosophila melanogaster. G3 (BETHESDA, MD.) 2023; 13:jkac333. [PMID: 36534986 PMCID: PMC9997552 DOI: 10.1093/g3journal/jkac333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Pseudouridine (Psi) is one of the most frequent post-transcriptional modification of RNA. Enzymatic Psi modification occurs on rRNA, snRNA, snoRNA, tRNA, and non-coding RNA and has recently been discovered on mRNA. Transcriptome-wide detection of Psi (Psi-seq) has yet to be performed for the widely studied model organism Drosophila melanogaster. Here, we optimized Psi-seq analysis for this species and have identified thousands of Psi modifications throughout the female fly head transcriptome. We find that Psi is widespread on both cellular and mitochondrial rRNAs. In addition, more than a thousand Psi sites were found on mRNAs. When pseudouridylated, mRNAs frequently had many Psi sites. Many mRNA Psi sites are present in genes encoding for ribosomal proteins, and many are found in mitochondrial encoded RNAs, further implicating the importance of pseudouridylation for ribosome and mitochondrial function. The 7SLRNA of the signal recognition particle is the non-coding RNA most enriched for Psi. The 3 mRNAs most enriched for Psi encode highly expressed yolk proteins (Yp1, Yp2, and Yp3). By comparing the pseudouridine profiles in the RluA-2 mutant and the w1118 control genotype, we identified Psi sites that were missing in the mutant RNA as potential RluA-2 targets. Finally, differential gene expression analysis of the mutant transcriptome indicates a major impact of loss of RluA-2 on the ribosome and translational machinery.
Collapse
Affiliation(s)
- Wan Song
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN 47405, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - William Daniel Tracey
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN 47405, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Bogolyubov DS, Chistyakova LV, Goodkov AV. Glomerulosomes: morphologically distinct nuclear organelles of unknown nature. PROTOPLASMA 2022; 259:1409-1415. [PMID: 35103866 DOI: 10.1007/s00709-022-01742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The nucleus of some representatives of the genus Pelomyxa (Amoebozoa, Archamoebae, Pelobiontida) contains specific bodies (membrane-less organelles). They may be either embedded in the nucleolar mass or detached from the nucleolus. We termed these nuclear bodies the glomerulosomes for their characteristic ultrastructural appearance. The glomerulosomes are distinct nuclear bodies, about 1 μm in diameter. The morphological and diagnostic unit of a glomerulosome is an electron-dense thread/string, about 30-40 nm in thickness. These threads are not direct continuation of the nucleolar material. The threads create the unique geometric appearance of the glomerulosome by being organized into precisely parallel rows/cords. Each cord of the threads can curve at different angles within the glomerulosome body, but the threads themselves are not coiled. Nowadays, the glomerulosomes have been discovered in P. palustris, P. stagnalis, P. paradoxa, and Pelomyxa sp. Despite the unique appearance of glomerulosomes, their existence may be a more common phenomenon in eukaryotic cells than just a specific feature of the nucleus of elected pelomyxes.
Collapse
Affiliation(s)
- Dmitry S Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | | | - Andrew V Goodkov
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
7
|
Fefilova AS, Antifeeva IA, Gavrilova AA, Turoverov KK, Kuznetsova IM, Fonin AV. Reorganization of Cell Compartmentalization Induced by Stress. Biomolecules 2022; 12:1441. [PMID: 36291650 PMCID: PMC9599104 DOI: 10.3390/biom12101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of intrinsically disordered proteins (IDPs) that do not have an ordered structure and nevertheless perform essential functions has opened a new era in the understanding of cellular compartmentalization. It threw the bridge from the mostly mechanistic model of the organization of the living matter to the idea of highly dynamic and functional "soft matter". This paradigm is based on the notion of the major role of liquid-liquid phase separation (LLPS) of biopolymers in the spatial-temporal organization of intracellular space. The LLPS leads to the formation of self-assembled membrane-less organelles (MLOs). MLOs are multicomponent and multifunctional biological condensates, highly dynamic in structure and composition, that allow them to fine-tune the regulation of various intracellular processes. IDPs play a central role in the assembly and functioning of MLOs. The LLPS importance for the regulation of chemical reactions inside the cell is clearly illustrated by the reorganization of the intracellular space during stress response. As a reaction to various types of stresses, stress-induced MLOs appear in the cell, enabling the preservation of the genetic and protein material during unfavourable conditions. In addition, stress causes structural, functional, and compositional changes in the MLOs permanently present inside the cells. In this review, we describe the assembly of stress-induced MLOs and the stress-induced modification of existing MLOs in eukaryotes, yeasts, and prokaryotes in response to various stress factors.
Collapse
Affiliation(s)
| | | | | | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of RAS, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
8
|
Talross GJS, Deryusheva S, Gall JG. Stable lariats bearing a snoRNA (slb-snoRNA) in eukaryotic cells: A level of regulation for guide RNAs. Proc Natl Acad Sci U S A 2021; 118:e2114156118. [PMID: 34725166 PMCID: PMC8609340 DOI: 10.1073/pnas.2114156118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
Small nucleolar (sno)RNAs guide posttranscriptional modifications essential for the biogenesis and function of their target. The majority of snoRNAs in higher eukaryotes are encoded within introns. They are first released from nascent transcripts in the form of a lariat and rapidly targeted by the debranching enzyme and nuclear exonucleases for linearization and further trimming. In this study, we report that some snoRNAs are encoded within unusually stable intronic RNAs. These intronic sequences can escape the debranching enzyme and accumulate as lariats. Stable lariats bearing a snoRNA, or slb-snoRNA, are associated with snoRNA binding proteins but do not guide posttranscriptional modification. While most slb-snoRNAs accumulate in the nucleus, some can be exported to the cytoplasm. We find that this export competes with snoRNA maturation. Slb-snoRNAs provide a previously unknown layer of regulation to snoRNA and snoRNA binding proteins.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
9
|
Deryusheva S, Talross GJS, Gall JG. SnoRNA guide activities: real and ambiguous. RNA (NEW YORK, N.Y.) 2021; 27:1363-1373. [PMID: 34385348 PMCID: PMC8522698 DOI: 10.1261/rna.078916.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In eukaryotes, rRNAs and spliceosomal snRNAs are heavily modified post-transcriptionally. Pseudouridylation and 2'-O-methylation are the most abundant types of RNA modifications. They are mediated by modification guide RNAs, also known as small nucleolar (sno)RNAs and small Cajal body-specific (sca)RNAs. We used yeast and vertebrate cells to test guide activities predicted for a number of snoRNAs, based on their regions of complementarity with rRNAs. We showed that human SNORA24 is a genuine guide RNA for 18S-Ψ609, despite some noncanonical base-pairing with its target. At the same time, we found quite a few snoRNAs that have the ability to base-pair with rRNAs and can induce predicted modifications in artificial substrate RNAs, but do not modify the same target sequence within endogenous rRNA molecules. Furthermore, certain fragments of rRNAs can be modified by the endogenous yeast modification machinery when inserted into an artificial backbone RNA, even though the same sequences are not modified in endogenous yeast rRNAs. In Xenopus cells, a guide RNA generated from scaRNA, but not from snoRNA, could induce an additional pseudouridylation of U2 snRNA at position 60; both guide RNAs were equally active on a U2 snRNA-specific substrate in yeast cells. Thus, post-transcriptional modification of functionally important RNAs, such as rRNAs and snRNAs, is highly regulated and more complex than simply strong base-pairing between a guide RNA and substrate RNA. We discuss possible regulatory roles for these unexpected modifications.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
10
|
Bizarro J, Deryusheva S, Wacheul L, Gupta V, Ernst FGM, Lafontaine DLJ, Gall JG, Meier UT. Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. Genes Dev 2021; 35:1123-1141. [PMID: 34301768 PMCID: PMC8336889 DOI: 10.1101/gad.348660.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
In this study, Bizarro et al. sought to understand the function and subcellular site of snRNA modification, and found that Cajal body (CB) localization of the protein Nopp140 is essential for concentration of small Cajal body-specific ribonucleoproteins (scaRNPs) in nuclear condensate and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.
Collapse
Affiliation(s)
| | | | - Ludivine Wacheul
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Varun Gupta
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Felix G M Ernst
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Joseph G Gall
- Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - U Thomas Meier
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
11
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
12
|
Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Res Rev 2021; 67:101264. [PMID: 33540043 DOI: 10.1016/j.arr.2021.101264] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
The metazoan nucleus is a highly structured organelle containing several well-defined sub-organelles. It is the largest organelle inside a cell taking up from one tenth to half of entire cell volume. This makes it one of the easiest organelles to identify and study under the microscope. Abnormalities in the nuclear morphology and architecture are commonly observed in an aged and senescent cell. For example, the nuclei enlarge, loose their shape, appear lobulated, harbour nuclear membrane invaginations, carry enlarged/fragmented nucleolus, loose heterochromatin, etc. In this review we discuss about the age-related changes in nuclear features and elaborate upon the molecular reasons driving the change. Many of these changes can be easily imaged under a microscope and analysed in silico. Thus, computational image analysis of nuclear features appears to be a promising tool to evaluate physiological age of a cell and offers to be a legitimate biomarker. It can be used to examine progression of age-related diseases and evaluate therapies.
Collapse
Affiliation(s)
| | - Mamilla Soujanya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rakesh Kumar Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
13
|
Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020; 54:309-336. [PMID: 32870730 DOI: 10.1146/annurev-genet-112618-043830] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that includes messenger RNA and diverse classes of noncoding RNA in human cells. The known molecular functions of pseudouridine, which include stabilizing RNA conformations and destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how much remains to be learned about the RNA targets of human pseudouridine synthases, their basis for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA pseudouridylation. We also examine the roles of noncoding RNA pseudouridylation in splicing and translation and point out the potential effects of mRNA pseudouridylation on protein production, including in the context of therapeutic mRNAs.
Collapse
Affiliation(s)
- Erin K Borchardt
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Nicole M Martinez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| |
Collapse
|
14
|
Deryusheva S, Talhouarne GJS, Gall JG. "Lost and Found": snoRNA Annotation in the Xenopus Genome and Implications for Evolutionary Studies. Mol Biol Evol 2020; 37:149-166. [PMID: 31553476 PMCID: PMC6984369 DOI: 10.1093/molbev/msz209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) function primarily as guide RNAs for posttranscriptional modification of rRNAs and spliceosomal snRNAs, both of which are functionally important and evolutionarily conserved molecules. It is commonly believed that snoRNAs and the modifications they mediate are highly conserved across species. However, most relevant data on snoRNA annotation and RNA modification are limited to studies on human and yeast. Here, we used RNA-sequencing data from the giant oocyte nucleus of the frog Xenopus tropicalis to annotate a nearly complete set of snoRNAs. We compared the frog data with snoRNA sets from human and other vertebrate genomes, including mammals, birds, reptiles, and fish. We identified many Xenopus-specific (or nonhuman) snoRNAs and Xenopus-specific domains in snoRNAs from conserved RNA families. We predicted that some of these nonhuman snoRNAs and domains mediate modifications at unexpected positions in rRNAs and snRNAs. These modifications were mapped as predicted when RNA modification assays were applied to RNA from nine vertebrate species: frogs X. tropicalis and X. laevis, newt Notophthalmus viridescens, axolotl Ambystoma mexicanum, whiptail lizard Aspidoscelis neomexicana, zebrafish Danio rerio, chicken, mouse, and human. This analysis revealed that only a subset of RNA modifications is evolutionarily conserved and that modification patterns may vary even between closely related species. We speculate that each functional domain in snoRNAs (half of an snoRNA) may evolve independently and shuffle between different snoRNAs.
Collapse
Affiliation(s)
| | | | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| |
Collapse
|
15
|
Deryusheva S, Gall JG. Small, Smaller, Smallest: Minimal Structural Requirements for a Fully Functional Box C/D Modification Guide RNA. Biomolecules 2019; 9:E457. [PMID: 31500270 PMCID: PMC6770171 DOI: 10.3390/biom9090457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023] Open
Abstract
Site-specific 2'-O-ribose methylation is an abundant post-transcriptional modification mediated by small non-coding nuclear RNAs known as box C/D modification guide RNAs. The minimal structural requirements for these guide RNAs to function in higher eukaryotes are still unclear. To address this question, we generated a series of mutant variants of Drosophila box C/D scaRNA:MeU2-C28 and tested their modification guide activities in the Xenopus oocyte system. Our data suggest that box C/D guide RNA function requires either a terminal or an internal consensus kink-turn structure. We identified the minimal functional box C/D guide RNA. It consists of a single-domain molecule with (i) a terminal stem with a consensus kink-turn domain, (ii) one box C and box D connected by a 14-nucleotide antisense element and (iii) a one-nucleotide spacer between the box C and the antisense element. In this single domain RNA, the sequence of the spacer is more important than its length. We suggest that the secondary structure of box C/D RNAs, essential for guide RNA function, is more complex than generally supposed. At the same time, the expression of functional extremely short single-domain box C/D RNAs is possible in higher eukaryotes.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Ray M, Singh G, Lakhotia SC. Altered levels of hsromega lncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila. Gene Expr Patterns 2019; 33:20-36. [DOI: 10.1016/j.gep.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
17
|
Izumikawa K, Nobe Y, Ishikawa H, Yamauchi Y, Taoka M, Sato K, Nakayama H, Simpson RJ, Isobe T, Takahashi N. TDP-43 regulates site-specific 2'-O-methylation of U1 and U2 snRNAs via controlling the Cajal body localization of a subset of C/D scaRNAs. Nucleic Acids Res 2019; 47:2487-2505. [PMID: 30759234 PMCID: PMC6412121 DOI: 10.1093/nar/gkz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
TDP-43 regulates cellular levels of Cajal bodies (CBs) that provide platforms for the assembly and RNA modifications of small nuclear ribonucleoproteins (snRNPs) involved in pre-mRNA splicing. Alterations in these snRNPs may be linked to pathogenesis of amyotrophic lateral sclerosis. However, specific roles for TDP-43 in CBs remain unknown. Here, we demonstrate that TDP-43 regulates the CB localization of four UG-rich motif-bearing C/D-box-containing small Cajal body-specific RNAs (C/D scaRNAs; i.e. scaRNA2, 7, 9 and 28) through the direct binding to these scaRNAs. TDP-43 enhances binding of a CB-localizing protein, WD40-repeat protein 79 (WDR79), to a subpopulation of scaRNA2 and scaRNA28; the remaining population of the four C/D scaRNAs was localized to CB-like structures even with WDR79 depletion. Depletion of TDP-43, in contrast, shifted the localization of these C/D scaRNAs, mainly into the nucleolus, as well as destabilizing scaRNA2, and reduced the site-specific 2'-O-methylation of U1 and U2 snRNAs, including at 70A in U1 snRNA and, 19G, 25G, 47U and 61C in U2 snRNA. Collectively, we suggest that TDP-43 and WDR79 have separate roles in determining CB localization of subsets of C/D and H/ACA scaRNAs.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard J Simpson
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
- La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Melbourne Victoria 3086, Australia
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| |
Collapse
|
18
|
Dimitrova DG, Teysset L, Carré C. RNA 2'-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel) 2019; 10:E117. [PMID: 30764532 PMCID: PMC6409641 DOI: 10.3390/genes10020117] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Nm (2'-O-methylation) is one of the most common modifications in the RNA world. It has the potential to influence the RNA molecules in multiple ways, such as structure, stability, and interactions, and to play a role in various cellular processes from epigenetic gene regulation, through translation to self versus non-self recognition. Yet, building scientific knowledge on the Nm matter has been hampered for a long time by the challenges in detecting and mapping this modification. Today, with the latest advancements in the area, more and more Nm sites are discovered on RNAs (tRNA, rRNA, mRNA, and small non-coding RNA) and linked to normal or pathological conditions. This review aims to synthesize the Nm-associated human diseases known to date and to tackle potential indirect links to some other biological defects.
Collapse
Affiliation(s)
- Dilyana G Dimitrova
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Laure Teysset
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Clément Carré
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
19
|
Deryusheva S, Gall JG. scaRNAs and snoRNAs: Are they limited to specific classes of substrate RNAs? RNA (NEW YORK, N.Y.) 2019; 25:17-22. [PMID: 30301832 PMCID: PMC6298559 DOI: 10.1261/rna.068593.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/07/2018] [Indexed: 05/28/2023]
Abstract
Posttranscriptional modifications of rRNA occur in the nucleolus where rRNA modification guide RNAs, or snoRNAs, concentrate. On the other hand, scaRNAs, the modification guide RNAs for spliceosomal snRNAs, concentrate in the Cajal body (CB). It is generally assumed, therefore, that snRNAs must accumulate in CBs to be modified by scaRNAs. Here we demonstrate that the evidence for the latter postulate is not consistent. In the nucleus, scaRNA localization is not limited to CBs. Furthermore, canonical scaRNAs can modify rRNAs. We suggest that the conventional view that scaRNAs function only in the CB needs revision.
Collapse
MESH Headings
- Animals
- Base Sequence
- Coiled Bodies/metabolism
- HeLa Cells
- Humans
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Xenopus/genetics
- Xenopus/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
20
|
Arias Escayola D, Neugebauer KM. Dynamics and Function of Nuclear Bodies during Embryogenesis. Biochemistry 2018; 57:2462-2469. [PMID: 29473743 DOI: 10.1021/acs.biochem.7b01262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nuclear bodies are RNA-rich membraneless organelles in the cell nucleus that concentrate specific sets of nuclear proteins and RNA-protein complexes. Nuclear bodies such as the nucleolus, Cajal body (CB), and the histone locus body (HLB) concentrate factors required for nuclear steps of RNA processing. Formation of these nuclear bodies occurs on genomic loci and is frequently associated with active sites of transcription. Whether nuclear body formation is dependent on a particular gene element, an active process such as transcription, or the nascent RNA present at gene loci is a topic of debate. Recently, this question has been addressed through studies in model organisms and their embryos. The switch from maternally provided RNA and protein to zygotic gene products in early embryos has been well characterized in a variety of organisms. This process, termed maternal-to-zygotic transition, provides an excellent model for studying formation of nuclear bodies before, during, and after the transcriptional activation of the zygotic genome. Here, we review findings in embryos that reveal key principles in the study of the formation and function of nucleoli, CBs, and HLBs. We propose that while particular gene elements may contribute to formation of these nuclear bodies, active transcription promotes maturation of nuclear bodies and efficient RNA processing within them.
Collapse
Affiliation(s)
- Dahyana Arias Escayola
- Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| |
Collapse
|
21
|
Deryusheva S, Gall JG. Orchestrated positioning of post-transcriptional modifications at the branch point recognition region of U2 snRNA. RNA (NEW YORK, N.Y.) 2018; 24:30-42. [PMID: 28974555 PMCID: PMC5733568 DOI: 10.1261/rna.063842.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
The branch point recognition region of spliceosomal snRNA U2 is heavily modified post-transcriptionally in most eukaryotic species. We focused on this region to learn how nearby positions may interfere with each other when targeted for modification. Using an in vivo yeast Saccharomyces cerevisiae cell system, we tested the modification activity of several guide RNAs from human, mouse, the frog Xenopus tropicalis, the fruit fly Drosophila melanogaster, and the worm Caenorhabditis elegans We experimentally verified predictions for vertebrate U2 modification guide RNAs SCARNA4 and SCARNA15, and identified a C. elegans ortholog of SCARNA15. We observed crosstalk between sites in the heavily modified regions, such that modification at one site may inhibit modification at nearby sites. This is true for the branch point recognition region of U2 snRNA, the 5' loop of U5 snRNA, and certain regions of rRNAs, when tested either in yeast or in HeLa cells. The position preceding a uridine targeted for isomerization by a box H/ACA guide RNA is the most sensitive for noncanonical base-pairing and modification (either pseudouridylation or 2'-O-methylation). Based on these findings, we propose that modification must occur stepwise starting with the most vulnerable positions and ending with the most inhibiting modifications. We discuss possible strategies that cells use to reach complete modification in heavily modified regions.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
22
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
23
|
Deryusheva S, Gall JG. Dual nature of pseudouridylation in U2 snRNA: Pus1p-dependent and Pus1p-independent activities in yeasts and higher eukaryotes. RNA (NEW YORK, N.Y.) 2017; 23:1060-1067. [PMID: 28432181 PMCID: PMC5473140 DOI: 10.1261/rna.061226.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 05/05/2023]
Abstract
The pseudouridine at position 43 in vertebrate U2 snRNA is one of the most conserved post-transcriptional modifications of spliceosomal snRNAs; the equivalent position is pseudouridylated in U2 snRNAs in different phyla including fungi, insects, and worms. Pseudouridine synthase Pus1p acts alone on U2 snRNA to form this pseudouridine in yeast Saccharomyces cerevisiae and mouse. Furthermore, in S. cerevisiae, Pus1p is the only pseudouridine synthase for this position. Using an in vivo yeast cell system, we tested enzymatic activity of Pus1p from the fission yeast Schizosaccharomyces pombe, the worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the frog Xenopus tropicalis We demonstrated that Pus1p from C. elegans has no enzymatic activity on U2 snRNA when expressed in yeast cells, whereas in similar experiments, position 44 in yeast U2 snRNA (equivalent to position 43 in vertebrates) is a genuine substrate for Pus1p from S. cerevisiae, S. pombe, Drosophila, Xenopus, and mouse. However, when we analyzed U2 snRNAs from Pus1 knockout mice and the pus1Δ S. pombe strain, we could not detect any changes in their modification patterns when compared to wild-type U2 snRNAs. In S. pombe, we found a novel box H/ACA RNA encoded downstream from the RPC10 gene and experimentally verified its guide RNA activity for positioning Ψ43 and Ψ44 in U2 snRNA. In vertebrates, we showed that SCARNA8 (also known as U92 scaRNA) is a guide for U2-Ψ43 in addition to its previously established targets U2-Ψ34/Ψ44.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
24
|
Love AJ, Yu C, Petukhova NV, Kalinina NO, Chen J, Taliansky ME. Cajal bodies and their role in plant stress and disease responses. RNA Biol 2017; 14:779-790. [PMID: 27726481 PMCID: PMC5519230 DOI: 10.1080/15476286.2016.1243650] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Cajal bodies (CBs) are distinct sub-nuclear structures that are present in eukaryotic living cells and are often associated with the nucleolus. CBs play important roles in RNA metabolism and formation of RNPs involved in transcription, splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles, CBs appear to be involved in additional functions that may not be directly related to RNA metabolism and RNP biogenesis. In this review, we assess possible roles of plant CBs in RNA regulatory pathways such as nonsense-mediated mRNA decay and RNA silencing. We also summarize recent progress and discuss new non-canonical functions of plant CBs in responses to stress and disease. It is hypothesized that CBs can regulate these responses via their interaction with poly(ADP ribose)polymerase (PARP), which is known to play an important role in various physiological processes including responses to biotic and abiotic stresses. It is suggested that CBs and their components modify PARP activities and functions.
Collapse
Affiliation(s)
- Andrew J. Love
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Chulang Yu
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Natalia O. Kalinina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Michael E. Taliansky
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
- State Key Laboratory Breeding Base for Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
25
|
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017; 18:285-298. [PMID: 28225081 PMCID: PMC7434221 DOI: 10.1038/nrm.2017.7] [Citation(s) in RCA: 3710] [Impact Index Per Article: 463.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid-liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.
Collapse
Affiliation(s)
- Salman F. Banani
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hyun O. Lee
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
26
|
Weber SC. Sequence-encoded material properties dictate the structure and function of nuclear bodies. Curr Opin Cell Biol 2017; 46:62-71. [PMID: 28343140 DOI: 10.1016/j.ceb.2017.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Concomitant with packaging the genome, the cell nucleus must also spatially organize the nucleoplasm. This complex mixture of proteins and nucleic acids partitions into a variety of phase-separated, membraneless organelles called nuclear bodies. Significant progress has been made in understanding the relationship between the material properties of nuclear bodies and their structural and functional consequences. Furthermore, the molecular basis of these condensed phases is beginning to emerge. Here, I review the latest work in this exciting field, highlighting recent advances and new challenges.
Collapse
Affiliation(s)
- Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
27
|
Duronio RJ, Marzluff WF. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol 2017; 14:726-738. [PMID: 28059623 DOI: 10.1080/15476286.2016.1265198] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Robert J Duronio
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,b Department of Genetics , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - William F Marzluff
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA.,e Department of Biochemistry and Biophysics , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
28
|
Abstract
Aside from nucleoli, Cajal bodies (CBs) are the best-characterized organelles of mammalian cell nuclei. Like nucleoli, CBs concentrate ribonucleoproteins (RNPs), in particular, spliceosomal small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs). In one of the best-defined functions of CBs, most of the snoRNPs are involved in site-specific modification of snRNAs. The two major modifications are pseudouridylation and 2'-O-methylation that are guided by the box H/ACA and C/D snoRNPs, respectively. This review details the modifications, their function, the mechanism of modification, and the machineries involved. We dissect the different classes of noncoding RNAs that meet in CBs, guides and substrates. Open questions and conundrums, often raised and appearing due to experimental limitations, are pointed out and discussed. The emphasis of the review is on mammalian CBs and their function in modification of noncoding RNAs.
Collapse
Affiliation(s)
- U Thomas Meier
- a Albert Einstein College of Medicine , Department of Anatomy and Structural Biology , Bronx , NY , USA
| |
Collapse
|
29
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
30
|
Abstract
Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.
Collapse
Affiliation(s)
- Miguel Lafarga
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Olga Tapia
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Ana M Romero
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Maria T Berciano
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| |
Collapse
|
31
|
Tatomer DC, Terzo E, Curry KP, Salzler H, Sabath I, Zapotoczny G, McKay DJ, Dominski Z, Marzluff WF, Duronio RJ. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol 2016; 213:557-70. [PMID: 27241916 PMCID: PMC4896052 DOI: 10.1083/jcb.201504043] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3' processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3' end processing with transcription termination.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Esteban Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kaitlin P Curry
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Harmony Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ivan Sabath
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Grzegorz Zapotoczny
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
32
|
Hyjek M, Wojciechowska N, Rudzka M, Kołowerzo-Lubnau A, Smoliński DJ. Spatial regulation of cytoplasmic snRNP assembly at the cellular level. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7019-30. [PMID: 26320237 PMCID: PMC4765780 DOI: 10.1093/jxb/erv399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small nuclear ribonucleoproteins (snRNPs) play a crucial role in pre-mRNA splicing in all eukaryotic cells. In contrast to the relatively broad knowledge on snRNP assembly within the nucleus, the spatial organization of the cytoplasmic stages of their maturation remains poorly understood. Nevertheless, sparse research indicates that, similar to the nuclear steps, the crucial processes of cytoplasmic snRNP assembly may also be strictly spatially regulated. In European larch microsporocytes, it was determined that the cytoplasmic assembly of snRNPs within a cell might occur in two distinct spatial manners, which depend on the rate of de novo snRNP formation in relation to the steady state of these particles within the nucleus. During periods of moderate expression of splicing elements, the cytoplasmic assembly of snRNPs occurred diffusely throughout the cytoplasm. Increased expression of both Sm proteins and U snRNA triggered the accumulation of these particles within distinct, non-membranous RNP-rich granules, which are referred to as snRNP-rich cytoplasmic bodies.
Collapse
Affiliation(s)
- Malwina Hyjek
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Natalia Wojciechowska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Department of General Botany, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Magda Rudzka
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Dariusz Jan Smoliński
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| |
Collapse
|
33
|
Abstract
Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments.
Collapse
Affiliation(s)
- Martin Machyna
- a Department of Molecular Biophysics & Biochemistry ; Yale University ; New Haven , CT USA
| | | | | |
Collapse
|
34
|
Karijolich J, Yi C, Yu YT. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 2015; 16:581-5. [PMID: 26285676 DOI: 10.1038/nrm4040] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pseudouridylation is the most abundant internal post-transcriptional modification of stable RNAs, with fundamental roles in the biogenesis and function of spliceosomal small nuclear RNAs (snRNAs) and ribosomal RNAs (rRNAs). Recently, the first transcriptome-wide maps of RNA pseudouridylation were published, greatly expanding the catalogue of known pseudouridylated RNAs. These data have further implicated RNA pseudouridylation in the cellular stress response and, moreover, have established that mRNAs are also targets of pseudouridine synthases, potentially representing a novel mechanism for expanding the complexity of the cellular proteome.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, 565 Li Ka Shing Center #3370, Berkeley, California 94720-337, USA
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, 5 Summer Palace Road, Haidian District, Beijing 100871, China
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712 Rochester, New York 14642, USA
| |
Collapse
|
35
|
Terzo EA, Lyons SM, Poulton JS, Temple BRS, Marzluff WF, Duronio RJ. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body. Mol Biol Cell 2015; 26:1559-74. [PMID: 25694448 PMCID: PMC4395134 DOI: 10.1091/mbc.e14-10-1445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/12/2015] [Indexed: 11/11/2022] Open
Abstract
The Drosophila Multi Sex Combs (Mxc) protein is necessary for the recruitment of histone mRNA biosynthetic factors to the histone locus body (HLB). Mxc contains multiple domains required for HLB assembly and histone mRNA biosynthesis. Two N-terminal domains of Mxc are essential for promoting HLB assembly via a self-interaction. Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Esteban A Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shawn M Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John S Poulton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
36
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Chen Y, Deng Z, Jiang S, Hu Q, Liu H, Songyang Z, Ma W, Chen S, Zhao Y. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance. Nucleic Acids Res 2014; 43:385-95. [PMID: 25477378 PMCID: PMC4288172 DOI: 10.1093/nar/gku1277] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating that telomerase assembly occurs in the absence of Cajal bodies. Moreover, dispersed hTR aggregates and forms foci specifically during S and G2 phase in coilin-KO cells. Colocalization of these hTR foci with telomeres implies proper telomerase trafficking, independent of Cajal bodies. Therefore, telomerase adds similar numbers of TTAGGG repeats to telomeres in coilin-KO and controls cells. Overexpression of TPP1-OB-fold blocks cell cycle-dependent formation of hTR foci and inhibits telomere extension. These findings suggest that telomerase assembly, trafficking and extension occur with normal efficiency in Cajal bodies deficient human cells. Thus, Cajal bodies, as such, are not essential in these processes, although it remains possible that non-coilin components of Cajal bodies and/or telomere binding proteins (e.g. TPP1) do play roles in telomerase biogenesis and telomere homeostasis.
Collapse
Affiliation(s)
- Yanlian Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Zhiqiang Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P.R. China
| | - Shuai Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Qian Hu
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P.R. China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
39
|
Khodyuchenko TA, Krasikova AV. Cajal bodies and histone locus bodies: Molecular composition and function. Russ J Dev Biol 2014. [DOI: 10.1134/s106236041406006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Marnef A, Richard P, Pinzón N, Kiss T. Targeting vertebrate intron-encoded box C/D 2'-O-methylation guide RNAs into the Cajal body. Nucleic Acids Res 2014; 42:6616-29. [PMID: 24753405 PMCID: PMC4041459 DOI: 10.1093/nar/gku287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 02/03/2023] Open
Abstract
Post-transcriptional pseudouridylation and 2'-O-methylation of splicesomal small nuclear ribonucleic acids (snRNAs) is mediated by box H/ACA and box C/D small Cajal body (CB)-specific ribonucleoproteins (scaRNPs), respectively. The WD-repeat protein 79 (WDR79) has been proposed to interact with both classes of modification scaRNPs and target them into the CB. The box H/ACA scaRNAs carry the common CAB box motif (consensus, ugAG) that is required for both WDR79 binding and CB-specific accumulation. Thus far, no cis-acting CB-localization element has been reported for vertebrate box C/D scaRNAs. In this study, systematic mutational analysis of the human U90 and another newly identified box C/D scaRNA, mgU2-47, demonstrated that the CB-specific accumulation of vertebrate intron-encoded box C/D scaRNAs relies on GU- or UG-dominated dinucleotide repeat sequences which are predicted to form the terminal stem-loop of the RNA apical hairpin. While the loop nucleotides are unimportant, the adjacent terminal helix that is composed mostly of consecutive G.U and U.G wobble base-pairs is essential for CB-specific localization of box C/D scaRNAs. Co-immunoprecipitation experiments confirmed that the newly identified CB localization element, called the G.U/U.G wobble stem, is crucial for in vivo association of box C/D scaRNPs with WDR79.
Collapse
Affiliation(s)
- Aline Marnef
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Patrica Richard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Natalia Pinzón
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
41
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
42
|
Cauchi RJ. Gem depletion: amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther 2014; 20:574-81. [PMID: 24645792 DOI: 10.1111/cns.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
The determining factor of spinal muscular atrophy (SMA), the most common motor neuron degenerative disease of childhood, is the survival motor neuron (SMN) protein. SMN and its Gemin associates form a complex that is indispensible for the biogenesis of small nuclear ribonucleoproteins (snRNPs), which constitute the building blocks of spliceosomes. It is as yet unclear whether a decreased capacity of SMN in snRNP assembly, and, hence, transcriptome abnormalities, account for the specific neuromuscular phenotype in SMA. Across metazoa, the SMN-Gemins complex concentrates in multiple nuclear gems that frequently neighbour or overlap Cajal bodies. The number of gems has long been known to be a faithful indicator of SMN levels, which are linked to SMA severity. Intriguingly, a flurry of recent studies have revealed that depletion of this nuclear structure is also a signature feature of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease. This review discusses such a surprising crossover in addition to highlighting the most recent work on the intricate world of spliceosome building, which seems to be at the heart of motor neuron physiology and survival.
Collapse
Affiliation(s)
- Ruben J Cauchi
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| |
Collapse
|
43
|
Abstract
The principles that determine the organization of the nucleus have become clearer in recent years, largely because of new insights into polymer, colloid, and soft-matter science. Macromolecules, together with the giant linear polymers that form the chromosomes, are confined at high concentrations within the nuclear envelope and their interactions are influenced strongly by short-range depletion or entropic forces which are negligible in dilute systems, in addition to the more familiar van der Waals, electrostatic, steric, hydrogen bonding, and hydrophobic forces. The studies described in this volume are consistent with the model that this complex and concentrated mixture of macromolecules is maintained in a delicate equilibrium by quite simple although unsuspected physicochemical principles. The sensitivity of this equilibrium to perturbation may underlie the controversies about the existence of a nuclear matrix or scaffold. In this volume, we underline the importance for cell biologists of being familiar with current work in colloid, polymer, soft matter, and nanoscience. This chapter presents a brief background to the aspects of the nucleus that are considered in detail in subsequent chapters.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, CRCHUQ-Oncology, Québec, Canada; Biosystems Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
44
|
Deryusheva S, Gall JG. Novel small Cajal-body-specific RNAs identified in Drosophila: probing guide RNA function. RNA (NEW YORK, N.Y.) 2013; 19:1802-14. [PMID: 24149844 PMCID: PMC3884663 DOI: 10.1261/rna.042028.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 05/05/2023]
Abstract
The spliceosomal small nuclear RNAs (snRNAs) are modified post-transcriptionally by introduction of pseudouridines and 2'-O-methyl modifications, which are mediated by box H/ACA and box C/D guide RNAs, respectively. Because of their concentration in the nuclear Cajal body (CB), these guide RNAs are known as small CB-specific (sca) RNAs. In the cell, scaRNAs are associated with the WD-repeat protein WDR79. We used coimmunoprecipitation with WDR79 to recover seven new scaRNAs from Drosophila cell lysates. We demonstrated concentration of these new scaRNAs in the CB by in situ hybridization, and we verified experimentally that they can modify their putative target RNAs. Surprisingly, one of the new scaRNAs targets U6 snRNA, whose modification is generally assumed to occur in the nucleolus, not in the CB. Two other scaRNAs have dual guide functions, one for an snRNA and one for 28S rRNA. Again, the modification of 28S rRNA is assumed to take place in the nucleolus. These findings suggest that canonical scaRNAs may have functions in addition to their established role in modifying U1, U2, U4, and U5 snRNAs. We discuss the likelihood that processing by scaRNAs is not limited to the CB.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
45
|
Salzler HR, Tatomer DC, Malek PY, McDaniel SL, Orlando AN, Marzluff WF, Duronio RJ. A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs. Dev Cell 2013; 24:623-34. [PMID: 23537633 DOI: 10.1016/j.devcel.2013.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/18/2012] [Accepted: 02/22/2013] [Indexed: 01/11/2023]
Abstract
Compartmentalization of RNA biosynthetic factors into nuclear bodies (NBs) is a ubiquitous feature of eukaryotic cells. How NBs initially assemble and ultimately affect gene expression remains unresolved. The histone locus body (HLB) contains factors necessary for replication-coupled histone messenger RNA transcription and processing and associates with histone gene clusters. Using a transgenic assay for ectopic Drosophila HLB assembly, we show that a sequence located between, and transcription from, the divergently transcribed H3-H4 genes nucleates HLB formation and activates other histone genes in the histone gene cluster. In the absence of transcription from the H3-H4 promoter, "proto-HLBs" (containing only a subset of HLB components) form, and the adjacent histone H2a-H2b genes are not expressed. Proto-HLBs also transiently form in mutant embryos with the histone locus deleted. We conclude that HLB assembly occurs through a stepwise process involving stochastic interactions of individual components that localize to a specific sequence in the H3-H4 promoter.
Collapse
Affiliation(s)
- Harmony R Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Krasikova A, Khodyuchenko T, Maslova A, Vasilevskaya E. Three-dimensional organisation of RNA-processing machinery in avian growing oocyte nucleus. Chromosome Res 2012; 20:979-94. [DOI: 10.1007/s10577-012-9327-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:17-34. [PMID: 23042601 DOI: 10.1002/wrna.1139] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell nucleus contains dozens of subcompartments that separate biochemical processes into confined spaces. Cajal bodies (CBs) were discovered more than 100 years ago, but only extensive research in the past decades revealed the surprising complexity of molecular and cellular functions taking place in these structures. Many protein and RNA species are modified and assembled within CBs, which have emerged as a meeting place and factory for ribonucleoprotein (RNP) particles involved in splicing, ribosome biogenesis and telomere maintenance. Recently, a distinct structure near histone gene clusters--the Histone locus body (HLB)--was discovered. Involved in histone mRNA 3'-end formation, HLBs can share several components with CBs. Whether the appearance of distinct HLBs is simply a matter of altered affinity between these structures or of an alternate mode of CB assembly is unknown. However, both structures share basic assembly properties, in which transcription plays a decisive role in initiation. After this seeding event, additional components associate in random order. This appears to be a widespread mechanism for body assembly. CB assembly encompasses an additional layer of complexity, whereby a set of pre-existing substructures can be integrated into mature CBs. We propose this as a multi-seeding model of CB assembly.
Collapse
Affiliation(s)
- Martin Machyna
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
48
|
Dong ZW, Shao P, Diao LT, Zhou H, Yu CH, Qu LH. RTL-P: a sensitive approach for detecting sites of 2'-O-methylation in RNA molecules. Nucleic Acids Res 2012; 40:e157. [PMID: 22833606 PMCID: PMC3488209 DOI: 10.1093/nar/gks698] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2′-O-methylation is present within various cellular RNAs and is essential to RNA biogenesis and functionality. Several methods have been developed for the identification and localization of 2′-O-methylated sites in RNAs; however, the detection of RNA modifications, especially in low-abundance RNAs and small non-coding RNAs with a 2′-O-methylation at the 3′-end, remains a difficult task. Here, we introduce a new method to detect 2′-O-methylated sites in diverse RNA species, referred to as RTL-P [Reverse Transcription at Low deoxy-ribonucleoside triphosphate (dNTP) concentrations followed by polymerase chain reaction (PCR)] that demonstrates precise mapping and superior sensitivity compared with previous techniques. The main procedures of RTL-P include a site-specific primer extension by reverse transcriptase at a low dNTP concentration and a semi-quantitative PCR amplification step. No radiolabeled or fluorescent primers are required. By designing specific RT primers, we used RTL-P to detect both previously identified and novel 2′-O-methylated sites in human and yeast ribosomal RNAs (rRNAs), as well as mouse piwi-interacting RNAs (piRNAs). These results demonstrate the powerful application of RTL-P for the systematic analysis of fully or partially methylated residues in diverse RNA species, including low-abundance RNAs or small non-coding RNAs such as piRNAs and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Zhi-Wei Dong
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The ability of most cancer cells to grow indefinitely relies on the enzyme telomerase and its recruitment to telomeres. In human cells, recruitment depends on the Cajal body RNA chaperone TCAB1 binding to the RNA subunit of telomerase (hTR) and is also thought to rely on an N-terminal domain of the catalytic subunit, hTERT. We demonstrate that coilin, an essential structural component of Cajal bodies, is required for endogenous telomerase recruitment to telomeres but that overexpression of telomerase can compensate for Cajal body absence. In contrast, recruitment of telomerase was sensitive to levels of TCAB1, and this was not rescued by overexpression of telomerase. Thus, although Cajal bodies are important for recruitment, TCAB1 has an additional role in this process that is independent of these structures. TCAB1 itself localizes to telomeres in a telomerase-dependent but Cajal body-independent manner. We identify a point mutation in hTERT that largely abolishes recruitment yet does not affect association of telomerase with TCAB1, suggesting that this region mediates recruitment by an independent mechanism. Our results demonstrate that telomerase has multiple independent requirements for recruitment to telomeres and that the function of TCAB1 is to directly transport telomerase to telomeres.
Collapse
|
50
|
Non-canonical Cajal bodies form in the nucleus of late stage avian oocytes lacking functional nucleolus. Histochem Cell Biol 2012; 138:57-73. [PMID: 22382586 DOI: 10.1007/s00418-012-0938-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
In the somatic cell nucleus, there are several universal domains such as nucleolus, SC35-domains, Cajal bodies (CBs) and histone locus bodies (HLBs). Among them, CBs were described more than 100 years ago; however, we still do not have a final understanding of their nature and biological significance. The giant nucleus of avian and amphibian growing oocytes represents an advantageous model for analysis of functions and biogenesis of various nuclear domains. Nevertheless, in large-sized avian oocytes that contain transcriptionally active lampbrush chromosomes, CB-like organelles have not been identified yet. Here we demonstrate that in the pigeon (Columba livia) oocyte nucleus, characterized by absence of any functional nucleoli, extrachromosomal spherical bodies contain TMG-capped spliceosomal snRNAs, core proteins of Sm snRNPs and the protein coilin typical for CBs, but not splicing factor SC35 nor the histone pre-mRNA 3'-end processing factor symplekin. The results establish that coilin-rich nuclear organelles in pigeon late-stage oocyte are not the equivalents of HLBs but belong to a group of CBs. At the same time, they do not contain the snoRNP/scaRNP protein fibrillarin involved in 2'-O-methylation of snoRNAs and snRNAs. Thus, the nucleus of late-stage pigeon oocytes houses CB-like organelles that have an unusual molecular composition and are implicated in the snRNP biogenesis pathway. These data demonstrate that snRNP-rich non-canonical CBs can form in the absence of nucleolus. We argue that pigeon oocytes represent a new promising model to investigate CB modular organization, functions and formation mechanism.
Collapse
|