1
|
Leka KP, Wideman JG. An introduction to comparative genomics, EukProt, and the reciprocal best hit (RBH) method for bench biologists: Ancestral phosphorylation of Tom22 in eukaryotes as a case study. Methods Enzymol 2024; 707:209-234. [PMID: 39488375 DOI: 10.1016/bs.mie.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Comparative genomics is a useful approach for hypothesis generation for future functional investigations at the bench. However, most bench biologists shy away from computational methods. Here we reintroduce the simple but extremely effective Reciprocal Best Hit method for inferring protein orthologues. Because taxon set delimitation is perhaps the most important step in comparative genomics, we introduce The Comparative Set, a taxonomically representative subset of EukProt, a comprehensive eukaryotic predicted proteome database. After introducing the basic methods, we provide a step-by-step guide, including screen shots, for a case study on collecting Tom22 sequences from diverse eukaryotes. As an example of possible downstream analyses, we show that Tom22 proteins from diverse eukaryotes are likely regulated by conserved kinases at several sites. Though the sites evolve quickly, the processes and functions involved are likely ancestral and conserved across many eukaryotes.
Collapse
Affiliation(s)
- Kamawela P Leka
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
2
|
Kučerová J, Zdrha A, Shinde A, Harant K, Hrdý I, Tachezy J. The divergent ER-mitochondria encounter structures (ERMES) are conserved in parabasalids but lost in several anaerobic lineages with hydrogenosomes. BMC Biol 2023; 21:259. [PMID: 37968591 PMCID: PMC10648710 DOI: 10.1186/s12915-023-01765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCS) are extensively studied in aerobic eukaryotes; however, little is known about MCS in anaerobes with reduced forms of mitochondria named hydrogenosomes. In several eukaryotic lineages, the direct physical tether between ER and the outer mitochondrial membrane is formed by ER-mitochondria encounter structure (ERMES). The complex consists of four core proteins (Mmm1, Mmm2, Mdm12, and Mdm10) which are involved in phospholipid trafficking. Here we investigated ERMES distribution in organisms bearing hydrogenosomes and employed Trichomonas vaginalis as a model to estimate ERMES cellular localization, structure, and function. RESULTS Homology searches revealed that Parabasalia-Anaeramoebae, anaerobic jakobids, and anaerobic fungi are lineages with hydrogenosomes that retain ERMES, while ERMES components were gradually lost in Fornicata, and are absent in Preaxostyla and Archamoebae. In T. vaginalis and other parabasalids, three ERMES components were found with the expansion of Mmm1. Immunofluorescence microscopy confirmed that Mmm1 localized in ER, while Mdm12 and Mmm2 were partially localized in hydrogenosomes. Pull-down assays and mass spectrometry of the ERMES components identified a parabasalid-specific Porin2 as a substitute for the Mdm10. ERMES modeling predicted a formation of a continuous hydrophobic tunnel of TvMmm1-TvMdm12-TvMmm2 that is anchored via Porin2 to the hydrogenosomal outer membrane. Phospholipid-ERMES docking and Mdm12-phospholipid dot-blot indicated that ERMES is involved in the transport of phosphatidylinositol phosphates. The absence of enzymes involved in hydrogenosomal phospholipid metabolism implies that ERMES is not involved in the exchange of substrates between ER and hydrogenosomes but in the unidirectional import of phospholipids into hydrogenosomal membranes. CONCLUSIONS Our investigation demonstrated that ERMES mediates ER-hydrogenosome interactions in parabasalid T. vaginalis, while the complex was lost in several other lineages with hydrogenosomes.
Collapse
Affiliation(s)
- Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Alois Zdrha
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Abhishek Shinde
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Karel Harant
- OMICS Proteomics Laboratory, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic.
| |
Collapse
|
3
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
4
|
Kornmann B. The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes. Biol Chem 2020; 401:811-820. [DOI: 10.1515/hsz-2020-0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
AbstractEndosymbiosis, the beginning of a collaboration between an archaeon and a bacterium and a founding step in the evolution of eukaryotes, owes its success to the establishment of communication routes between the host and the symbiont to allow the exchange of metabolites. As far as lipids are concerned, it is the host that has learnt the symbiont’s language, as eukaryote lipids appear to have been borrowed from the bacterial symbiont. Mitochondria exchange lipids with the rest of the cell at membrane contact sites. In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is one of the best understood membrane tethering complexes. Its discovery has yielded crucial insight into the mechanisms of intracellular lipid trafficking. Despite a wealth of data, our understanding of ERMES formation and its exact role(s) remains incomplete. Here, I endeavour to summarise our knowledge on the ERMES complex and to identify lingering gaps.
Collapse
Affiliation(s)
- Benoît Kornmann
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
5
|
Kundu D, Pasrija R. The ERMES (Endoplasmic Reticulum and Mitochondria Encounter Structures) mediated functions in fungi. Mitochondrion 2020; 52:89-99. [PMID: 32105794 DOI: 10.1016/j.mito.2020.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/21/2019] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
Cellular organelles are membrane-bound and provide a microenvironment for specific functions. A mitochondrion is a double membranous and dynamic organelle that undergoes numerous fusion/fission events, which depends on various cellular factors. However, it is still dependent on other organelles and requires both communications as well as the movement of physical metabolites between them. Mitochondria interact with different organelles counting lipid droplets (LD), peroxisomes, vacuoles, endoplasmic reticulum (ER) and plasma membrane (PM), etc. Apart from them, mitochondria maintain multiple interactions with ER including ERMES (Endoplasmic Reticulum and Mitochondria encounter structures). ERMES is actually a multi-protein complex, and imperative in the maintenance of mitochondrial morphology and its functions. Its disruption also compromises phospholipid exchange, drug resistance and pathogenicity. This assembly is reportedly unique to fungal systems and proposed as a target for development of new antifungal. In the light of separate reports across diverse fungal systems, we have summarised the information about its distribution and effect on mitochondrial fitness.
Collapse
Affiliation(s)
- Deepika Kundu
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
6
|
Abstract
Mitochondria are essential organelles of eukaryotic cells. They consist of hundreds of different proteins that exhibit crucial activities in respiration, catabolic metabolism and the synthesis of amino acids, lipids, heme and iron-sulfur clusters. With the exception of a handful of hydrophobic mitochondrially encoded membrane proteins, all these proteins are synthesized on cytosolic ribosomes, targeted to receptors on the mitochondrial surface, and transported across or inserted into the outer and inner mitochondrial membrane before they are folded and assembled into their final native structure. This review article provides a comprehensive overview of the mechanisms and components of the mitochondrial protein import systems with a particular focus on recent developments in the field.
Collapse
Affiliation(s)
- Katja G Hansen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
7
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Court DA, Khetoo S, Shuvo SR, Reitmeier SD, Hausner G. In silico analysis of coevolution among ERMES proteins, Pex11, and Lam6. Can J Microbiol 2017; 63:984-997. [PMID: 28985476 DOI: 10.1139/cjm-2017-0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In eukaryotic cells, communication and dynamic interactions among different organelles are important for maintaining cellular homeostasis. The endoplasmic reticulum (ER) mitochondria encounter structure (ERMES) complex establishes membrane contact sites between ER and mitochondria and is essential for phospholipid transport, protein import, and mitochondrial dynamics and inheritance. In this work, in silico analyses were used to probe the intramolecular interactions in ERMES proteins and the interactions that support the ERMES complex. Based on mutual information (MI), sites of intramolecular coevolution are predicted in the core proteins Mmm1, Mdm10, Mdm12, Mdm34, the peroxisomal protein Pex11, and cytoplasmic Lam6; these sites are linked to structural features of the proteins. Intermolecular coevolution is predicted among the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains of Mmm1, Mdm12, and Mdm34. Segments of Pex11 and Lam6 also share MI with the SMP domains of Mmm1 and Mdm12 and with the N terminus of Mdm34, implicating Mdm34 as part of a hub for interactions between ERMES and other complexes. In contrast, evidence of limited intermolecular coevolution involving the outer membrane protein Mdm10 was detected only with Mmm1 and Pex11. The results support models for the organization of these interacting proteins and suggest roles for Pex11 and Lam6 in regulating complex formation.
Collapse
Affiliation(s)
- Deborah A Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shivani Khetoo
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sabbir R Shuvo
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shayne D Reitmeier
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
10
|
Krüger V, Becker T, Becker L, Montilla-Martinez M, Ellenrieder L, Vögtle FN, Meyer HE, Ryan MT, Wiedemann N, Warscheid B, Pfanner N, Wagner R, Meisinger C. Identification of new channels by systematic analysis of the mitochondrial outer membrane. J Cell Biol 2017; 216:3485-3495. [PMID: 28916712 PMCID: PMC5674900 DOI: 10.1083/jcb.201706043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023] Open
Abstract
Channels in the mitochondrial outer membrane exchange metabolites, ions, and proteins with the rest of the cell. Kruger et al. identify several new types of channel and suggest that the outer mitochondrial membrane is a more selective molecular sieve with a greater variety of channel-forming proteins than previously appreciated. The mitochondrial outer membrane is essential for communication between mitochondria and the rest of the cell and facilitates the transport of metabolites, ions, and proteins. All mitochondrial outer membrane channels known to date are β-barrel membrane proteins, including the abundant voltage-dependent anion channel and the cation-preferring protein-conducting channels Tom40, Sam50, and Mdm10. We analyzed outer membrane fractions of yeast mitochondria and identified four new channel activities: two anion-preferring channels and two cation-preferring channels. We characterized the cation-preferring channels at the molecular level. The mitochondrial import component Mim1 forms a channel that is predicted to have an α-helical structure for protein import. The short-chain dehydrogenase-related protein Ayr1 forms an NADPH-regulated channel. We conclude that the mitochondrial outer membrane contains a considerably larger variety of channel-forming proteins than assumed thus far. These findings challenge the traditional view of the outer membrane as an unspecific molecular sieve and indicate a higher degree of selectivity and regulation of metabolite fluxes at the mitochondrial boundary.
Collapse
Affiliation(s)
- Vivien Krüger
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Lars Becker
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helmut E Meyer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Richard Wagner
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany .,Biophysics, Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
12
|
Ellenrieder L, Rampelt H, Becker T. Connection of Protein Transport and Organelle Contact Sites in Mitochondria. J Mol Biol 2017; 429:2148-2160. [DOI: 10.1016/j.jmb.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
|
13
|
Ferens FG, Spicer V, Krokhin OV, Motnenko A, Summers WA, Court DA. A deletion variant partially complements a porin-less strain of Neurospora crassa. Biochem Cell Biol 2017; 95:318-327. [DOI: 10.1139/bcb-2016-0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial porin, the voltage-dependent anion channel, plays an important role in metabolism and other cellular functions within eukaryotic cells. To further the understanding of porin structure and function, Neurospora crassa wild-type porin was replaced with a deletion variant lacking residues 238–242 (238porin). 238porin was assembled in the mitochondrial outer membrane, but the steady state levels were only about 3% of those of the wild-type protein. The strain harbouring 238porin displayed cytochrome deficiencies and expressed alternative oxidase. Nonetheless, it exhibited an almost normal linear growth rate. Analysis of mitochondrial proteomes from a wild-type strain FGSC9718, a strain lacking porin (ΔPor-1), and one expressing only 238porin, revealed that the major differences between the variant strains were in the levels of subunits of the NADH:ubiquinone oxidoreductase (complex I) of the electron transport chain, which were reduced only in the ΔPor-1 strain. These, and other proteins related to electron flow and mitochondrial biogenesis, are differentially affected by relative porin levels.
Collapse
Affiliation(s)
- Fraser G. Ferens
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Victor Spicer
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oleg V. Krokhin
- Department of Internal Medicine & Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - William A.T. Summers
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Deborah A. Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
14
|
Abstract
Mitochondria have to import the vast majority of their proteins, which are synthesized as precursors on cytosolic ribosomes. The translocase of the outer membrane (TOM complex) forms the general entry gate for the precursor proteins, which are subsequently sorted by protein machineries into the mitochondrial subcompartments: the outer and inner membrane, the intermembrane space and the mitochondrial matrix. The transport across and into the inner membrane is driven by the membrane potential, which is generated by the respiratory chain. Recent studies revealed that the lipid composition of mitochondrial membranes is important for the biogenesis of mitochondrial proteins. Cardiolipin and phosphatidylethanolamine exhibit unexpectedly specific functions for the activity of distinct protein translocases. Both phospholipids are required for full activity of respiratory chain complexes and thus to maintain the membrane potential for protein import. In addition, cardiolipin is required to maintain structural integrity of mitochondrial protein translocases. Finally, the low sterol content in the mitochondrial outer membrane may contribute to the targeting of some outer membrane proteins with a single α-helical membrane anchor. Altogether, mitochondrial lipids modulate protein import on various levels involving precursor targeting, membrane potential generation, stability and activity of protein translocases.
Collapse
|
15
|
Geißel B, Penka M, Neubauer M, Wagener J. The ER-mitochondria encounter structure contributes to hyphal growth, mitochondrial morphology and virulence of the pathogenic mold Aspergillus fumigatus. Int J Med Microbiol 2017; 307:37-43. [DOI: 10.1016/j.ijmm.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 11/15/2022] Open
|
16
|
Ellenrieder L, Opaliński Ł, Becker L, Krüger V, Mirus O, Straub SP, Ebell K, Flinner N, Stiller SB, Guiard B, Meisinger C, Wiedemann N, Schleiff E, Wagner R, Pfanner N, Becker T. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat Commun 2016; 7:13021. [PMID: 27721450 PMCID: PMC5476798 DOI: 10.1038/ncomms13021] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023] Open
Abstract
The endoplasmic reticulum–mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 β-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the β-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and β-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites. The protein Mdm10 is known to be present in the endoplasmic reticulum-mitochondria encounter structure (ERMES) and in mitochondrial sorting and assembly machinery (SAM). Here, the authors examine how this protein interacts with SAM and EMRES, showing that the SAM-mediated protein machinery is independent of ERMES.
Collapse
Affiliation(s)
- Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg D-79104, Germany
| | - Łukasz Opaliński
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Lars Becker
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany
| | - Vivien Krüger
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, University of Frankfurt, Frankfurt D-60438, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg D-79104, Germany
| | - Katharina Ebell
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany
| | - Nadine Flinner
- Molecular Cell Biology of Plants, University of Frankfurt, Frankfurt D-60438, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette 91190, France
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, University of Frankfurt, Frankfurt D-60438, Germany.,Buchmann Institute of Molecular Life Sciences, Cluster of Excellence Macromolecular Complexes, University of Frankfurt, Frankfurt D-60438, Germany
| | - Richard Wagner
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück D-49034, Germany.,Life Sciences &Chemistry, Focus Area Health, Jacobs University Bremen, Bremen D-28759, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
17
|
Kojima R, Kajiura S, Sesaki H, Endo T, Tamura Y. Identification of multi-copy suppressors for endoplasmic reticulum-mitochondria tethering proteins in Saccharomyces cerevisiae. FEBS Lett 2016; 590:3061-70. [PMID: 27531107 DOI: 10.1002/1873-3468.12358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/16/2016] [Accepted: 08/09/2016] [Indexed: 11/08/2022]
Abstract
In yeast, the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) tethers the ER to mitochondria, but its primary function remains unclear. To gain insight into ERMES functions, we screened multi-copy suppressors of the growth-defective phenotype of mmm1∆ cells, which lack a core component of ERMES, and identified MCP1, MGA2, SPT23, and YGR250C (termed RIE1). Spt23 and Mga2 are homologous transcription factors known to activate transcription of the OLE1 gene, which encodes the fatty acid ∆9 desaturase. We found that Ole1 partially relieves the growth defects of ERMES-lacking cells, thus uncovering a relationship between fatty acid metabolism and ERMES functions.
Collapse
Affiliation(s)
- Rieko Kojima
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan.,Department of Material and Biological Science, Faculty of Science, Yamagata University, Japan
| | - Shu Kajiura
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan
| | - Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Japan. .,Faculty of Life Sciences, Kyoto Sangyo University, Japan. .,JST/CREST, Kyoto Sangyo University, Japan.
| | - Yasushi Tamura
- Department of Material and Biological Science, Faculty of Science, Yamagata University, Japan. .,Research Center for Materials Science, Nagoya University, Japan.
| |
Collapse
|
18
|
Effects of lipids on mitochondrial functions. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:102-113. [PMID: 27349299 DOI: 10.1016/j.bbalip.2016.06.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 11/23/2022]
Abstract
Mitochondria contain two membranes: the outer and inner membrane. Whereas the outer membrane is particularly enriched in phospholipids, the inner membrane has an unusual high protein content and forms large invaginations termed cristae. The proper phospholipid composition of the membranes is crucial for mitochondrial functions. Phospholipids affect activity, biogenesis and stability of protein complexes including protein translocases and respiratory chain supercomplexes. Negatively charged phospholipids such as cardiolipin are important for the architecture of the membranes and recruit soluble factors to the membranes to support mitochondrial dynamics. Thus, phospholipids not only form the hydrophobic core of biological membranes that surround mitochondria, but also create a specific environment to promote functions of various protein machineries. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
19
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
20
|
Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:900-912. [PMID: 26825688 DOI: 10.1016/j.bbalip.2016.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
21
|
The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:913-923. [PMID: 26825693 DOI: 10.1016/j.bbalip.2016.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
Abstract
The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on lipids endogenous to the cell, and the BPI-like proteins (including the Takeout-like proteins of arthropods), which act on exogenous lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
22
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
23
|
Schuler MH, Di Bartolomeo F, Böttinger L, Horvath SE, Wenz LS, Daum G, Becker T. Phosphatidylcholine affects the role of the sorting and assembly machinery in the biogenesis of mitochondrial β-barrel proteins. J Biol Chem 2015; 290:26523-32. [PMID: 26385920 DOI: 10.1074/jbc.m115.687921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
Two protein translocases drive the import of β-barrel precursor proteins into the mitochondrial outer membrane: The translocase of the outer membrane (TOM complex) promotes transport of the precursor to the intermembrane space, whereas the sorting and assembly machinery (SAM complex) mediates subsequent folding of the β-barrel and its integration into the target membrane. The non-bilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) are required for the biogenesis of β-barrel proteins. Whether bilayer-forming phospholipids such as phosphatidylcholine (PC), the most abundant phospholipid of the mitochondrial outer membrane, play a role in the import of β-barrel precursors is unclear. In this study, we show that PC is required for stability and function of the SAM complex during the biogenesis of β-barrel proteins. PC further promotes the SAM-dependent assembly of the TOM complex, indicating a general role of PC for the function of the SAM complex. In contrast to PE-deficient mitochondria precursor accumulation at the TOM complex is not affected by depletion of PC. We conclude that PC and PE affect the function of distinct protein translocases in mitochondrial β-barrel biogenesis.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | - Lena Böttinger
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne E Horvath
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lena-Sophie Wenz
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Günther Daum
- Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria,
| | - Thomas Becker
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Abstract
The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.
Collapse
Affiliation(s)
- Jeremy G. Wideman
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
25
|
Abstract
The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in
Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
26
|
Chigaev A. Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia? Front Pharmacol 2015; 6:134. [PMID: 26191006 PMCID: PMC4489100 DOI: 10.3389/fphar.2015.00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia in adults is a highly heterogeneous disease. Gene expression profiling performed using unsupervised algorithms can be used to distinguish specific groups of patients within a large patient cohort. The identified gene expression signatures can offer insights into underlying physiological mechanisms of disease pathogenesis. Here, the analysis of several related gene expression clusters associated with poor outcome, worst overall survival and highest rates of resistant disease and obtained from the patients at the time of diagnosis or from previously untreated individuals is presented. Surprisingly, these gene clusters appear to be enriched for genes corresponding to proteins involved in transport across membranes (transporters, carriers and channels). Several ideas describing the possible relationship of membrane transport activity and leukemic cell biology, including the "Warburg effect," the specific role of chloride ion transport, direct "import" of metabolic energy through uptake of creatine phosphate, and modification of the bone marrow niche microenvironment are discussed.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
27
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
28
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Potapova TV. Structural and functional organization of growing tips of Neurospora crassa Hyphae. BIOCHEMISTRY (MOSCOW) 2014; 79:593-607. [PMID: 25108323 DOI: 10.1134/s0006297914070025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Data are presented on a variety of intracellular structures of the vegetative hyphae of the filamentous fungus Neurospora crassa and the involvement of these structures in the tip growth of the hyphae. Current ideas on the molecular and genetic mechanisms of tip growth and regulation of this process are considered. On the basis of comparison of data on behaviors of mitochondria and microtubules and data on the electrical heterogeneity of the hyphal apex, a hypothesis is proposed about a possible supervisory role of the longitudinal electric field in the structural and functional organization of growing tips of the N. crassa hyphae.
Collapse
Affiliation(s)
- T V Potapova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
30
|
Lackey SWK, Taylor RD, Go NE, Wong A, Sherman EL, Nargang FE. Evidence supporting the 19 β-strand model for Tom40 from cysteine scanning and protease site accessibility studies. J Biol Chem 2014; 289:21640-50. [PMID: 24947507 DOI: 10.1074/jbc.m114.578765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most proteins found in mitochondria are translated in the cytosol and enter the organelle via the TOM complex (translocase of the outer mitochondrial membrane). Tom40 is the pore forming component of the complex. Although the three-dimensional structure of Tom40 has not been determined, the structure of porin, a related protein, has been shown to be a β-barrel containing 19 membrane spanning β-strands and an N-terminal α-helical region. The evolutionary relationship between the two proteins has allowed modeling of Tom40 into a similar structure by several laboratories. However, it has been suggested that the 19-strand porin structure does not represent the native form of the protein. If true, modeling of Tom40 based on the porin structure would also be invalid. We have used substituted cysteine accessibility mapping to identify several potential β-strands in the Tom40 protein in isolated mitochondria. These data, together with protease accessibility studies, support the 19 β-strand model for Tom40 with the C-terminal end of the protein localized to the intermembrane space.
Collapse
Affiliation(s)
- Sebastian W K Lackey
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rebecca D Taylor
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nancy E Go
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Annie Wong
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - E Laura Sherman
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Frank E Nargang
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
31
|
Trypanosomal TAC40 constitutes a novel subclass of mitochondrial β-barrel proteins specialized in mitochondrial genome inheritance. Proc Natl Acad Sci U S A 2014; 111:7624-9. [PMID: 24821793 DOI: 10.1073/pnas.1404854111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum-mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA-cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Collapse
|
32
|
Flinner N, Ellenrieder L, Stiller SB, Becker T, Schleiff E, Mirus O. Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3314-3325. [PMID: 24135058 DOI: 10.1016/j.bbamcr.2013.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial β-barrel proteins fulfill central functions in the outer membrane like metabolite exchange catalyzed by the voltage-dependent anion channel (VDAC) and protein biogenesis by the central components of the preprotein translocase of the outer membrane (Tom40) or of the sorting and assembly machinery (Sam50). The mitochondrial division and morphology protein Mdm10 is another essential outer membrane protein with proposed β-barrel fold, which has so far only been found in Fungi. Mdm10 is part of the endoplasmic reticulum mitochondria encounter structure (ERMES), which tethers the ER to mitochondria and associates with the SAM complex. In here, we provide evidence that Mdm10 phylogenetically belongs to the VDAC/Tom40 superfamily. Contrary to Tom40 and VDAC, Mdm10 exposes long loops towards both sides of the membrane. Analyses of single loop deletion mutants of Mdm10 in the yeast Saccharomyces cerevisiae reveal that the loops are dispensable for Mdm10 function. Sequences similar to fungal Mdm10 can be found in species from Excavates to Fungi, but neither in Metazoa nor in plants. Strikingly, the presence of Mdm10 coincides with the appearance of the other ERMES components. Mdm10's presence in both unikonts and bikonts indicates an introduction at an early time point in eukaryotic evolution.
Collapse
Affiliation(s)
- Nadine Flinner
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Lars Ellenrieder
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | - Sebastian B Stiller
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, D-79104 Freiburg, Germany
| | - Enrico Schleiff
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Oliver Mirus
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
33
|
Wideman JG, Lackey SWK, Srayko MA, Norton KA, Nargang FE. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One 2013; 8:e71837. [PMID: 23940790 PMCID: PMC3733929 DOI: 10.1371/journal.pone.0071837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/03/2013] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the er to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including altered mitochondrial morphology and defects in the assembly of β-barrel proteins into the mitochondrial outer membrane. Here we examine ERMES complex components in N. crassa and show that Mmm1 is an ER membrane protein containing a Cys residue near its N-terminus that is conserved in the class Sordariomycetes. The residue occurs in the ER-lumen domain of the protein and is involved in the formation of disulphide bonds that give rise to Mmm1 dimers. Dimer formation is required for efficient assembly of Tom40 into the TOM complex. However, no effects are seen on porin assembly or mitochondrial morphology. This demonstrates a specificity of function and suggests a direct role for Mmm1 in Tom40 assembly. Mutation of a highly conserved region in the cytosolic domain of Mmm1 results in moderate defects in Tom40 and porin assembly, as well as a slight morphological phenotype. Previous reports have not examined the role of Mmm2 with respect to mitochondrial protein import and assembly. Here we show that absence of Mmm2 affects assembly of β-barrel proteins and that lack of any ERMES structural component results in defects in Tom22 assembly. Loss of N. crassa Gem1 has no effect on the assembly of these proteins but does affect mitochondrial morphology.
Collapse
Affiliation(s)
- Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Martin A. Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kacie A. Norton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The Ancient and Widespread Nature of the ER–Mitochondria Encounter Structure. Mol Biol Evol 2013; 30:2044-9. [DOI: 10.1093/molbev/mst120] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Tan T, Ozbalci C, Brügger B, Rapaport D, Dimmer KS. Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. J Cell Sci 2013; 126:3563-74. [PMID: 23781023 DOI: 10.1242/jcs.121244] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The yeast mitochondrial outer membrane (MOM) protein Mdm10 is involved in at least three different processes: (1) association of mitochondria with the endoplasmic reticulum and mitochondrial lipid homeostasis (2) membrane assembly of MOM proteins, and (3) inheritance and morphogenesis of mitochondria. To decipher the precise role of Mdm10 in mitochondrial function, we screened for high-copy suppressors of the severe growth defect of the mdm10Δ mutant. We identified two novel mitochondrial proteins (open reading frames YOR228c and YLR253w) that we named Mdm10 complementing protein (Mcp) 1 and Mcp2. Overexpression of Mcp1 or Mcp2 restores the alterations in morphology and stability of respiratory chain complexes of mitochondria devoid of Mdm10, but the observed defect in assembly of MOM proteins is not rescued. Lipid analysis demonstrates that elevated levels of Mcp1 and Mcp2 restore the alterations in mitochondrial phospholipid and ergosterol homeostasis in cells lacking Mdm10. Collectively, this work identifies two novel proteins that play a role in mitochondrial lipid homeostasis and describes a role of Mdm10 in ergosterol trafficking.
Collapse
Affiliation(s)
- Tao Tan
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
36
|
Becker T, Horvath SE, Böttinger L, Gebert N, Daum G, Pfanner N. Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins. J Biol Chem 2013; 288:16451-16459. [PMID: 23625917 PMCID: PMC3675581 DOI: 10.1074/jbc.m112.442392] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/19/2013] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of β-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of β-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of β-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Susanne E Horvath
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Institut für Biochemie, Technische Universität Graz, A-8010 Graz, Austria
| | - Lena Böttinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Natalia Gebert
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany
| | - Günther Daum
- Institut für Biochemie, Technische Universität Graz, A-8010 Graz, Austria.
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany.
| |
Collapse
|
37
|
Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. The mitochondrial protein import machinery has multiple connections to the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:612-26. [PMID: 23274250 DOI: 10.1016/j.bbabio.2012.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Klein A, Israel L, Lackey SWK, Nargang FE, Imhof A, Baumeister W, Neupert W, Thomas DR. Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane. ACTA ACUST UNITED AC 2012; 199:599-611. [PMID: 23128244 PMCID: PMC3494861 DOI: 10.1083/jcb.201207161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolation of the intact TOB complex reveals a 1:1:1 stoichiometry of Tob55, Tob38, and Tob37 with a 140-kD molecular mass, providing new insight into complex structure and function. The TOB–SAM complex is an essential component of the mitochondrial outer membrane that mediates the insertion of β-barrel precursor proteins into the membrane. We report here its isolation and determine its size, composition, and structural organization. The complex from Neurospora crassa was composed of Tob55–Sam50, Tob38–Sam35, and Tob37–Sam37 in a stoichiometry of 1:1:1 and had a molecular mass of 140 kD. A very minor fraction of the purified complex was associated with one Mdm10 protein. Using molecular homology modeling for Tob55 and cryoelectron microscopy reconstructions of the TOB complex, we present a model of the TOB–SAM complex that integrates biochemical and structural data. We discuss our results and the structural model in the context of a possible mechanism of the TOB insertase.
Collapse
Affiliation(s)
- Astrid Klein
- Max-Planck Institut für Biochemie, Abteilung für zelluläre Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
A protein's function is intimately linked to its correct subcellular location, yet the machinery required for protein synthesis is predominately cytosolic. How proteins are trafficked through the confines of the cell and integrated into the appropriate cellular compartments has puzzled and intrigued researchers for decades. Indeed, studies exploring this premise revealed elaborate cellular protein translocation and sorting systems, which ensure that all proteins are shuttled to the appropriate cellular destination, where they fulfill their specific functions. This holds true for mitochondria, where sophisticated molecular machines serve to recognize incoming precursor proteins and integrate them into the functional framework of the organelle. We summarize the recent progress in our understanding of mitochondrial protein sorting and the machineries and mechanisms that mediate and regulate this highly dynamic cellular process essential for survival of virtually all eukaryotic cells.
Collapse
|
40
|
From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and gram-negative bacteria. Int J Mol Sci 2012; 13:8038-8050. [PMID: 22942688 PMCID: PMC3430219 DOI: 10.3390/ijms13078038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
β-barrel proteins are the highly abundant in the outer membranes of Gram-negative bacteria and the mitochondria in eukaryotes. The assembly of β-barrels is mediated by two evolutionary conserved machineries; the β-barrel Assembly Machinery (BAM) in Gram-negative bacteria; and the Sorting and Assembly Machinery (SAM) in mitochondria. Although the BAM and SAM have functionally conserved roles in the membrane integration and folding of β-barrel proteins, apart from the central BamA and Sam50 proteins, the remaining components of each of the complexes have diverged remarkably. For example all of the accessory components of the BAM complex characterized to date are located in the bacterial periplasm, on the same side as the N-terminal domain of BamA. This is the same side of the membrane as the substrates that are delivered to the BAM. On the other hand, all of the accessory components of the SAM complex are located on the cytosolic side of the membrane, the opposite side of the membrane to the N-terminus of Sam50 and the substrate receiving side of the membrane. Despite the accessory subunits being located on opposite sides of the membrane in each system, it is clear that each system is functionally equivalent with bacterial proteins having the ability to use the eukaryotic SAM and vice versa. In this review, we summarize the similarities and differences between the BAM and SAM complexes, highlighting the possible selecting pressures on bacteria and eukaryotes during evolution. It is also now emerging that bacterial pathogens utilize the SAM to target toxins and effector proteins to host mitochondria and this will also be discussed from an evolutionary perspective.
Collapse
|
41
|
Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol 2012; 22:185-92. [DOI: 10.1016/j.tcb.2012.01.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/18/2022]
|
42
|
Becker T, Böttinger L, Pfanner N. Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem Sci 2012; 37:85-91. [PMID: 22178138 DOI: 10.1016/j.tibs.2011.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 01/24/2023]
Abstract
Mitochondria, the powerhouses of the cell, import most of their proteins from the cytosol. It was originally assumed that mitochondria imported precursor proteins via a general pathway but recent studies have revealed a remarkable variety of import pathways and mechanisms. Currently, five different protein import pathways can be distinguished. However, the import machineries cooperate with each other and are connected to other systems that function in the respiratory chain, mitochondrial membrane organization, protein quality control and endoplasmic reticulum-mitochondria junctions. In this Opinion, we propose that mitochondrial protein import should not be seen as an independent task of the organelle and that a network of cooperating machineries is responsible for major mitochondrial functions.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
43
|
Bay DC, Hafez M, Young MJ, Court DA. Phylogenetic and coevolutionary analysis of the β-barrel protein family comprised of mitochondrial porin (VDAC) and Tom40. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1502-19. [PMID: 22178864 DOI: 10.1016/j.bbamem.2011.11.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 12/21/2022]
Abstract
Beta-barrel proteins are the main transit points across the mitochondrial outer membrane. Mitochondrial porin, the voltage-dependent, anion-selective channel (VDAC), is responsible for the passage of small molecules between the mitochondrion and the cytosol. Through interactions with other mitochondrial and cellular proteins, it is involved in regulating organellar and cellular metabolism and likely contributes to mitochondrial structure. Tom40 is part of the translocase of the outer membrane, and acts as the channel for passage of preproteins during their import into the organelle. These proteins appear to share a common evolutionary origin and structure. In the current study, the evolutionary relationships between and within both proteins were investigated through phylogenetic analysis. The two groups have a common origin and have followed independent, complex evolutionary pathways, leading to the generation of paralogues in animals and plants. Structures of diverse representatives were modeled, revealing common themes rather than sites of high identity in both groups. Within each group, intramolecular coevolution was assessed, revealing a new set of sites potentially involved in structure-function relationships in these molecules. A weak link between Tom40 and proteins related to the mitochondrial distribution and morphology protein, Mdm10, was identified. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Denice C Bay
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
44
|
Jiang JH, Davies JK, Lithgow T, Strugnell RA, Gabriel K. Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of β-barrel protein assembly machines. Mol Microbiol 2011; 82:976-87. [DOI: 10.1111/j.1365-2958.2011.07880.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Lackey SWK, Wideman JG, Kennedy EK, Go NE, Nargang FE. The Neurospora crassa TOB complex: analysis of the topology and function of Tob38 and Tob37. PLoS One 2011; 6:e25650. [PMID: 21980517 PMCID: PMC3182244 DOI: 10.1371/journal.pone.0025650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
The TOB or SAM complex is responsible for assembling several proteins into the mitochondrial outer membrane, including all β-barrel proteins. We have identified several forms of the complex in Neurospora crassa. One form contains Tob55, Tob38, and Tob37; another contains these three subunits plus the Mdm10 protein; while additional complexes contain only Tob55. As previously shown for Tob55, both Tob37 and Tob38 are essential for viability of the organism. Mitochondria deficient in Tob37 or Tob38 have reduced ability to assemble β-barrel proteins. The function of two hydrophobic domains in the C-terminal region of the Tob37 protein was investigated. Mutant Tob37 proteins lacking either or both of these regions are able to restore viability to cells lacking the protein. One of the domains was found to anchor the protein to the outer mitochondrial membrane but was not necessary for targeting or association of the protein with mitochondria. Examination of the import properties of mitochondria containing Tob37 with deletions of the hydrophobic domains reveals that the topology of Tob37 may be important for interactions between specific classes of β-barrel precursors and the TOB complex.
Collapse
Affiliation(s)
| | - Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Erin K. Kennedy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy E. Go
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
46
|
Summers WAT, Wilkins JA, Dwivedi RC, Ezzati P, Court DA. Mitochondrial dysfunction resulting from the absence of mitochondrial porin in Neurospora crassa. Mitochondrion 2011; 12:220-9. [PMID: 21946565 DOI: 10.1016/j.mito.2011.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 12/20/2022]
Abstract
Porin, the voltage-dependent anion-selective channel (VDAC) in the mitochondrial outer membrane, contributes to metabolism and apoptosis. VDAC function was investigated in Neurospora, an obligate aerobe with a single porin. Porinless strains are viable, with cold-sensitive growth, cytochrome deficiencies and overexpression of alternative oxidase. iTRAQ labeling of mitochondria from a porinless strain and its progenitor revealed a small group of proteins with altered expression levels in the mutant organelles. Porinless Neurospora appears to compensate not by inducing alternative pores, but by altering electron flow and nucleotide metabolism. Transcriptional and post-transcriptional mechanisms contribute to the response, reflecting the extent of porin influence.
Collapse
Affiliation(s)
- William A T Summers
- Department of Microbiology, University of Manitoba, 301 Buller Building, Winnipeg, MB, Canada R3T 2N2.
| | | | | | | | | |
Collapse
|
47
|
Stroud DA, Oeljeklaus S, Wiese S, Bohnert M, Lewandrowski U, Sickmann A, Guiard B, van der Laan M, Warscheid B, Wiedemann N. Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J Mol Biol 2011; 413:743-50. [PMID: 21945531 DOI: 10.1016/j.jmb.2011.09.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/05/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
Abstract
Eukaryotic cells contain multiple organelles, which are functionally and structurally interconnected. The endoplasmic reticulum-mitochondria encounter structure (ERMES) forms a junction between mitochondria and the endoplasmic reticulum (ER). Four ERMES proteins are known in yeast, the ER-anchored protein Mmm1 and three mitochondria-associated proteins, Mdm10, Mdm12 and Mdm34, with functions related to mitochondrial morphology and protein biogenesis. We mapped the glycosylation sites of ERMES and demonstrate that three asparagine residues in the N‑terminal domain of Mmm1 are glycosylated. While the glycosylation is dispensable, the cytosolic C‑terminal domain of Mmm1 that connects to the Mdm proteins is required for Mmm1 function. To analyze the composition of ERMES, we determined the subunits by quantitative mass spectrometry. We identified the calcium-binding GTPase Gem1 as a new ERMES subunit, revealing that ERMES is composed of five genuine subunits. Taken together, ERMES represents a platform that integrates components with functions in formation of ER-mitochondria junctions, maintenance of mitochondrial morphology, protein biogenesis and calcium binding.
Collapse
Affiliation(s)
- David A Stroud
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stroud DA, Becker T, Qiu J, Stojanovski D, Pfannschmidt S, Wirth C, Hunte C, Guiard B, Meisinger C, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Mol Biol Cell 2011; 22:2823-33. [PMID: 21680715 PMCID: PMC3154879 DOI: 10.1091/mbc.e11-02-0148] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitochondrial outer membrane contains proteinaceous machineries for the translocation of precursor proteins. The sorting and assembly machinery (SAM) is required for the insertion of β-barrel proteins into the outer membrane. Sam50 is the channel-forming core subunit of the SAM complex and belongs to the BamA/Sam50/Toc75 family of proteins that have been conserved from Gram-negative bacteria to mitochondria and chloroplasts. These proteins contain one or more N-terminal polypeptide transport-associated (POTRA) domains. POTRA domains can bind precursor proteins, however, different views exist on the role of POTRA domains in the biogenesis of β-barrel proteins. It has been suggested that the single POTRA domain of mitochondrial Sam50 plays a receptor-like function at the SAM complex. We established a system to monitor the interaction of chemical amounts of β-barrel precursor proteins with the SAM complex of wild-type and mutant yeast in organello. We report that the SAM complex lacking the POTRA domain of Sam50 efficiently binds β-barrel precursors, but is impaired in the release of the precursors. These results indicate the POTRA domain of Sam50 is not essential for recognition of β-barrel precursors but functions in a subsequent step to promote the release of precursor proteins from the SAM complex.
Collapse
Affiliation(s)
- David A Stroud
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dukanovic J, Rapaport D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:971-80. [DOI: 10.1016/j.bbamem.2010.06.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
50
|
Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane. J Mol Biol 2011; 405:113-24. [DOI: 10.1016/j.jmb.2010.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 11/21/2022]
|