1
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
3
|
Izumi R, Ikeda K, Niihori T, Suzuki N, Shirota M, Funayama R, Nakayama K, Warita H, Tateyama M, Aoki Y, Aoki M. Nuclear pore pathology underlying multisystem proteinopathy type 3-related inclusion body myopathy. Ann Clin Transl Neurol 2024; 11:577-592. [PMID: 38158701 DOI: 10.1002/acn3.51977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Multisystem proteinopathy type 3 (MSP3) is an inherited, pleiotropic degenerative disorder caused by a mutation in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which can affect the muscle, bone, and/or nervous system. This study aimed to determine detailed histopathological features and transcriptomic profile of HNRNPA1-mutated skeletal muscles to reveal the core pathomechanism of hereditary inclusion body myopathy (hIBM), a predominant phenotype of MSP3. METHODS Histopathological analyses and RNA sequencing of HNRNPA1-mutated skeletal muscles harboring a c.940G > A (p.D314N) mutation (NM_031157) were performed, and the results were compared with those of HNRNPA1-unlinked hIBM and control muscle tissues. RESULTS RNA sequencing revealed aberrant alternative splicing events that predominantly occurred in myofibril components and mitochondrial respiratory complex. Enrichment analyses identified the nuclear pore complex (NPC) and nucleocytoplasmic transport as suppressed pathways. These two pathways were linked by the hub genes NUP50, NUP98, NUP153, NUP205, and RanBP2. In immunohistochemistry, these nucleoporin proteins (NUPs) were mislocalized to the cytoplasm and aggregated mostly with TAR DNA-binding protein 43 kDa and, to a lesser extent, with hnRNPA1. Based on ultrastructural observation, irregularly shaped myonuclei with deep invaginations were frequently observed in atrophic fibers, consistent with the disorganization of NPCs. Additionally, regarding the expression profiles of overall NUPs, reduced expression of NUP98, NUP153, and RanBP2 was shared with HNRNPA1-unlinked hIBMs. INTERPRETATION The shared subset of altered NUPs in amyotrophic lateral sclerosis (ALS), as demonstrated in prior research, HNRNPA1-mutated, and HNRNPA1-unlinked hIBM muscle tissues may provide evidence regarding the underlying common nuclear pore pathology of hIBM, ALS, and MSP.
Collapse
Grants
- KAKENHI (20K16571) Grant-in-Aid for Early-Career Scientists from Japan Society for the Promotion of Science (JSPS)
- KAKENHI (20H03586) Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS)
- KAKENHI (23H02821) Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS)
- KAKENHI (20K07897) Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS)
- 23FC1008 Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan
- 23FC1010 Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan
- 20FC1036 Grants-in-Aid for Research on Rare and Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan
- 23FC1014 Grants-in-Aid for Research on Rare and Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan
- Haruki ALS Research Foundation
- 2-5 Intramural Research Grant for Neurological and Psychiatric Disorders Provided from National Center of Neurology and Psychiatry of Japan
- 5-6 Intramural Research Grant for Neurological and Psychiatric Disorders Provided from National Center of Neurology and Psychiatry of Japan
Collapse
Affiliation(s)
- Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maki Tateyama
- Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
5
|
Nkombo Nkoula S, Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of nuclear pore complex disassembly by the mitotic Polo-like kinase 1 (PLK-1) in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadf7826. [PMID: 37467327 PMCID: PMC10355831 DOI: 10.1126/sciadv.adf7826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The nuclear envelope, which protects and organizes the genome, is dismantled during mitosis. In the Caenorhabditis elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the maternal and paternal genomes. Nuclear pore complex (NPC) disassembly is a decisive step of NEBD, essential for nuclear permeabilization. By combining live imaging, biochemistry, and phosphoproteomics, we show that NPC disassembly is a stepwise process that involves Polo-like kinase 1 (PLK-1)-dependent and -independent steps. PLK-1 targets multiple NPC subcomplexes, including the cytoplasmic filaments, central channel, and inner ring. PLK-1 is recruited to and phosphorylates intrinsically disordered regions (IDRs) of several multivalent linker nucleoporins. Notably, although the phosphosites are not conserved between human and C. elegans nucleoporins, they are located in IDRs in both species. Our results suggest that targeting IDRs of multivalent linker nucleoporins is an evolutionarily conserved driver of NPC disassembly during mitosis.
Collapse
Affiliation(s)
- Sylvia Nkombo Nkoula
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Griselda Velez-Aguilera
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lucie Van Hove
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laura Thomas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Géraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Lionel Pintard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
6
|
Walker SG, Langland CJ, Viles J, Hecker LA, Wallrath LL. Drosophila Models Reveal Properties of Mutant Lamins That Give Rise to Distinct Diseases. Cells 2023; 12:cells12081142. [PMID: 37190051 DOI: 10.3390/cells12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Sydney G Walker
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent Researcher, Gowrie, IA 50543, USA
| | - Laura A Hecker
- Department of Biology, Clarke University, Dubuque, IA 52001, USA
| | - Lori L Wallrath
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Nkoula SN, Velez-Aguilera G, Ossareh-Nazari B, Hove LV, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of Nuclear Pore Complex disassembly by the mitotic Polo-Like Kinase 1 (PLK-1) in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.528438. [PMID: 36865292 PMCID: PMC9980100 DOI: 10.1101/2023.02.21.528438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The nuclear envelope, which protects and organizes the interphase genome, is dismantled during mitosis. In the C. elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the parental genomes. During NEBD, Nuclear Pore Complex (NPC) disassembly is critical for rupturing the nuclear permeability barrier and removing the NPCs from the membranes near the centrosomes and between the juxtaposed pronuclei. By combining live imaging, biochemistry, and phosphoproteomics, we characterized NPC disassembly and unveiled the exact role of the mitotic kinase PLK-1 in this process. We show that PLK-1 disassembles the NPC by targeting multiple NPC sub-complexes, including the cytoplasmic filaments, the central channel, and the inner ring. Notably, PLK-1 is recruited to and phosphorylates intrinsically disordered regions of several multivalent linker nucleoporins, a mechanism that appears to be an evolutionarily conserved driver of NPC disassembly during mitosis. (149/150 words). One-Sentence Summary PLK-1 targets intrinsically disordered regions of multiple multivalent nucleoporins to dismantle the nuclear pore complexes in the C. elegans zygote.
Collapse
|
8
|
Cheng J, Allgeyer ES, Richens JH, Dzafic E, Palandri A, Lewków B, Sirinakis G, St Johnston D. A single-molecule localization microscopy method for tissues reveals nonrandom nuclear pore distribution in Drosophila. J Cell Sci 2021; 134:jcs259570. [PMID: 34806753 PMCID: PMC8729783 DOI: 10.1242/jcs.259570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/19/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) can provide nanoscale resolution in thin samples but has rarely been applied to tissues because of high background from out-of-focus emitters and optical aberrations. Here, we describe a line scanning microscope that provides optical sectioning for SMLM in tissues. Imaging endogenously-tagged nucleoporins and F-actin on this system using DNA- and peptide-point accumulation for imaging in nanoscale topography (PAINT) routinely gives 30 nm resolution or better at depths greater than 20 µm. This revealed that the nuclear pores are nonrandomly distributed in most Drosophila tissues, in contrast to what is seen in cultured cells. Lamin Dm0 shows a complementary localization to the nuclear pores, suggesting that it corrals the pores. Furthermore, ectopic expression of the tissue-specific Lamin C causes the nuclear pores to distribute more randomly, whereas lamin C mutants enhance nuclear pore clustering, particularly in muscle nuclei. Given that nucleoporins interact with specific chromatin domains, nuclear pore clustering could regulate local chromatin organization and contribute to the disease phenotypes caused by human lamin A/C laminopathies.
Collapse
Affiliation(s)
- Jinmei Cheng
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Edward S. Allgeyer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jennifer H. Richens
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Edo Dzafic
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Amandine Palandri
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Bohdan Lewków
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - George Sirinakis
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
9
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
10
|
Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. mBio 2021; 12:e0097221. [PMID: 34225493 PMCID: PMC8406168 DOI: 10.1128/mbio.00972-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases.
Collapse
|
11
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Age-dependent changes in nuclear-cytoplasmic signaling in skeletal muscle. Exp Gerontol 2021; 150:111338. [PMID: 33862137 DOI: 10.1016/j.exger.2021.111338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Mechanical forces are conducted through myofibers and into nuclei to regulate muscle development, hypertrophy, and homeostasis. We hypothesized that nuclei in aged muscle have changes in the nuclear envelope and associated proteins, resulting in altered markers of mechano-signaling. METHODS YAP/TAZ protein expression and gene expression of downstream targets, Ankrd1 and Cyr61, were evaluated as mechanotransduction indicators. Expression of proteins in the nuclear lamina and the nuclear pore complex (NPC) were assessed, and nuclear morphology was characterized by electron microscopy. Nuclear envelope permeability was assessed by uptake of 70 kDa fluorescent dextran. RESULTS Nuclear changes with aging included a relative decrease of lamin β1 and Nup107, and a relative increase in Nup93, which could underlie the aberrant nuclear morphology, increased nuclear leakiness, and elevated YAP/TAZ signaling. CONCLUSION Aged muscles have hyperactive nuclear-cytoplasmic signaling, indicative of altered nuclear mechanotransduction. These data highlight a possible role for the nucleus in aging-related aberrant mechano-sensing.
Collapse
|
13
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
14
|
Dutta S, Bhattacharyya M, Sengupta K. Changes in the Nuclear Envelope in Laminopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:31-38. [PMID: 30637688 DOI: 10.1007/978-981-13-3065-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Double-membrane-bound nucleus is the major organelle of every metazoan cell, which controls various nuclear processes like chromatin maintenance, DNA replication, transcription and nucleoskeleton-cytoskeleton coupling. Nuclear homeostasis depends on the integrity of nuclear membrane and associated proteins. Lamins, underlying the inner nuclear membrane (INM), play a crucial role in maintaining nuclear homeostasis. In this review, we have focussed on the disruption of nuclear homeostasis due to lamin A/C mutation which produces a plethora of diseases, termed as laminopathies.
Collapse
Affiliation(s)
- Subarna Dutta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | | | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.
| |
Collapse
|
15
|
Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet 2018; 14:e1007845. [PMID: 30543681 PMCID: PMC6307818 DOI: 10.1371/journal.pgen.1007845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS. Fetal movement is a prerequisite for normal fetal development and growth. Fetal akinesia deformation sequence (FADS) is the result of decreased fetal movement coinciding with congenital malformations related to impaired fetal movement. FADS may be caused by heterogenous defects at any point along the motor system pathway and genes encoding components critical to the neuromuscular junction and acetylcholine receptor clustering represent a major class of FADS disease genes. We report here biallelic, loss-of-function mutations in the nucleoporin NUP88 that result in lethal FADS and with this the first lethal human developmental disorder due to mutations in a nucleoporin gene. We show that loss of Nup88 in zebrafish results in defects reminiscent of those seen in affected human fetuses and loss of NUP88 affects distinct developmental stages, both during human and zebrafish development. Consistent with the notion that a primary cause for FADS is impaired formation of the neuromuscular junction, loss of Nup88 in zebrafish coincides with abnormalities in acetylcholine receptor clustering, suggesting that defective NUP88 function in FADS impairs neuromuscular junction formation.
Collapse
|
16
|
Fahrenkrog B, Harel A. Perturbations in Traffic: Aberrant Nucleocytoplasmic Transport at the Heart of Neurodegeneration. Cells 2018; 7:cells7120232. [PMID: 30486313 PMCID: PMC6316434 DOI: 10.3390/cells7120232] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Huntington’s disease (HD), are characterized by intracellular aggregation of proteins. In the case of ALS and FTD, these protein aggregates are found in the cytoplasm of affected neurons and contain certain RNA-binding proteins (RBPs), namely the TAR DNA-binding protein of 43 kDa (TDP-43) and the fused in sarcoma (FUS) gene product. TDP-43 and FUS are nuclear proteins and their displacement to the cytoplasm is thought to be adverse in at least two ways: loss-of-function in the nucleus and gain-of-toxicity in the cytoplasm. In the case of HD, expansion of a polyglutamine (polyQ) stretch within the N-terminal domain of the Huntingtin (HTT) protein leads to nuclear accumulation of polyQ HTT (or mHTT) and a toxic gain-of-function phenotype resulting in neurodegeneration. Numerous studies in recent years have provided evidence that defects in nucleocytoplasmic transport critically contribute to the pathology of these neurodegenerative diseases. A new mechanistic view is emerging, implicating three types of perturbations in normal cellular pathways that rely on nucleocytoplasmic transport: displacement of nuclear transport receptors and nucleoporins from nuclear pore complexes (NPCs), mislocalization and aggregation of RNA-binding proteins, and weakening of the chaperone activity of nuclear import receptors.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
17
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.,Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK.,Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK. .,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
18
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018; 9:3917. [PMID: 30254278 PMCID: PMC6156340 DOI: 10.1038/s41467-018-06130-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
- Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
19
|
Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
|
20
|
Skeletal Muscle Dystrophy mutant of lamin A alters the structure and dynamics of the Ig fold domain. Sci Rep 2018; 8:13793. [PMID: 30218058 PMCID: PMC6138676 DOI: 10.1038/s41598-018-32227-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Mutations in the different domains of A-type lamin proteins cause a diverse plethora of diseases collectively termed as laminopathies which can affect multiple organs. Ig fold is one such domain of lamin A which is implicated in numerous nuclear interactions wherein the mutations lead to different laminopathies. W514R is one such mutation in the Ig fold which leads to severe phenotypes in Skeletal Muscle Dystrophy (SMD) which is a class of laminopathies. In this report, we elucidated gross alterations in structure and dynamics at the level of individual amino acids. These studies indicate altered conformational features of residues in the close vicinity of W514. Imaging of mammalian cells transfected with the mutant have shown distinct perturbation of the nuclear meshwork with concomitant alteration in nuclear interactions as a result of increased oligomerization of Ig W514R. Hence, this novel approach of amalgamating theoretical and experimental procedures to predict the severity of a mutant in the context of laminopathies could be extended for numerous lamin A mutants.
Collapse
|
21
|
Makise M, Nakamura H, Kuniyasu A. The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype. BMC Cancer 2018; 18:519. [PMID: 29724197 PMCID: PMC5934895 DOI: 10.1186/s12885-018-4454-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Nucleoporin Nup88, a component of nuclear pore complexes, is known to be overexpressed in several types of tumor tissue. The overexpression of Nup88 has been reported to promote the early step of tumorigenesis by inducing multinuclei in both HeLa cells and a mouse model. However, the molecular basis of how Nup88 leads to a multinucleated phenotype remains unclear because of a lack of information concerning its binding partners. In this study, we characterize a novel interaction between Nup88 and vimentin. We also examine the involvement of vimentin in the Nup88-dependent multinucleated phenotype. Methods Cells overexpressing tagged versions of Nup88, vimentin and their truncations were used in this study. Coprecipitation and GST-pulldown assays were carried out to analyze protein-protein interactions. Vimentin knockdown by siRNA was performed to examine the functional role of the Nup88-vimentin interaction in cells. The phosphorylation status of vimentin was analyzed by immunoblotting using an antibody specific for its phosphorylation site. Results Vimentin was identified as a Nup88 interacting partner, although it did not bind to other nucleoporins, such as Nup50, Nup214, and Nup358, in HeLa cell lysates. The N-terminal 541 amino acid residues of Nup88 was found to be responsible for its interaction with vimentin. Recombinant GST-tagged Nup88 bound to recombinant vimentin in a GST-pulldown assay. Although overexpression of Nup88 in HeLa cells was observed mainly at the nuclear rim and in the cytoplasm, colocalization with vimentin was only partially detected at or around the nuclear rim. Disruption of the Nup88-vimentin interaction by vimentin specific siRNA transfection suppressed the Nup88-dependent multinucleated phenotype. An excess amount of Nup88 in cell lysates inhibited the dephosphorylation of a serine residue (Ser83) within the vimentin N-terminal region even in the absence and presence of an exogenous phosphatase. The N-terminal 96 amino acid residues of vimentin interacted with both full-length and the N-terminal 541 residues of Nup88. Conclusions Nup88 can affect the phosphorylation status of vimentin, which may contribute to the Nup88-dependent multinucleated phenotype through changing the organization of vimentin.
Collapse
Affiliation(s)
- Masaki Makise
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Akihiko Kuniyasu
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| |
Collapse
|
22
|
Li J, Zhao J, Li Y. Multiple biological processes may be associated with tumorigenesis under NUP88-overexpressed condition. Genes Chromosomes Cancer 2016; 56:117-127. [PMID: 27636375 DOI: 10.1002/gcc.22417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022] Open
Abstract
Overexpression of the nucleoporin NUP88 has been observed in a large number of tumors and has been experimentally proven to promote tumorigenesis. However, the mechanism underlying the tumor-promoting activity of overexpressed NUP88 is not clear. To investigate the potential pathways that drive tumorigenesis under NUP88 overexpressed condition, we applied a proteomic approach to identify NUP88-associated proteins at a subcellular compartment level. Gene ontology analysis revealed significant associations between NUP88 interactome and biological processes that are related to nuclear transport, RNA processing, cell cycle progression, metabolic regulation, and viral infection. Moreover, we found that NUP88 interacts with MISP, a mitotic interactor and substrate of PLK1. Interestingly, NUP88 overexpression blocks MISP phosphorylation, which is known to be critical for normal spindle formation and accurate chromosome segregation during mitosis. In conclusion, our data for the first time provide a global view of biological processes that may drive tumorigenesis under NUP88 overexpressed condition, revealing a biological effect of NUP88-MISP interaction. Furthermore, identification of NUP88-associated proteins provides a valuable database for future studies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Anaesthesia, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of cancer prevention and therapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Jinsheng Zhao
- Department of Neurology, Tianjin Nankai Hospital, Nankai Clinical School of Tianjin Medical University, Tianjin, China
| | - Yue Li
- Department of Anaesthesia, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of cancer prevention and therapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
23
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
24
|
Guo Y, Zheng Y. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell 2015; 26:3379-89. [PMID: 26246603 PMCID: PMC4591684 DOI: 10.1091/mbc.e15-07-0482] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022] Open
Abstract
Nuclear lamins counterbalance dynein forces on nuclear pore complexes through BICD2 and ensure even nuclear pore complex distribution and proper centrosome separation at prophase. Lamins, the type V nuclear intermediate filament proteins, are reported to function in both interphase and mitosis. For example, lamin deletion in various cell types can lead to an uneven distribution of the nuclear pore complexes (NPCs) in the interphase nuclear envelope, whereas deletion of B-type lamins results in spindle orientation defects in mitotic neural progenitor cells. How lamins regulate these functions is unknown. Using mouse cells deleted of different combinations or all lamins, we show that lamins are required to prevent the aggregation of NPCs in the nuclear envelope near centrosomes in late G2 and prophase. This asymmetric NPC distribution in the absence of lamins is caused by dynein forces acting on NPCs via the dynein adaptor BICD2. We further show that asymmetric NPC distribution upon lamin depletion disrupts the distribution of BICD2 and p150 dynactin on the nuclear envelope at prophase, which results in inefficient dynein-driven centrosome separation during prophase. Therefore lamins regulate microtubule-based motor forces in vivo to ensure proper NPC distribution in interphase and centrosome separation in the mitotic prophase.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Yixian Zheng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218; Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
25
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Kiel T, Busch A, Meyer-Rachner A, Hübner S. Laminopathy-inducing mutations reduce nuclear import of expressed prelamin A. Int J Biochem Cell Biol 2014; 53:271-80. [PMID: 24943589 DOI: 10.1016/j.biocel.2014.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/20/2014] [Accepted: 05/26/2014] [Indexed: 01/07/2023]
Abstract
Lamins are structural components of the nuclear lamina and integral parts of the nucleoplasm. The tripartite domain structure partitions the molecule into an amino-terminal head, central rod and a carboxy-terminal tail domain. The tail domain contains a nuclear localization sequence and in most lamins an additional CaaX motif, which is necessary to post-translationally process prelamin to mature lamin. As players of nuclear and cellular integrity, lamins must possess unrestrained access to the nucleus. To study whether nuclear trafficking of lamins is compromised in laminopathies, we determined relative nuclear import activities between expressed prelamin A and selected laminopathy-inducing mutants thereof. Furthermore, the impact of inhibition of maturation on nuclear import of expressed prelamin A was examined. To perform quantitative transport measurements, import competent but lamina incorporation-deficient GFP- or DsRed-tagged prelamin A deletion mutants were used, which lacked the head and rod domain (ΔHR-prelamin A). Nuclear accumulation of ΔHR-prelamin A carrying the lipodystrophy and metabolic syndrome-inducing mutations R419C and L421P or progeria-causing deletions was significantly reduced, but that of the maturation-deficient mutant ΔHR-prelamin A SSIM was significantly increased. In the case of the full length prelamin A mutants R419C and L421P altered subcellular localization and reduced lamina incorporation were detected, with the prelamin A-binding protein Narf being redistributed into R419-containing aggregates. The results suggest that impaired nuclear transport of certain prelamin A mutants may represent a contributing factor in the pathogenesis of certain laminopathies.
Collapse
Affiliation(s)
- T Kiel
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - A Busch
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - A Meyer-Rachner
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - S Hübner
- Julius-Maximilians-University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany.
| |
Collapse
|
27
|
Abstract
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus, and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion.
Collapse
Affiliation(s)
- Celine Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA,
| | | |
Collapse
|
28
|
Takagi M, Imamoto N. Control of nuclear size by NPC proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:571-91. [PMID: 24563366 DOI: 10.1007/978-1-4899-8032-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The architecture of the cell nucleus in cancer cells is often altered in a manner associated with the tumor type and aggressiveness. Therefore, it has been the central criterion in the pathological diagnosis and prognosis of cancer. However, the molecular mechanism behind these observed changes in nuclear morphology, including size, remains completely unknown. Based on our current understanding of the physiology of the nuclear pore complex (NPC) and its constituents, which are collectively referred to as nucleoporins (Nups), we discuss how the structural and functional ablation of the NPC and Nups could directly or indirectly contribute to the changes in nuclear size observed in cancer cells.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN, WAKO, Saitama, 351-0198, Japan,
| | | |
Collapse
|
29
|
Simon DN, Wilson KL. Partners and post-translational modifications of nuclear lamins. Chromosoma 2013; 122:13-31. [PMID: 23475188 DOI: 10.1007/s00412-013-0399-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
Nuclear intermediate filament networks formed by A- and B-type lamins are major components of the nucleoskeleton that are required for nuclear structure and function, with many links to human physiology. Mutations in lamins cause diverse human diseases ('laminopathies'). At least 54 partners interact with human A-type lamins directly or indirectly. The less studied human lamins B1 and B2 have 23 and seven reported partners, respectively. These interactions are likely to be regulated at least in part by lamin post-translational modifications. This review summarizes the binding partners and post-translational modifications of human lamins and discusses their known or potential implications for lamin function.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
30
|
Steinberg G, Schuster M, Theisen U, Kilaru S, Forge A, Martin-Urdiroz M. Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. ACTA ACUST UNITED AC 2012; 198:343-55. [PMID: 22851316 PMCID: PMC3413351 DOI: 10.1083/jcb.201201087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ~1.0 µm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.
Collapse
Affiliation(s)
- Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, England, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Clever M, Funakoshi T, Mimura Y, Takagi M, Imamoto N. The nucleoporin ELYS/Mel28 regulates nuclear envelope subdomain formation in HeLa cells. Nucleus 2012; 3:187-99. [PMID: 22555603 PMCID: PMC3383574 DOI: 10.4161/nucl.19595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In open mitosis the nuclear envelope (NE) reassembles at the end of each mitosis. This process involves the reformation of the nuclear pore complex (NPC), the inner and outer nuclear membranes, and the nuclear lamina. In human cells cell cycle-dependent NE subdomains exist, characterized as A-type lamin-rich/NPC-free or B-type lamin-rich/NPC-rich, which are initially formed as core or noncore regions on mitotic chromosomes, respectively. Although postmitotic NE formation has been extensively studied, little is known about the coordination of NPC and NE assembly. Here, we report that the nucleoporin ELYS/Mel28, which is crucial for postmitotic NPC formation, is essential for recruiting the lamin B receptor (LBR) to the chromosomal noncore region. Furthermore, ELYS/Mel28 is responsible for focusing of A-type lamin-binding proteins like emerin, Lap2α and the barrier-to-autointegration factor (BAF) at the chromosomal core region. ELYS/Mel28 biochemically interacts with the LBR in a phosphorylation-dependent manner. Recruitment of the LBR depends on the nucleoporin Nup107, which interacts with ELYS/Mel28 but not on nucleoporin Pom121, suggesting that the specific molecular interactions with ELYS/Mel28 are involved in the NE assembly at the noncore region. The depletion of the LBR affected neither the behavior of emerin nor Lap2α indicating that the recruitment of the LBR to mitotic chromosomes is not involved in formation of the core region. The depletion of ELYS/Mel28 also accelerates the entry into cytokinesis after recruitment of emerin to chromosomes. Our data show that ELYS/Mel28 plays a role in NE subdomain formation in late mitosis.
Collapse
Affiliation(s)
- Michaela Clever
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Tomoko Funakoshi
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
- Live-Cell Molecular Imaging Research Team; Riken Advanced Science Institute; Saitama, Japan
| | - Yasuhiro Mimura
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| |
Collapse
|
32
|
Abstract
Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
33
|
Grossman E, Dahan I, Stick R, Goldberg MW, Gruenbaum Y, Medalia O. Filaments assembly of ectopically expressed Caenorhabditis elegans lamin within Xenopus oocytes. J Struct Biol 2012; 177:113-8. [DOI: 10.1016/j.jsb.2011.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/21/2011] [Accepted: 11/01/2011] [Indexed: 12/23/2022]
|
34
|
Dialynas G, Flannery KM, Zirbel LN, Nagy PL, Mathews KD, Moore SA, Wallrath LL. LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle. Hum Mol Genet 2011; 21:1544-56. [PMID: 22186027 PMCID: PMC3298278 DOI: 10.1093/hmg/ddr592] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the human LMNA gene, encoding A-type lamins, give rise to laminopathies, which include several types of muscular dystrophy. Here, heterozygous sequence variants in LMNA, which result in single amino-acid substitutions, were identified in patients exhibiting muscle weakness. To assess whether the substitutions altered lamin function, we performed in vivo analyses using a Drosophila model. Stocks were generated that expressed mutant forms of the Drosophila A-type lamin modeled after each variant. Larvae were used for motility assays and histochemical staining of the body-wall muscle. In parallel, immunohistochemical analyses were performed on human muscle biopsy samples from the patients. In control flies, muscle-specific expression of the wild-type A-type lamin had no apparent affect. In contrast, expression of the mutant A-type lamins caused dominant larval muscle defects and semi-lethality at the pupal stage. Histochemical staining of larval body wall muscle revealed that the mutant A-type lamin, B-type lamins, the Sad1p, UNC-84 domain protein Klaroid and nuclear pore complex proteins were mislocalized to the cytoplasm. In addition, cytoplasmic actin filaments were disorganized, suggesting links between the nuclear lamina and the cytoskeleton were disrupted. Muscle biopsies from the patients showed dystrophic histopathology and architectural abnormalities similar to the Drosophila larvae, including cytoplasmic distribution of nuclear envelope proteins. These data provide evidence that the Drosophila model can be used to assess the function of novel LMNA mutations and support the idea that loss of cellular compartmentalization of nuclear proteins contributes to muscle disease pathogenesis.
Collapse
Affiliation(s)
- George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Müller SA, Engel A. Looking back at a quarter-century of research at the Maurice E. Müller Institute for Structural Biology. J Struct Biol 2011; 177:3-13. [PMID: 22115996 DOI: 10.1016/j.jsb.2011.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
The Maurice E. Müller Institute, embedded in the infrastructure of the Biozentrum, University of Basel, was founded in 1985 and financed by the Maurice E. Müller Foundation of Switzerland. For 26 years its two founders, Ueli Aebi and Andreas Engel, pursued the vision of integrated structural biology. This paper reviews selected publications issuing from the Maurice E. Müller Institute for Structural Biology and marks the end of this era.
Collapse
Affiliation(s)
- Shirley A Müller
- Center for Cellular Imaging and Nano Analytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
36
|
Domain topology of nucleoporin Nup98 within the nuclear pore complex. J Struct Biol 2011; 177:81-9. [PMID: 22100335 DOI: 10.1016/j.jsb.2011.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/22/2022]
Abstract
Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.
Collapse
|
37
|
Zhao ZR, Zhang LJ, Wang YY, Li F, Wang MW, Sun XF. Increased serum level of Nup88 protein is associated with the development of colorectal cancer. Med Oncol 2011; 29:1789-95. [PMID: 21863385 DOI: 10.1007/s12032-011-0047-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/16/2023]
Abstract
Nucleoporin88 (Nup88) has been shown to be overexpressed in a wide variety of malignancies including colorectal cancer (CRC). However, no study about serum Nup88 in human CRC was reported. Therefore, in this study, we investigated the level of serum Nup88 protein and its relationships with clinicopathological variables in CRC. The serum concentration of Nup88 protein was determined by a quantitative sandwich enzyme-linked immunosorbent assay (ELISA) in 118 pre-operative serum samples, 66 post-operative and 96 healthy controls. Among the patients, the levels of CEA (n = 91) and CA19-9 (n = 87) in the pre-operative serum were measured, and DNA sequencing was performed in 12 CRCs and 2 samples from non-cancerous colon tissue. In the same patients, the level of pre-operative serum Nup88 was significantly higher than that of post-operative Nup88 (P = 0.021). Furthermore, the level of pre-operative Nup88 was positively related to the depth of tumor invasion (P = 0.002) and advanced stage (P = 0.001). The level of pre-operative Nup88 in the left colon tended to be higher than that in the right colon and the rectum (P = 0.063). DNA sequencing results showed that there were two single nucleotide polymorphisms, distributed in exon 6 (NM_002532.3:c.1044G>A (ACG-ACA, Thr → Thr) and exon 10 (NM_002532.3:c.1389A>T, CCA-CCT, Pro → Pro). Serum Nup88 might be a candidate for a new biomarker implicated in the development and aggressiveness of CRCs.
Collapse
Affiliation(s)
- Zeng-Ren Zhao
- Department of Surgery, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China.
| | | | | | | | | | | |
Collapse
|
38
|
Mackay DR, Ullman KS. Coordinating postmitotic nuclear pore complex assembly with abscission timing. Nucleus 2011; 2:283-8. [PMID: 21941107 DOI: 10.4161/nucl.2.4.16189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cells divide and accurately inherit genomic and cellular content through synchronized changes in cellular organization and chromosome dynamics. Although DNA segregation, nuclear reformation, and cytokinesis/abscission temporally overlap, little is known about how these distinct events are coordinated to ensure accurate cell division. Recently, we found that disruption of postmitotic nuclear pore complex assembly, an essential aspect of the newly forming nuclear envelope, triggers an Aurora B-dependent delay in abscission. This delay is further characterized by mislocalized, aberrantly active Aurora B in the cytoplasm of midbody-stage cells. These results support a model in which an Aurora B-mediated abscission checkpoint provides surveillance of nuclear pore complex formation to ensure that elements of nuclear architecture are fully formed before daughter cells are physically separated. Here we discuss the process of nuclear pore complex assembly, describe potential mechanisms that may explain how this process could be coordinated with abscission, and postulate why such a checkpoint mechanism may exist.
Collapse
Affiliation(s)
- Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|