1
|
Chevalier L, Klingelschmitt F, Mousseron L, Minc N. Mechanical strategies supporting growth and size diversity in Filamentous Fungi. Mol Biol Cell 2024; 35:br17. [PMID: 39046771 PMCID: PMC11449389 DOI: 10.1091/mbc.e24-04-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
The stereotypical tip growth of filamentous fungi supports their lifestyles and functions. It relies on the polarized remodeling and expansion of a protective elastic cell wall (CW) driven by large cytoplasmic turgor pressure. Remarkably, hyphal filament diameters and cell elongation rates can vary extensively among different fungi. To date, however, how fungal cell mechanics may be adapted to support these morphological diversities while ensuring surface integrity remains unknown. Here, we combined super-resolution imaging and deflation assays to measure local CW thickness, elasticity and turgor in a set of fungal species spread on the evolutionary tree that spans a large range in cell size and growth speeds. While CW elasticity exhibited dispersed values, presumably reflecting differences in CW composition, both thickness and turgor scaled in dose-dependence with cell diameter and growth speeds. Notably, larger cells exhibited thinner lateral CWs, and faster cells thinner apical CWs. Counterintuitively, turgor pressure was also inversely scaled with cell diameter and tip growth speed, challenging the idea that turgor is the primary factor dictating tip elongation rates. We propose that fast-growing cells with rapid CW turnover have evolved strategies based on a less turgid cytoplasm and thin walls to safeguard surface integrity and survival.
Collapse
Affiliation(s)
- Louis Chevalier
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Flora Klingelschmitt
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Ludovic Mousseron
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| |
Collapse
|
2
|
Wei W, Zheng B, Zheng S, Wu D, Chu Y, Zhang S, Wang D, Ma X, Liu X, Yao X, Fu C. The Cdc42 GAP Rga6 promotes monopolar outgrowth of spores. J Biophys Biochem Cytol 2022; 222:213678. [PMID: 36355349 PMCID: PMC9652770 DOI: 10.1083/jcb.202202064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms underlying the establishment of the monopolar growth of fission yeast spores have been less characterized. Here, we report that the Cdc42 GTPase-activating protein (GAP) Rga6 is required for promoting monopolar growth during spore germination. The absence of Rga6 increases the number of spores that grow in a bipolar fashion. Rga6 decorates the non-growing cortical region, binds phosphatidylinositol 4,5-bisphosphate, and colocalizes with the phosphatidylinositol 4,5-bisphosphate-binding protein Opy1. Overexpression of Opy1 diminishes the cortical localization of Rga6. The characteristic localization of Rga6 on the cell cortex depends on the C-terminal PBR region of Rga6. Moreover, engineered chimera composed of the Rga6 C-terminal PBR region fused to the GAP domain of Rga3 or Rga4 are sufficient to rescue the spore growth phenotype caused by the absence of Rga6. Hence, our work establishes a paradigm in which the lipid composition of the plasma membrane directs polarized cell growth by specifying the cortical localization of a GAP protein.
Collapse
Affiliation(s)
- Wenfan Wei
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Biyu Zheng
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daqiang Wu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongkang Chu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shenghao Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Xuebiao Yao:
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Correspondence to Chuanhai Fu:
| |
Collapse
|
3
|
Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E. Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 2021; 37:109951. [PMID: 34731607 DOI: 10.1016/j.celrep.2021.109951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Cdc42 GTPase rules cell polarity and growth in fission yeast. It is negatively and positively regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), respectively. Active Cdc42-GTP localizes to the poles, where it associates with numerous proteins constituting the polarity module. However, little is known about its downregulation. We describe here that oxidative stress causes Sty1-kinase-dependent Cdc42 inactivation at cell poles. Both the amount of active Cdc42 at tips and cell length inversely correlate with Sty1 activity, explaining the elongated morphology of Δsty1 cells. We have created stress-blinded cell poles either by eliminating two Cdc42 GAPs or through the constitutive tethering of Gef1 to cell tips, and we biochemically demonstrate that the GAPs Rga3/6 and the GEF Gef1 are direct substrates of Sty1. We propose that phosphorylation of Rga3/6 and Gef1 mediates the Sty1-dependent inhibition of Cdc42 at cell tips, halting polarized growth during stress adaptation.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain.
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
4
|
Miller KE, Magliozzi JO, Picard NA, Moseley JB. Sequestration of the exocytic SNARE Psy1 into multiprotein nodes reinforces polarized morphogenesis in fission yeast. Mol Biol Cell 2021; 32:ar7. [PMID: 34347508 PMCID: PMC8684755 DOI: 10.1091/mbc.e20-05-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022] Open
Abstract
Polarized morphogenesis is achieved by targeting or inhibiting growth in distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along nongrowing cell sides. We previously identified a set of 50-100 megadalton-sized node structures along the sides of fission yeast cells that contained the interacting proteins Skb1 and Slf1. Here, we show that Skb1-Slf1 nodes contain the syntaxin-like soluble N-ethylmaleimide-sensitive factor attachment protein receptor Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips, where it likely promotes exocytosis and growth, but is sequestered in Skb1-Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly or inhibit Psy1 localization to nodes lead to aberrant exocytosis at cell sides and increased cell width. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at nongrowing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.
Collapse
Affiliation(s)
- Kristi E. Miller
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Joseph O. Magliozzi
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Noelle A. Picard
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
5
|
Gerganova V, Lamas I, Rutkowski DM, Vještica A, Castro DG, Vincenzetti V, Vavylonis D, Martin SG. Cell patterning by secretion-induced plasma membrane flows. SCIENCE ADVANCES 2021; 7:eabg6718. [PMID: 34533984 PMCID: PMC8448446 DOI: 10.1126/sciadv.abg6718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/26/2021] [Indexed: 05/20/2023]
Abstract
Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membrane–associated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Iker Lamas
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | | | - Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Daniela Gallo Castro
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
- Corresponding author. (S.G.M.); (D.V.)
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
- Corresponding author. (S.G.M.); (D.V.)
| |
Collapse
|
6
|
García P, Coll PM, Del Rey F, Geli MI, Pérez P, Vázquez de Aldana CR, Encinar Del Dedo J. Eng2, a new player involved in feedback loop regulation of Cdc42 activity in fission yeast. Sci Rep 2021; 11:17872. [PMID: 34504165 PMCID: PMC8429772 DOI: 10.1038/s41598-021-97311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Cell polarity and morphogenesis are regulated by the small GTPase Cdc42. Even though major advances have been done in the field during the last years, the molecular details leading to its activation in particular cellular contexts are not completely understood. In fission yeast, the β(1,3)-glucanase Eng2 is a "moonlighting protein" with a dual function, acting as a hydrolase during spore dehiscence, and as component of the endocytic machinery in vegetative cells. Here, we report that Eng2 plays a role in Cdc42 activation during polarized growth through its interaction with the scaffold protein Scd2, which brings Cdc42 together with its guanine nucleotide exchange factor (GEF) Scd1. eng2Δ mutant cells have defects in activation of the bipolar growth (NETO), remaining monopolar during all the cell cycle. In the absence of Eng2 the accumulation of Scd1 and Scd2 at the poles is reduced, the levels of Cdc42 activation decrease, and the Cdc42 oscillatory behavior, associated with bipolar growth in wild type cells, is altered. Furthermore, overexpression of Eng2 partially rescues the growth and polarity defects of a cdc42-L160S mutant. Altogether, our work unveils a new factor regulating the activity of Cdc42, which could potentially link the polarity and endocytic machineries.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Del Rey
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - M Isabel Geli
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Carlos R Vázquez de Aldana
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain.
| | - Javier Encinar Del Dedo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
7
|
Lewis RA, Devi J, Green K, Li J, Hopkins A, Hayles J, Nurse P, Errington J, Allenby NEE. Screening and Purification of Natural Products from Actinomycetes that Induce a "Rounded" Morphological Phenotype in Fission Yeast. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:431-445. [PMID: 33881756 PMCID: PMC8275771 DOI: 10.1007/s13659-021-00304-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
This study was designed to identify and investigate bioactive natural product compounds that alter the cellular shape of the fission yeast Schizosaccharomyces pombe and induce a "rounded" or "small" cellular morphological phenotype. Bioassays using a range of antifungal agents against a multidrug-sensitive fission yeast strain, SAK950 showed that many induced a "rounded" phenotype. We then investigated whether 46 of the actinomycete strains identified in our previous study as inducing a similar phenotype produced antifungal agents of similar classes. We show that five of the strains produced streptothricin and that 26 strains produced polyenes, including fungichromin, filipin and candicidin, the last of which was produced by 24 strains. A taxonomic study of the strains indicated that the majority of the candicidin only producers were Streptomyces hydrogenans and S. albidoflavus whilst those that additionally produced streptothricin were related to S. enissocaesilis. A follow-up study to investigate the natural products made by related strains indicated that they followed a similar pattern. The identification of several compounds from the actinomycete strains similar to the antifungal agents initially tested confirm the validity of an approach using the S. pombe morphological phenotype and actinomycete taxonomy as a predictive tool for natural product identification.
Collapse
Affiliation(s)
- Richard Alexander Lewis
- Demuris Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK.
| | - Jenileima Devi
- Demuris Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Katherine Green
- Demuris Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Juanjuan Li
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Adam Hopkins
- Demuris Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jeff Errington
- Demuris Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | | |
Collapse
|
8
|
Pino MR, Nuñez I, Chen C, Das ME, Wiley DJ, D'Urso G, Buchwald P, Vavylonis D, Verde F. Cdc42 GTPase Activating Proteins (GAPs) Regulate Generational Inheritance of Cell Polarity and Cell Shape in Fission Yeast. Mol Biol Cell 2021; 32:ar14. [PMID: 34288736 PMCID: PMC8684747 DOI: 10.1091/mbc.e20-10-0666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics at cell tips of Schizosaccharomyces pombe cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 activation distributions to coexist in cell populations. For individual wild-type cells, however, Cdc42 distribution is initially asymmetrical and becomes more symmetrical as cell volume increases, enabling bipolar growth activation. To explore whether different patterns of Cdc42 activation are possible in vivo, we examined S. pombe rga4∆ mutant cells, lacking the Cdc42 GTPase-activating protein (GAP) Rga4. We found that monopolar rga4∆ mother cells divide asymmetrically leading to the emergence of both symmetric and asymmetric Cdc42 distributions in rga4∆ daughter cells. Motivated by different hypotheses that can mathematically reproduce the unequal fate of daughter cells, we used genetic screening to identify mutants that alter the rga4∆ phenotype. We found that the unequal distribution of active Cdc42 GTPase is consistent with an unequal inheritance of another Cdc42 GAP, Rga6, in the two daughter cells. Our findings highlight the crucial role of Cdc42 GAP localization in maintaining consistent Cdc42 activation and growth patterns across generations.
Collapse
Affiliation(s)
- Marbelys Rodriguez Pino
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA.,Current Address: Department of Biology, Health & Wellness, Miami Dade College, Miami, FL 33176
| | - Illyce Nuñez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA
| | - Chuan Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA
| | - Maitreyi E Das
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA.,Current Address: Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - David J Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA
| | - Gennaro D'Urso
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA
| | - Peter Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18015
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-1015, USA
| |
Collapse
|
9
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
10
|
Požgajová M, Navrátilová A, Šebová E, Kovár M, Kačániová M. Cadmium-Induced Cell Homeostasis Impairment is Suppressed by the Tor1 Deficiency in Fission Yeast. Int J Mol Sci 2020; 21:ijms21217847. [PMID: 33105893 PMCID: PMC7660220 DOI: 10.3390/ijms21217847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cadmium has no known physiological function in the body; however, its adverse effects are associated with cancer and many types of organ system damage. Although much has been shown about Cd toxicity, the underlying mechanisms of its responses to the organism remain unclear. In this study, the role of Tor1, a catalytic subunit of the target of rapamycin complex 2 (TORC2), in Cd-mediated effects on cell proliferation, the antioxidant system, morphology, and ionome balance was investigated in the eukaryotic model organism Schizosaccharomyces pombe. Surprisingly, spectrophotometric and biochemical analyses revealed that the growth rate conditions and antioxidant defense mechanisms are considerably better in cells lacking the Tor1 signaling. The malondialdehyde (MDA) content of Tor1-deficient cells upon Cd treatment represents approximately half of the wild-type content. The microscopic determination of the cell morphological parameters indicates the role for Tor1 in cell shape maintenance. The ion content, determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), showed that the Cd uptake potency was markedly lower in Tor1-depleted compared to wild-type cells. Conclusively, we show that the cadmium-mediated cell impairments in the fission yeast significantly depend on the Tor1 signaling. Additionally, the data presented here suggest the yet-undefined role of Tor1 in the transport of ions.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| | - Alica Navrátilová
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Eva Šebová
- Institute of Experimental Medicine, Czech Academy of Science, 14220 Prague, Czech Republic;
| | - Marek Kovár
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
11
|
Gu Y, Oliferenko S. The principles of cellular geometry scaling. Curr Opin Cell Biol 2020; 68:20-27. [PMID: 32950004 DOI: 10.1016/j.ceb.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023]
Abstract
Cellular dimensions profoundly influence cellular physiology. For unicellular organisms, this has direct bearing on their ecology and evolution. The morphology of a cell is governed by scaling rules. As it grows, the ratio of its surface area to volume is expected to decrease. Similarly, if environmental conditions force proliferating cells to settle on different size optima, cells of the same type may exhibit size-dependent variation in cellular processes. In fungi, algae and plants where cells are surrounded by a rigid wall, division at smaller size often produces immediate changes in geometry, decreasing cell fitness. Here, we discuss how cells interpret their size, buffer against changes in shape and, if necessary, scale their polarity to maintain optimal shape at different cell volumes.
Collapse
Affiliation(s)
- Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Lamas I, Weber N, Martin SG. Activation of Cdc42 GTPase upon CRY2-Induced Cortical Recruitment Is Antagonized by GAPs in Fission Yeast. Cells 2020; 9:E2089. [PMID: 32932721 PMCID: PMC7565336 DOI: 10.3390/cells9092089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.
Collapse
Affiliation(s)
| | | | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, 1015 Lausanne, Switzerland; (I.L.); (N.W.)
| |
Collapse
|
13
|
Silva PM, Puerner C, Seminara A, Bassilana M, Arkowitz RA. Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth. Cell Rep 2020; 28:2231-2245.e5. [PMID: 31433995 DOI: 10.1016/j.celrep.2019.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Abstract
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
Collapse
Affiliation(s)
- Patrícia M Silva
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
14
|
Khalili B, Lovelace HD, Rutkowski DM, Holz D, Vavylonis D. Fission Yeast Polarization: Modeling Cdc42 Oscillations, Symmetry Breaking, and Zones of Activation and Inhibition. Cells 2020; 9:E1769. [PMID: 32722101 PMCID: PMC7464287 DOI: 10.3390/cells9081769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cells polarize for growth, motion, or mating through regulation of membrane-bound small GTPases between active GTP-bound and inactive GDP-bound forms. Activators (GEFs, GTP exchange factors) and inhibitors (GAPs, GTPase activating proteins) provide positive and negative feedbacks. We show that a reaction-diffusion model on a curved surface accounts for key features of polarization of model organism fission yeast. The model implements Cdc42 membrane diffusion using measured values for diffusion coefficients and dissociation rates and assumes a limiting GEF pool (proteins Gef1 and Scd1), as in prior models for budding yeast. The model includes two types of GAPs, one representing tip-localized GAPs, such as Rga3; and one representing side-localized GAPs, such as Rga4 and Rga6, that we assume switch between fast and slow diffusing states. After adjustment of unknown rate constants, the model reproduces active Cdc42 zones at cell tips and the pattern of GEF and GAP localization at cell tips and sides. The model reproduces observed tip-to-tip oscillations with periods of the order of several minutes, as well as asymmetric to symmetric oscillations transitions (corresponding to NETO "new end take off"), assuming the limiting GEF amount increases with cell size.
Collapse
Affiliation(s)
- Bita Khalili
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Hailey D. Lovelace
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | - David M. Rutkowski
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Danielle Holz
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| |
Collapse
|
15
|
Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. PLoS Biol 2020; 18:e3000600. [PMID: 31978045 PMCID: PMC7002011 DOI: 10.1371/journal.pbio.3000600] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/05/2020] [Accepted: 01/02/2020] [Indexed: 12/31/2022] Open
Abstract
Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation. The small GTPase Cdc42 is a key regulator of cell polarization. This study uses optogenetic and genetic strategies to show that Cdc42 is under positive feedback regulation potentiated by Ras GTPase activity.
Collapse
|
16
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
17
|
Hercyk BS, Rich-Robinson J, Mitoubsi AS, Harrell MA, Das ME. A novel interplay between GEFs orchestrates Cdc42 activity during cell polarity and cytokinesis in fission yeast. J Cell Sci 2019; 132:jcs.236018. [PMID: 31719163 DOI: 10.1242/jcs.229252/video-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 05/23/2023] Open
Abstract
Cdc42, a conserved regulator of cell polarity, is activated by two GEFs, Gef1 and Scd1, in fission yeast. Why the cell needs two GEFs is unclear, given that they are partially redundant and activate the same GTPase. Using the GEF localization pattern during cytokinesis as a paradigm, we report a novel interplay between Gef1 and Scd1 that spatially modulates Cdc42. We find that Gef1 promotes Scd1 localization to the division site during cytokinesis through recruitment of the scaffold protein Scd2, via a Cdc42 feedforward pathway. Similarly, during interphase Gef1 promotes Scd1 recruitment at the new end to enable the transition from monopolar to bipolar growth. Reciprocally, Scd1 restricts Gef1 localization to prevent ectopic Cdc42 activation during cytokinesis to promote cell separation, and to maintain cell shape during interphase. Our findings reveal an elegant regulatory pattern in which Gef1 primes Cdc42 activation at new sites to initiate Scd1-dependent polarized growth, while Scd1 restricts Gef1 to sites of polarization. We propose that crosstalk between GEFs is a conserved mechanism that orchestrates Cdc42 activation during complex cellular processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Julie Rich-Robinson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Ahmad S Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Marcus A Harrell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| |
Collapse
|
18
|
Hercyk BS, Rich-Robinson J, Mitoubsi AS, Harrell MA, Das ME. A novel interplay between GEFs orchestrates Cdc42 activity during cell polarity and cytokinesis in fission yeast. J Cell Sci 2019; 132:jcs.236018. [PMID: 31719163 DOI: 10.1242/jcs.236018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cdc42, a conserved regulator of cell polarity, is activated by two GEFs, Gef1 and Scd1, in fission yeast. Why the cell needs two GEFs is unclear, given that they are partially redundant and activate the same GTPase. Using the GEF localization pattern during cytokinesis as a paradigm, we report a novel interplay between Gef1 and Scd1 that spatially modulates Cdc42. We find that Gef1 promotes Scd1 localization to the division site during cytokinesis through recruitment of the scaffold protein Scd2, via a Cdc42 feedforward pathway. Similarly, during interphase Gef1 promotes Scd1 recruitment at the new end to enable the transition from monopolar to bipolar growth. Reciprocally, Scd1 restricts Gef1 localization to prevent ectopic Cdc42 activation during cytokinesis to promote cell separation, and to maintain cell shape during interphase. Our findings reveal an elegant regulatory pattern in which Gef1 primes Cdc42 activation at new sites to initiate Scd1-dependent polarized growth, while Scd1 restricts Gef1 to sites of polarization. We propose that crosstalk between GEFs is a conserved mechanism that orchestrates Cdc42 activation during complex cellular processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Julie Rich-Robinson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Ahmad S Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Marcus A Harrell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| |
Collapse
|
19
|
Hercyk BS, Das ME. F-BAR Cdc15 Promotes Cdc42 Activation During Cytokinesis and Cell Polarization in Schizosaccharomyces pombe. Genetics 2019; 213:1341-1356. [PMID: 31591131 PMCID: PMC6893373 DOI: 10.1534/genetics.119.302649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023] Open
Abstract
Cdc42, a Rho-family GTPase, is a master regulator of cell polarity. Recently, it has been shown that Cdc42 also facilitates proper cytokinesis in the fission yeast Schizosaccharomyces pombe Cdc42 is activated by two partially redundant GEFs, Gef1 and Scd1. Although both GEFs activate Cdc42, their deletion mutants display distinct phenotypes, indicating that they are differentially regulated by an unknown mechanism. During cytokinesis, Gef1 localizes to the division site and activates Cdc42 to initiate ring constriction and septum ingression. Here, we report that the F-BAR protein Cdc15 promotes Gef1 localization to its functional sites. We show that cdc15 promotes Gef1 association with cortical puncta at the incipient division site to activate Cdc42 during ring assembly. Moreover, cdc15 phospho-mutants phenocopy the polarity phenotypes of gef1 mutants. In a hypermorphic cdc15 mutant, Gef1 localizes precociously to the division site and is readily detected at the cortical patches and the cell cortex. Correspondingly, the hypermorphic cdc15 mutant shows increased bipolarity during interphase and precocious Cdc42 activation at the division site during cytokinesis. Finally, loss of gef1 in hypermorphic cdc15 mutants abrogates the increased bipolarity and precocious Cdc42 activation phenotype. We did not see any change in the localization of the other GEF Scd1 in a Cdc15-dependent manner. Our data indicate that Cdc15 facilitates Cdc42 activation at the division site during cytokinesis at the cell cortex to promote bipolarity and this is mediated by promoting Gef1 localization to these sites.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
20
|
Pérez P, Soto T, Gómez-Gil E, Cansado J. Functional interaction between Cdc42 and the stress MAPK signaling pathway during the regulation of fission yeast polarized growth. Int Microbiol 2019; 23:31-41. [PMID: 30989357 DOI: 10.1007/s10123-019-00072-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Cell polarization can be defined as the generation and maintenance of directional cellular organization. The spatial distribution and protein or lipid composition of the cell are not symmetric but organized in specialized domains which allow cells to grow and acquire a certain shape that is closely linked to their physiological function. The establishment and maintenance of polarized growth requires the coordination of diverse processes including cytoskeletal dynamics, membrane trafficking, and signaling cascade regulation. Some of the major players involved in the selection and maintenance of sites for polarized growth are Rho GTPases, which recognize the polarization site and transmit the signal to regulatory proteins of the cytoskeleton. Additionally, cytoskeletal organization, polarized secretion, and endocytosis are controlled by signaling pathways including those mediated by mitogen-activated protein kinases (MAPKs). Rho GTPases and the MAPK signaling pathways are strongly conserved from yeast to mammals, suggesting that the basic mechanisms of polarized growth have been maintained throughout evolution. For this reason, the study of how polarized growth is established and regulated in simple organisms such as the fission yeast Schizosaccharomyces pombe has contributed to broaden our knowledge about these processes in multicellular organisms. We review here the function of the Cdc42 GTPase and the stress activated MAPK (SAPK) signaling pathways during fission yeast polarized growth, and discuss the relevance of the crosstalk between both pathways.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007, Salamanca, Spain.
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Elisa Gómez-Gil
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Jose Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
| |
Collapse
|
21
|
Krüger LK, Sanchez JL, Paoletti A, Tran PT. Kinesin-6 regulates cell-size-dependent spindle elongation velocity to keep mitosis duration constant in fission yeast. eLife 2019; 8:42182. [PMID: 30806623 PMCID: PMC6391065 DOI: 10.7554/elife.42182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
The length of the mitotic spindle scales with cell size in a wide range of organisms during embryonic development. Interestingly, in C. elegans embryos, this goes along with temporal regulation: larger cells speed up spindle assembly and elongation. We demonstrate that, similarly in fission yeast, spindle length and spindle dynamics adjust to cell size, which allows to keep mitosis duration constant. Since prolongation of mitosis was shown to affect cell viability, this may resemble a mechanism to regulate mitosis duration. We further reveal how the velocity of spindle elongation is regulated: coupled to cell size, the amount of kinesin-6 Klp9 molecules increases, resulting in an acceleration of spindle elongation in anaphase B. In addition, the number of Klp9 binding sites to microtubules increases overproportionally to Klp9 molecules, suggesting that molecular crowding inversely correlates to cell size and might have an impact on spindle elongation velocity control.
Collapse
Affiliation(s)
| | | | - Anne Paoletti
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Phong Thanh Tran
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
22
|
Facchetti G, Knapp B, Flor-Parra I, Chang F, Howard M. Reprogramming Cdr2-Dependent Geometry-Based Cell Size Control in Fission Yeast. Curr Biol 2019; 29:350-358.e4. [PMID: 30639107 PMCID: PMC6345630 DOI: 10.1016/j.cub.2018.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
How cell size is determined and maintained remains unclear, even in simple model organisms. In proliferating cells, cell size is regulated by coordinating growth and division through sizer, adder, or timer mechanisms or through some combination [1, 2]. Currently, the best-characterized example of sizer behavior is in fission yeast, Schizosaccharomyces pombe, which enters mitosis at a minimal cell size threshold. The peripheral membrane kinase Cdr2 localizes in clusters (nodes) on the medial plasma membrane and promotes mitotic entry [3]. Here, we show that the Cdr2 nodal density, which scales with cell size, is used by the cell to sense and control its size. By analyzing cells of different widths, we first show that cdr2+ cells divide at a fixed cell surface area. However, division in the cdr2Δ mutant is more closely specified by cell volume, suggesting that Cdr2 is essential for area sensing and supporting the existence of a Cdr2-independent secondary sizer mechanism more closely based on volume. To investigate how Cdr2 nodes may sense area, we derive a minimal mathematical model that incorporates the cytoplasmic kinase Ssp1 as a Cdr2 activator. The model predicts that a cdr2 mutant in an Ssp1 phosphorylation site (cdr2-T166A) [4] should form nodes whose density registers cell length. We confirm this prediction experimentally and find that thin cells now follow this new scaling by dividing at constant length instead of area. This work supports the role of Cdr2 as a sizer factor and highlights the importance of studying geometrical aspects of size control.
Collapse
Affiliation(s)
| | - Benjamin Knapp
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucia, Seville, Spain
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
23
|
Gallo Castro D, Martin SG. Differential GAP requirement for Cdc42-GTP polarization during proliferation and sexual reproduction. J Cell Biol 2018; 217:4215-4229. [PMID: 30279276 PMCID: PMC6279383 DOI: 10.1083/jcb.201806016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/06/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
The formation of a local zone of Cdc42 GTPase activity, which governs cell polarization in many cell types, requires not only local activation but also switch-off mechanisms. In this study, we identify Rga3, a paralog of Rga4, as a novel Cdc42 GTPase-activating protein (GAP) in the fission yeast Schizosaccharomyces pombe Contrary to Rga4, Rga3 localizes with Cdc42-GTP to sites of polarity. Rga3 is dispensable for cell polarization during mitotic growth, but it limits the lifetime of unstable Cdc42-GTP patches that underlie cell pairing during sexual reproduction, masking a partly compensatory patch-wandering motion. In consequence, cells lacking rga3 hyperpolarize and lose out in mating competition. Rga3 synergizes with the Cdc42 GAPs Rga4 and Rga6 to restrict Cdc42-GTP zone sizes during mitotic growth. Surprisingly, triple-mutant cells, which are almost fully round, retain pheromone-dependent dynamic polarization of Cdc42-GTP, extend a polarized projection, and mate. Thus, the requirement for Cdc42-GTP hydrolysis by GAPs is distinct during polarization by intrinsic or extrinsic cues.
Collapse
Affiliation(s)
- Daniela Gallo Castro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Woraratanadharm T, Kmosek S, Banuett F. UmTea1, a Kelch and BAR domain-containing protein, acts at the cell cortex to regulate cell morphogenesis in the dimorphic fungus Ustilago maydis. Fungal Genet Biol 2018; 121:10-28. [PMID: 30205200 DOI: 10.1016/j.fgb.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/10/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
The spatial organization of a cell is crucial for distribution of cell components and for cell morphogenesis in all organisms. Ustilago maydis, a basidiomycete fungus, has a yeast-like and a filamentous form. The former buds once per cell cycle at one of the cell poles, and can use the same site repeatedly or choose a new site at the same pole or opposite pole. The filamentous form consists of a long apical cell with short septate basal compartments lacking cytoplasm. It grows at the apex and can reverse growth forming a new growth zone at the basal end. We are interested in understanding how these different morphologies are generated. Here we present identification and characterization of U. maydis Tea1, a homologue of the fission yeast cell end marker Tea1. We demonstrate that UmTea1, a Kelch domain protein, interacts with itself and is an important determinant of the site of polarized growth: tea1 mutants bud simultaneously from both cell poles and form bifurcate buds. UmTea1 also regulates septum positioning, cell wall deposition, cell and neck width, coordination of nuclear division and cell separation, and localization of sterol-rich membrane domains. Some of these functions are shared with UmTea4, another cell end marker. We show that Tea1::GFP localizes to sites of polarized or potential polarized growth and to the septation site in the yeast-like form. Additionally, localization of Tea1::GFP as rings along the filament suggests that the filament undergoes septation. We hypothesize that Tea1 may act as a scaffold for the assembly of proteins that determine the site of polarized growth.
Collapse
Affiliation(s)
- Tad Woraratanadharm
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Stephanie Kmosek
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Flora Banuett
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States.
| |
Collapse
|
25
|
Tay YD, Leda M, Goryachev AB, Sawin KE. Local and global Cdc42 guanine nucleotide exchange factors for fission yeast cell polarity are coordinated by microtubules and the Tea1-Tea4-Pom1 axis. J Cell Sci 2018; 131:jcs.216580. [PMID: 29930085 PMCID: PMC6080602 DOI: 10.1242/jcs.216580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved Rho-family GTPase Cdc42 plays a central role in eukaryotic cell polarity. The rod-shaped fission yeast Schizosaccharomyces pombe has two Cdc42 guanine nucleotide exchange factors (GEFs), Scd1 and Gef1, but little is known about how they are coordinated in polarized growth. Although the microtubule cytoskeleton is normally not required for polarity maintenance in fission yeast, we show here that when scd1 function is compromised, disruption of microtubules or the polarity landmark proteins Tea1, Tea4 or Pom1 leads to disruption of polarized growth. Instead, cells adopt an isotropic-like pattern of growth, which we term PORTLI growth. Surprisingly, PORTLI growth is caused by spatially inappropriate activity of Gef1. Although most Cdc42 GEFs are membrane associated, we find that Gef1 is a broadly distributed cytosolic protein rather than a membrane-associated protein at cell tips like Scd1. Microtubules and the Tea1–Tea4–Pom1 axis counteract inappropriate Gef1 activity by regulating the localization of the Cdc42 GTPase-activating protein Rga4. Our results suggest a new model of fission yeast cell polarity regulation, involving coordination of ‘local’ (Scd1) and ‘global’ (Gef1) Cdc42 GEFs via microtubules and microtubule-dependent polarity landmarks. Highlighted Article: Cell polarity in fission yeast is regulated by two different Cdc42 guanine nucleotide exchange factors, coordinated by the microtubule-dependent landmark system.
Collapse
Affiliation(s)
- Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Andrew B Goryachev
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
26
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
27
|
Goryachev AB, Leda M. Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol Biol Cell 2017; 28:370-380. [PMID: 28137950 PMCID: PMC5341721 DOI: 10.1091/mbc.e16-10-0739] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Mathematical modeling has been instrumental in identifying common principles of cell polarity across diverse systems. These principles include positive feedback loops that are required to destabilize a spatially uniform state of the cell. The conserved small G-protein Cdc42 is a master regulator of eukaryotic cellular polarization. Here we discuss recent developments in studies of Cdc42 polarization in budding and fission yeasts and demonstrate that models describing symmetry-breaking polarization can be classified into six minimal classes based on the structure of positive feedback loops that activate and localize Cdc42. Owing to their generic system-independent nature, these model classes are also likely to be relevant for the G-protein–based symmetry-breaking systems of higher eukaryotes. We review experimental evidence pro et contra different theoretically plausible models and conclude that several parallel and non–mutually exclusive mechanisms are likely involved in cellular polarization of yeasts. This potential redundancy needs to be taken into consideration when interpreting the results of recent cell-rewiring studies.
Collapse
Affiliation(s)
- Andrew B Goryachev
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcin Leda
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
28
|
Lewis RA, Li J, Allenby NEE, Errington J, Hayles J, Nurse P. Screening and purification of natural products from actinomycetes that affect the cell shape of fission yeast. J Cell Sci 2017; 130:3173-3185. [PMID: 28775153 PMCID: PMC5612171 DOI: 10.1242/jcs.194571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
This study was designed to identify bioactive compounds that alter the cellular shape of the fission yeast Schizosaccharomyces pombe by affecting functions involved in the cell cycle or cell morphogenesis. We used a multidrug-sensitive fission yeast strain, SAK950 to screen a library of 657 actinomycete bacteria and identified 242 strains that induced eight different major shape phenotypes in S. pombe. These include the typical cell cycle-related phenotype of elongated cells, and the cell morphology-related phenotype of rounded cells. As a proof of principle, we purified four of these activities, one of which is a novel compound and three that are previously known compounds, leptomycin B, streptonigrin and cycloheximide. In this study, we have also shown novel effects for two of these compounds, leptomycin B and cycloheximide. The identification of these four compounds and the explanation of the S. pombe phenotypes in terms of their known, or predicted bioactivities, confirm the effectiveness of this approach. Summary: A cell shape-based visual screen of S. pombe in the presence of actinomycete-derived bioactivities and an explanation for the phenotypes following identification of the compounds.
Collapse
Affiliation(s)
- Richard A Lewis
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Juanjuan Li
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicholas E E Allenby
- Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeffery Errington
- Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
29
|
Estravís M, Rincón SA, Portales E, Pérez P, Santos B. Cdc42 activation state affects its localization and protein levels in fission yeast. MICROBIOLOGY-SGM 2017; 163:1156-1166. [PMID: 28742002 DOI: 10.1099/mic.0.000503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rho GTPases control polarized cell growth and are well-known regulators of exocytic and endocytic processes. Cdc42 is an essential GTPase, conserved from yeast to humans, that is critical for cell polarization. Cdc42 is negatively regulated by the GTPase-activating proteins (GAPs) and the GDP dissociation inhibitors (GDIs), and positively regulated by guanine nucleotide exchange factors (GEFs). Cdc42 GTPase can be found in a GTP- or GDP-bound state, which determines the ability to bind downstream effector proteins and activate signalling pathways. Only GTP-bound Cdc42 is active. In this study we have analysed the localization of the different nucleotide-bound states of Cdc42 in Schizosaccharomyces pombe: the wild-type Cdc42 protein that cycles between an active and inactive form, the Cdc42G12V form that is permanently bound to GTP and the Cdc42T17N form that is constitutively inactive. Our results indicate that Cdc42 localizes to several membrane compartments in the cell and this localization is mediated by its C-terminal prenylation. Constitutively active Cdc42 localizes mainly to the plasma membrane and concentrates at the growing tips where it is considerably less dynamic than wild-type or GDP-bound Cdc42. Additionally we show that the activation state of Cdc42 also participates in the regulation of its protein levels mediated by endocytosis and by the exocyst complex.
Collapse
Affiliation(s)
- Miguel Estravís
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Sergio Antonio Rincón
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain.,Present address: Institut Curie, Centre de Recherche, PSL Research University, CNRS UMR144, F-75248 Paris, France
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain.,Departamento de Microbiología y Genética, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
30
|
Mutavchiev DR, Leda M, Sawin KE. Remodeling of the Fission Yeast Cdc42 Cell-Polarity Module via the Sty1 p38 Stress-Activated Protein Kinase Pathway. Curr Biol 2016; 26:2921-2928. [PMID: 27746023 PMCID: PMC5106388 DOI: 10.1016/j.cub.2016.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/24/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
The Rho family GTPase Cdc42 is a key regulator of eukaryotic cellular organization and cell polarity [1]. In the fission yeast Schizosaccharomyces pombe, active Cdc42 and associated effectors and regulators (the "Cdc42 polarity module") coordinate polarized growth at cell tips by controlling the actin cytoskeleton and exocytosis [2-4]. Localization of the Cdc42 polarity module to cell tips is thus critical for its function. Here we show that the fission yeast stress-activated protein kinase Sty1, a homolog of mammalian p38 MAP kinase, regulates localization of the Cdc42 polarity module. In wild-type cells, treatment with latrunculin A, a drug that leads to actin depolymerization, induces dispersal of the Cdc42 module from cell tips and cessation of polarized growth [5, 6]. We show that latrunculin A treatment also activates the Sty1 MAP kinase pathway and, strikingly, we find that loss of Sty1 MAP kinase signaling prevents latrunculin A-induced dispersal of the Cdc42 module, allowing polarized growth even in complete absence of the actin cytoskeleton. Regulation of the Cdc42 module by Sty1 is independent of Sty1's role in stress-induced gene expression. We also describe a system for activation of Sty1 kinase "on demand" in the absence of any external stress, and use this to show that Sty1 activation alone is sufficient to disperse the Cdc42 module from cell tips in otherwise unperturbed cells. During nitrogen-starvation-induced quiescence, inhibition of Sty1 converts non-growing, depolarized cells into growing, polarized cells. Our results place MAP kinase Sty1 as an important physiological regulator of the Cdc42 polarity module.
Collapse
Affiliation(s)
- Delyan R Mutavchiev
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys (Centre for Synthetic and Systems Biology), School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
31
|
Chen JS, Beckley JR, Ren L, Feoktistova A, Jensen MA, Rhind N, Gould KL. Discovery of genes involved in mitosis, cell division, cell wall integrity and chromosome segregation through construction of Schizosaccharomyces pombe deletion strains. Yeast 2016; 33:507-17. [PMID: 27168121 DOI: 10.1002/yea.3172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 12/26/2022] Open
Abstract
The fission yeast model system Schizosaccharomyces pombe is used to study fundamental biological processes. To continue to fill gaps in the Sz. pombe gene deletion collection, we constructed a set of 90 haploid gene deletion strains covering many previously uncharacterized genes. To begin to understand the function of these genes, we exposed this collection of strains to a battery of stress conditions. Using this information in combination with microscopy, proteomics and mini-chromosome loss assays, we identified genes involved in cell wall integrity, cytokinesis, chromosome segregation and DNA metabolism. This subset of non-essential gene deletions will add to the toolkits available for the study of biological processes in Sz. pombe. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A Jensen
- Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
32
|
Revilla-Guarinos MT, Martín-García R, Villar-Tajadura MA, Estravís M, Coll PM, Pérez P. Rga6 is a Fission Yeast Rho GAP Involved in Cdc42 Regulation of Polarized Growth. Mol Biol Cell 2016; 27:mbc.E15-12-0818. [PMID: 26960792 PMCID: PMC4850039 DOI: 10.1091/mbc.e15-12-0818] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/15/2022] Open
Abstract
Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6 is another fission yeast Cdc42 GAP which shares some functions with Rga4. Cells lacking Rga6 are viable but slightly shorter and broader than wild type, and cells lacking Rga6 and Rga4 simultaneously are rounded. In these cells, active Cdc42 is observed all around the membrane. These additive effects indicate that both GAPs collaborate in the spatial regulation of active Cdc42. Rga6 localizes to the plasma membrane forming clusters different from those formed by Rga4. A polybasic region at the Rga6 C-terminus is responsible for its membrane localization. Rga6-GFP fluorescence decreases considerably at the growing tips, and this decrease is dependent on the actin cables. Notably, in the absence of Rga6 the amplitude of active Cdc42 oscillations at the tips decreases, and less GTP-Cdc42 accumulates at the new end of the cells. We propose here that Rga6 collaborates with Rga4 to spatially restrict active Cdc42 at the cell tips and maintain cell dimensions.
Collapse
Affiliation(s)
- M Teresa Revilla-Guarinos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - M Antonia Villar-Tajadura
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Miguel Estravís
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| |
Collapse
|
33
|
Wei B, Hercyk BS, Mattson N, Mohammadi A, Rich J, DeBruyne E, Clark MM, Das M. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis. Mol Biol Cell 2016; 27:1235-45. [PMID: 26941334 PMCID: PMC4831878 DOI: 10.1091/mbc.e15-10-0700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/23/2016] [Indexed: 11/11/2022] Open
Abstract
The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, andscd1Δcells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes.
Collapse
Affiliation(s)
- Bin Wei
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Brian S Hercyk
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Mattson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Ahmad Mohammadi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Julie Rich
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Erica DeBruyne
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mikayla M Clark
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Maitreyi Das
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
34
|
Abenza JF, Couturier E, Dodgson J, Dickmann J, Chessel A, Dumais J, Salas REC. Wall mechanics and exocytosis define the shape of growth domains in fission yeast. Nat Commun 2015; 6:8400. [PMID: 26455310 PMCID: PMC4618311 DOI: 10.1038/ncomms9400] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 11/14/2022] Open
Abstract
The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked. Cell shape is determined by a combination of biochemical regulation and mechanical forces. By imaging the dynamic behaviour of growth regulatory proteins in fission yeast and integrating these data within a mechanical model, Abenza et al. find that exocytosis plays a dominant role in shaping growth domains.
Collapse
Affiliation(s)
- Juan F Abenza
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Etienne Couturier
- Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile
| | - James Dodgson
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Johanna Dickmann
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Anatole Chessel
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Jacques Dumais
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile.,Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Rafael E Carazo Salas
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| |
Collapse
|
35
|
Bonazzi D, Haupt A, Tanimoto H, Delacour D, Salort D, Minc N. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature. Curr Biol 2015; 25:2677-83. [DOI: 10.1016/j.cub.2015.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 11/30/2022]
|
36
|
Martin SG. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. Bioessays 2015; 37:1193-201. [PMID: 26338468 DOI: 10.1002/bies.201500077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Das M, Nuñez I, Rodriguez M, Wiley DJ, Rodriguez J, Sarkeshik A, Yates JR, Buchwald P, Verde F. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis. Mol Biol Cell 2015; 26:3520-34. [PMID: 26246599 PMCID: PMC4591695 DOI: 10.1091/mbc.e15-02-0095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022] Open
Abstract
The 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, spatially regulating Cdc42 activity during cell morphogenesis. Gef1 is sequestered in the cytoplasm upon 14-3-3 interaction, mediated by Orb6 kinase. The resulting competition for Gef1 promotes anticorrelated Cdc42 oscillations at cell tips. Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.
Collapse
Affiliation(s)
- Maitreyi Das
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Illyce Nuñez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Marbelys Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - David J Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Juan Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Ali Sarkeshik
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - Peter Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101 Marine Biological Laboratory, Woods Hole, MA 02543. )
| |
Collapse
|
38
|
Croft W, Elliott CM, Ladds G, Stinner B, Venkataraman C, Weston C. Parameter identification problems in the modelling of cell motility. J Math Biol 2015; 71:399-436. [PMID: 25174444 DOI: 10.1007/s00285-014-0823-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/14/2014] [Indexed: 11/29/2022]
Abstract
We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg-Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree.
Collapse
Affiliation(s)
- Wayne Croft
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
39
|
Identification of new players in cell division, DNA damage response, and morphogenesis through construction of Schizosaccharomyces pombe deletion strains. G3-GENES GENOMES GENETICS 2014; 5:361-70. [PMID: 25552606 PMCID: PMC4349090 DOI: 10.1534/g3.114.015701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many fundamental biological processes are studied using the fission yeast, Schizosaccharomyces pombe. Here we report the construction of a set of 281 haploid gene deletion strains covering many previously uncharacterized genes. This collection of strains was tested for growth under a variety of different stress conditions. We identified new genes involved in DNA metabolism, completion of the cell cycle, and morphogenesis. This subset of nonessential gene deletions will add to the toolkits available for the study of biological processes in S. pombe.
Collapse
|
40
|
Zheng Q, Shen J. WITHDRAWN: The instability of Cdc42 network with graph-theoretic methods. Math Biosci 2014:S0025-5564(14)00145-X. [PMID: 25128657 DOI: 10.1016/j.mbs.2014.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/25/2014] [Accepted: 08/01/2014] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor due to some inconsistencies in the manuscript. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Qianqian Zheng
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450000, PR China; Institute of Applied Mathematics, Xuchang University, Xuchang, Henan 461000, PR China
| | - Jianwei Shen
- Institute of Applied Mathematics, Xuchang University, Xuchang, Henan 461000, PR China
| |
Collapse
|
41
|
Abstract
The rod is a ubiquitous shape adopted by walled cells from diverse organisms ranging from bacteria to fungi to plants. Although rod-like shapes are found in cells of vastly different sizes and are constructed by diverse mechanisms, the geometric similarities among these shapes across kingdoms suggest that there are common evolutionary advantages, which may result from simple physical principles in combination with chemical and physiological constraints. Here, we review mechanisms of constructing rod-shaped cells and the bases of different biophysical models of morphogenesis, comparing and contrasting model organisms in different kingdoms. We then speculate on possible advantages of the rod shape, and suggest strategies for elucidating the relative importance of each of these advantages.
Collapse
|
42
|
Pan KZ, Saunders TE, Flor-Parra I, Howard M, Chang F. Cortical regulation of cell size by a sizer cdr2p. eLife 2014; 3:e02040. [PMID: 24642412 PMCID: PMC3956294 DOI: 10.7554/elife.02040] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023] Open
Abstract
Cells can, in principle, control their size by growing to a specified size before commencing cell division. How any cell actually senses its own size remains poorly understood. The fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow to ∼14 µm in length before entering mitosis. In this study, we provide evidence that these cells sense their surface area as part of this size control mechanism. We show that cells enter mitosis at a certain surface area, as opposed to a certain volume or length. A peripheral membrane protein kinase cdr2p has properties of a dose-dependent 'sizer' that controls mitotic entry. As cells grow, the local cdr2p concentration in nodes at the medial cortex accumulates as a measure of cell surface area. Our findings, which challenge a previously proposed pom1p gradient model, lead to a new model in which cells sense their size by using cdr2p to probe the surface area over the whole cell and relay this information to the medial cortex. DOI: http://dx.doi.org/10.7554/eLife.02040.001.
Collapse
Affiliation(s)
- Kally Z Pan
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, United States
| | - Timothy E Saunders
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratories, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ignacio Flor-Parra
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, United States
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, United States
| |
Collapse
|
43
|
Valinluck M, Woraratanadharm T, Lu CY, Quintanilla RH, Banuett F. The cell end marker Tea4 regulates morphogenesis and pathogenicity in the basidiomycete fungus Ustilago maydis. Fungal Genet Biol 2014; 66:54-68. [PMID: 24613993 DOI: 10.1016/j.fgb.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 02/08/2023]
Abstract
Positional cues localized to distinct cell domains are critical for the generation of cell polarity and cell morphogenesis. These cues lead to assembly of protein complexes that organize the cytoskeleton resulting in delivery of vesicles to sites of polarized growth. Tea4, an SH3 domain protein, was first identified in fission yeast, and is a critical determinant of the axis of polarized growth, a role conserved among ascomycete fungi. Ustilago maydis is a badiomycete fungus that exhibits a yeast-like form that is nonpathogenic and a filamentous form that is pathogenic on maize and teozintle. We are interested in understanding how positional cues contribute to generation and maintenance of these two forms, and their role in pathogenicity. We identified a homologue of fission yeast tea4 in a genetic screen for mutants with altered colony and cell morphology and present here analysis of Tea4 for the first time in a basidiomycete fungus. We demonstrate that Tea4 is an important positional marker for polarized growth and septum location in both forms. We uncover roles for Tea4 in maintenance of cell and neck width, cell separation, and cell wall deposition in the yeast-like form, and in growth rate, formation of retraction septa, growth reversal, and inhibition of budding in the filamentous form. We show that Tea4::GFP localizes to sites of polarized or potential polarized growth in both forms, as observed in ascomycete fungi. We demonstrate an essential role of Tea4 in pathogencity in the absence of cell fusion. Basidiomycete and ascomycete Tea4 homologues share SH3 and Glc7 domains. Tea4 in basidiomycetes has additional domains, which has led us to hypothesize that Tea4 has novel functions in this group of fungi.
Collapse
Affiliation(s)
- Michael Valinluck
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Tad Woraratanadharm
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Ching-yu Lu
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Rene H Quintanilla
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Flora Banuett
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States.
| |
Collapse
|
44
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
45
|
Abstract
Polarized cell growth requires a well-orchestrated number of events, namely selection of growth site, organization of cytoskeleton elements and delivery of new material to the growth region. The small Rho GTPase Cdc42 has emerged as a major organizer of polarized growth through its participation in many of these events. In the present short review, we focus on the regulation of Cdc42 activity and localization as well as how it controls downstream events necessary for polarized cell growth in Schizosaccharomyces pombe. Owing to the high level of similarity of the polarity pathways, analogies between fission yeast and other model systems can be useful to decipher how cells can actively define their shape by polarized growth.
Collapse
|
46
|
Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton. PLoS Comput Biol 2013; 9:e1003287. [PMID: 24146607 PMCID: PMC3798282 DOI: 10.1371/journal.pcbi.1003287] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular level in the future. Fission yeast is a rod-shaped organism that is studied, in part, as a model for how cells develop and regulate their shape. Despite extensive work identifying effects of genetic mutations and pharmacological treatments on the shape of these cells, there is a lack of mathematical and computational models examining how internal cell signals and the cytoskeleton organize to remodel the cell wall, direct growth at cell tips, and maintain tubular shape. In this work we describe how the spatial distribution of regulatory protein signal at growing cell tips relates to cell diameter. Further, we describe the consequences of this signal depending on the shape of the cell, namely its length and diameter. Finally, we propose a computational model for understanding growth and shape that includes an axis-sensing microtubule system, landmarks delivered to cell tips along those microtubules, and a growth zone signal that moves around but is attracted to the landmarks. This picture explains a large number of reported abnormal shapes in terms of only a few modular components.
Collapse
|
47
|
Weston C, Bond M, Croft W, Ladds G. The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis. PLoS One 2013; 8:e77487. [PMID: 24147005 PMCID: PMC3797800 DOI: 10.1371/journal.pone.0077487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/31/2013] [Indexed: 12/30/2022] Open
Abstract
The spatial and temporal control of polarity is fundamental to the survival of all organisms. Cells define their polarity using highly conserved mechanisms that frequently rely upon the action of small GTPases, such as Ras and Cdc42. Schizosaccharomyces pombe is an ideal system with which to study the control of cell polarity since it grows from defined tips using Cdc42-mediated actin remodeling. Here we have investigated the importance of Ras1-GTPase activity for the coordination of polarized cell growth during fission yeast mating. Following pheromone stimulation, Ras1 regulates both a MAPK cascade and the activity of Cdc42 to enable uni-directional cell growth towards a potential mating partner. Like all GTPases, when bound to GTP, Ras1 adopts an active conformation returning to an inactive state upon GTP-hydrolysis, a process accelerated through interaction with negative regulators such as GAPs. Here we show that, at low levels of pheromone stimulation, loss of negative regulation of Ras1 increases signal transduction via the MAPK cascade. However, at the higher concentrations observed during mating, hyperactive Ras1 mutations promote cell death. We demonstrate that these cells die due to their failure to coordinate active Cdc42 into a single growth zone resulting in disorganized actin deposition and unsustainable elongation from multiple tips. These results provide a striking demonstration that the deactivation stage of Ras signaling is fundamentally important in modulating cell polarity.
Collapse
Affiliation(s)
- Cathryn Weston
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Michael Bond
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Wayne Croft
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Graham Ladds
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
48
|
Wu CF, Lew DJ. Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol 2013; 23:476-83. [PMID: 23731999 PMCID: PMC3783641 DOI: 10.1016/j.tcb.2013.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/29/2023]
Abstract
Cortical domains are often specified by the local accumulation of active GTPases. Such domains can arise through spontaneous symmetry-breaking, suggesting that GTPase accumulation occurs via positive feedback. Here, we focus on recent advances in fungal and plant cell models - where new work suggests that polarity-controlling GTPases develop only one 'front' because GTPase clusters engage in a winner-takes-all competition. However, in some circumstances two or more GTPase domains can coexist, and the basis for the switch from competition to coexistence remains an open question. Polarity GTPases can undergo oscillatory clustering and dispersal, suggesting that these systems contain negative feedback. Negative feedback may prevent polarity clusters from spreading too far, regulate the balance between competition and coexistence, and provide directional flexibility for cells tracking gradients.
Collapse
Affiliation(s)
- Chi-Fang Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
49
|
Horváth A, Rácz-Mónus A, Buchwald P, Sveiczer Á. Cell length growth in fission yeast: an analysis of its bilinear character and the nature of its rate change transition. FEMS Yeast Res 2013; 13:635-49. [DOI: 10.1111/1567-1364.12064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/20/2013] [Accepted: 07/04/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Anna Horváth
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest; Hungary
| | - Anna Rácz-Mónus
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest; Hungary
| | - Peter Buchwald
- Department of Molecular and Cellular Pharmacology and Diabetes Research Institute; Miller School of Medicine; University of Miami; Miami; FL; USA
| | - Ákos Sveiczer
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest; Hungary
| |
Collapse
|
50
|
Corvest V, Bogliolo S, Follette P, Arkowitz RA, Bassilana M. Spatiotemporal regulation of Rho1 and Cdc42 activity duringCandida albicansfilamentous growth. Mol Microbiol 2013; 89:626-48. [DOI: 10.1111/mmi.12302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 01/02/2023]
|