1
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
2
|
Cairns CA, Xiao L, Wang JY. Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders. J INVEST SURG 2024; 37:2308809. [PMID: 38323630 PMCID: PMC11027105 DOI: 10.1080/08941939.2024.2308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.
Collapse
Affiliation(s)
- Cassandra A. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
3
|
Sharma S, Xiao L, Chung HK, Chen T, Mallard CG, Warner B, Yu TX, Kwon MS, Chae S, Raufman JP, Kozar R, Wang JY. Noncoding Vault RNA1-1 Impairs Intestinal Epithelial Renewal and Barrier Function by Interacting With CUG-binding Protein 1. Cell Mol Gastroenterol Hepatol 2024; 19:101410. [PMID: 39349247 PMCID: PMC11612821 DOI: 10.1016/j.jcmgh.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Small noncoding vault RNAs (vtRNAs) are involved in many cell processes important for health and disease, but their pathobiological functions in the intestinal epithelium are underexplored. Here, we investigated the role of human vtRNA1-1 in regulating intestinal epithelial renewal and barrier function. METHODS Studies were conducted in vtRNA1-1 transgenic (vtRNA1-1Tg) mice, primary enterocytes, and Caco-2 cells. Extracellular vesicles (EVs) were isolated from the serum of shock patients and septic mice. Intestinal organoids (enteroids) were prepared from vtRNA1-1Tg and littermate mice. Mucosal growth was measured by Ki67 immunostaining or BrdU incorporation, and gut permeability was assessed using the FITC-dextran assay. RESULTS Intestinal tissues recovered from shock patients and septic mice evidenced mucosal injury and gut barrier dysfunction; vtRNA levels were elevated in EVs isolated from their sera. In mice, intestinal epithelial-specific transgenic expression of vtRNA1-1 inhibited mucosal growth, reduced Paneth cell numbers and intercellular junction (IJ) protein expression, and increased gut barrier vulnerability to lipopolysaccharide exposure. Conversely, in vitro silencing of vtRNA1-1 increased IJ protein levels and enhanced epithelial barrier function. Exposing enteroids to vtRNA1-1-rich EVs augmented paracellular permeability. Mechanistically, vtRNA1-1 interacted with CUG-binding protein 1 (CUGBP1) and increased CUGBP1 association with claudin-1 and occludin mRNAs, thereby inhibiting their expression. CONCLUSIONS These findings indicate that elevated levels of vtRNA1-1 in EVs and mucosal tissues repress intestinal epithelial renewal and barrier function. Notably, this work reveals a novel role for dysregulation of the vtRNA1-1/CUGBP1 axis in the pathogenesis of gut mucosal disruption in critical illness.
Collapse
Affiliation(s)
- Shweta Sharma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bridgette Warner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Songah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jean-Pierre Raufman
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
4
|
Chung HK, Xiao L, Han N, Chen J, Yao V, Cairns CM, Raufman B, Rao JN, Turner DJ, Kozar R, Gorospe M, Wang JY. Circular RNA Cdr1as inhibits proliferation and delays injury-induced regeneration of the intestinal epithelium. JCI Insight 2024; 9:e169716. [PMID: 38227372 PMCID: PMC11143936 DOI: 10.1172/jci.insight.169716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here, we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel disease and sepsis. Ablation of the Cdr1as locus from the mouse genome enhanced renewal of the intestinal mucosa, promoted injury-induced epithelial regeneration, and protected the mucosa against colitis. We found approximately 40 microRNAs, including miR-195, differentially expressed between intestinal mucosa of Cdr1as-knockout (Cdr1as-/-) versus littermate mice. Increasing the levels of Cdr1as inhibited intestinal epithelial repair after wounding in cultured cells and repressed growth of intestinal organoids cultured ex vivo, but this inhibition was abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium was the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Naomi Han
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivian Yao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cassandra M. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Raufman
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Douglas J. Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Mao X, Yan B, Chen H, Lai P, Ma J. BRG1 mediates protective ability of spermidine to ameliorate osteoarthritic cartilage by Nrf2/KEAP1 and STAT3 signaling pathway. Int Immunopharmacol 2023; 122:110593. [PMID: 37423156 DOI: 10.1016/j.intimp.2023.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Spermidine (SPD) is a natural polyamine that shows beneficial effects on osteoarthritis (OA). However, the effect of SPD on cartilage inflammation remains unknown. This study aimed to investigate the potential mechanisms underlying the protective effect of SPD against OA-induced articular cartilage degradation. METHOD SW1353 human chondrocytes were treated with hydrogen peroxide and lipopolysaccharide to induce models of inflammation and oxidative stress, followed by different dose of SPD intervention. Moreover, mice that underwent anterior cruciate ligament transection were bred and treated with SPD. The effects of SPD were observed using a CCK-8 kit, real-time polymerase chain reaction, immunoblotting, and immunofluorescent assays. RESULT SPD significantly increased the expression of antioxidant proteins, chondrogenic genes, and inflammatory factors both in vivo and in vitro. And injury of the mouse cartilage was also reduced by SPD. Moreover, SPD activated the Nrf2/KEAP1 pathway and inhibited STAT3 phosphorylation. BRG1 expression was decreased in osteoarthritic mouse cartilage, whereas SPD treatment caused an upregulation. However, when BRG1 was specifically inhibited by an adeno-associated virus and small interfering RNA, the antioxidant and anti-inflammatory effects of SPD were significantly diminished both in vitro and in vivo. CONCLUSION We found that SPD ameliorated cartilage damage in OA by activating the BRG1-mediated Nrf2/KEAP1 pathway. SPD and BRG1 may provide new therapeutic options or targets for the treatment of OA.
Collapse
Affiliation(s)
- Xinjie Mao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Yan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Lai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Wang SR, Rathor N, Kwon MS, Xiao L, Chung HK, Turner DJ, Wang JY, Rao JN. miR-195 Regulates Intestinal Epithelial Restitution after Wounding by altering Actin-Related Protein-2 Translation. Am J Physiol Cell Physiol 2022; 322:C712-C722. [PMID: 35235424 PMCID: PMC8977142 DOI: 10.1152/ajpcell.00001.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early gut epithelial restitution reseals superficial wounds after acute injury, but the exact mechanism underlying this rapid mucosal repair remains largely unknown. MicroRNA-195 (miR-195) is highly expressed in the gut epithelium and involved in many aspects of mucosal pathobiology. Actin-related proteins (ARPs) are key components essential for stimulation of actin polymerization and regulate cell motility. Here we reported that miR-195 modulates early intestinal epithelial restitution by altering ARP-2 expression at the translation level. MiR-195 directly interacted with the ARP-2 mRNA, and ectopically overexpressed miR-195 decreased ARP-2 protein without effect on its mRNA content. In contrast, miR-195 silencing by transfection with the anti-miR-195 increased ARP-2 protein expression. Decreased ARP-2 levels by miR-195 were associated with an inhibition of early epithelial restitution, as indicated by a decrease in cell migration over the wounded area. Elevation of cellular ARP-2 levels by transfection with its transgene restored cell migration after wounding in cells overexpressing miR-195. Polyamines were found to decrease miR-195 abundance and enhanced ARP-2 translation, thus promoting epithelial restitution after wounding. Moreover, increasing the levels of miR-195 disrupted F-actin cytoskeleton organization, which was prevented by ARP2 overexpression. These results indicate that miR-195 inhibits early epithelial restitution by decreasing ARP-2 translation and that miR-195 expression is negatively regulated by cellular polyamines.
Collapse
Affiliation(s)
- Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Navneeta Rathor
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States.,Cell Biology Group, Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Cell Biology Group, Baltimore VA Medical Center, Baltimore, MD, United States
| |
Collapse
|
7
|
Rao JN, Xiao L, Wang JY. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology (Bethesda) 2021; 35:328-337. [PMID: 32783609 DOI: 10.1152/physiol.00011.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
9
|
Kwon MS, Chung HK, Xiao L, Yu TX, Wang SR, Piao JJ, Rao JN, Gorospe M, Wang JY. MicroRNA-195 regulates Tuft cell function in the intestinal epithelium by altering translation of DCLK1. Am J Physiol Cell Physiol 2021; 320:C1042-C1054. [PMID: 33788631 DOI: 10.1152/ajpcell.00597.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.
Collapse
Affiliation(s)
- Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shelley R Wang
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jun-Jie Piao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
10
|
Xiao L, Rao JN, Wang JY. RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function. Tissue Barriers 2021; 9:1895648. [PMID: 33709880 DOI: 10.1080/21688370.2021.1895648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intestinal autophagy and barrier function are crucial for maintaining the epithelium homeostasis and tightly regulated through well-controlled mechanisms. RNA-binding proteins (RBPs) and long noncoding RNAs (lncRNAs) modulate gene expression at the posttranscription level and are intimately involved in different physiological processes and diverse human diseases. In this review, we first highlight the roles of several RBPs and lncRNAs in the regulation of intestinal epithelial autophagy and barrier function, particularly focusing on the emerging evidence of RBPs and lncRNAs in the control of mRNA stability and translation. We additionally discuss recent findings that the interactions between RBPs and lncRNAs alter the fate of their target transcripts and thus influence gut epithelium host defense in response to stressful environments. These exciting advances in understanding the posttranscriptional control of the epithelial autophagy and barrier function by RBPs and lncRNAs provide a strong rationale for developing new effective therapeutics based on targeting RBPs and/or lncRNAs to preserve the intestinal epithelial integrity in patients with critical illnesses.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, Department of Veterans Affairs, USA
| |
Collapse
|
11
|
Liu Z, Jiang J, Dai W, Wei H, Zhang X, Yang Z, Xiong Y. MicroRNA-674-5p induced by HIF-1α targets XBP-1 in intestinal epithelial cell injury during endotoxemia. Cell Death Discov 2020; 6:44. [PMID: 32550011 PMCID: PMC7272402 DOI: 10.1038/s41420-020-0280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 01/15/2023] Open
Abstract
Intestinal mucosal integrity dysfunction during endotoxemia can contribute to translocation of intestinal bacteria and a persistent systemic inflammatory response, which both fuel the pathophysiological development of sepsis or endotoxemia. The pathogenesis of intestinal damage induced by endotoxemia remains poorly understood. Here, we identified the microRNA (miR)-674-5p/X-box binding protein 1 (XBP-1) axis as a critical regulator and therapeutic target in preventing intestinal crypt cell proliferation during endotoxemia. MiR-674-5p was markedly increased in intestinal epithelial cells (IECs) during endotoxemia and its induction depended on hypoxia-inducible factor-1α (HIF-1α). Intriguingly, gene expression microanalysis revealed that expression of XBP-1 was down-regulated in IECs with over-expression of miR-674-5p. miR-674-5p was found to directly target XBP-1 protein expression. Upon in vitro, anti-miR-674-5p enhanced sXBP-1 expression and facilitated intestinal crypt cell proliferation. Blockade of miR-674-5p promoted XBP-1 activity, attenuated intestinal inflammation, and expedited intestinal regeneration, resulting in protection against endotoxemia-induced intestinal injury in mice. More importantly, the survival in endotoxemia mice was significantly improved by inhibiting intestinal miR-674-5p. Collectively, these data indicate that control of a novel miR-674-5p/XBP-1 signaling axis may mitigate endotoxemia -induced intestinal injury.
Collapse
Affiliation(s)
- Zhihao Liu
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, 510080 Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, No.600, Tianhe Road, 510360 Guangzhou, China
| | - Weigang Dai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, 510080 Guangzhou, China
| | - Hongyan Wei
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, 510080 Guangzhou, China
| | - Xiaofei Zhang
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26, YuanCunErHeng Road, 510655 Guangzhou, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, 510080 Guangzhou, China
| | - Yan Xiong
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, 510080 Guangzhou, China
| |
Collapse
|
12
|
Timchenko L. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 21:ijms21010094. [PMID: 31877772 PMCID: PMC6982105 DOI: 10.3390/ijms21010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease.
Collapse
Affiliation(s)
- Lubov Timchenko
- Departments of Neurology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
13
|
Cui Y, Feng Q, Liu Q, Li H, Song X, Hu Z, Xu Z, Li J, Li M, Zheng W, Li Z, Pan H. Posttranscriptional regulation of MMP‐9 by HuR contributes to IL‐1β‐induced pterygium fibroblast migration and invasion. J Cell Physiol 2019; 235:5130-5140. [PMID: 31691974 DOI: 10.1002/jcp.29387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Yu‐Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical SciencesGuangzhou Medical University Guangzhou China
- Department of Histology and Embryology, School of Basic Medical SciencesGuangzhou Medical University Guangzhou China
| | - Qing‐Yang Feng
- Department of OphthalmologyGuangdong Women and Children Hospital Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Qun Liu
- Department of Histology and Embryology, School of Basic Medical SciencesGuangzhou Medical University Guangzhou China
| | - Hong‐Yang Li
- Department of OphthalmologyGuangdong No. 2 Provincial People's Hospital Guangzhou China
- Department of Ophthalmology, Guangzhou Red Cross HospitalThe Fourth Affiliated Hospital of Jinan University Guangzhou China
| | - Xi‐Ling Song
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Zi‐Xuan Hu
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Zhi‐Yi Xu
- Department of Ophthalmology, The First Affiliated HospitalJinan University Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Jia‐Hui Li
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Mei‐Jun Li
- Department of Ophthalmology, The First Affiliated HospitalJinan University Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Wen‐Lin Zheng
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
| | - Zhi‐Jie Li
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| | - Hong‐Wei Pan
- Department of Public Health and Preventive MedicineJinan University Guangzhou China
- Department of Ophthalmology, The First Affiliated HospitalJinan University Guangzhou China
- Institute of Ophthalmology, School of MedicineJinan University Guangzhou China
| |
Collapse
|
14
|
Anwar R, Fatima S, Mattoo AK, Handa AK. Fruit Architecture in Polyamine-Rich Tomato Germplasm Is Determined via a Medley of Cell Cycle, Cell Expansion, and Fruit Shape Genes. PLANTS 2019; 8:plants8100387. [PMID: 31569586 PMCID: PMC6843802 DOI: 10.3390/plants8100387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
Abstract
Shape and size are important features of fruits. Studies using tomatoes expressing yeast Spermidine Synthase under either a constitutive or a fruit-ripening promoter showed obovoid fruit phenotype compared to spherical fruit in controls, suggesting that polyamines (PAs) have a role in fruit shape. The obovoid fruit pericarp exhibited decreased cell layers and pericarp thickness compared to wild-type fruit. Transgenic floral buds and ovaries accumulated higher levels of free PAs, with the bound form of PAs being predominant. Transcripts of the fruit shape genes, SUN1 and OVATE, and those of CDKB2, CYCB2, KRP1 and WEE1 genes increased significantly in the transgenic ovaries 2 and 5 days after pollination (DAP). The levels of cell expansion genes CCS52A/B increased at 10 and 20 DAP in the transgenic fruits and exhibited negative correlation with free or bound forms of PAs. In addition, the cell layers and pericarp thickness of the transgenic fruits were inversely associated with free or bound PAs in 10 and 20 DAP transgenic ovaries. Collectively, these results provide evidence for a linkage between PA homeostasis and expression patterns of fruit shape, cell division, and cell expansion genes during early fruit development, and suggest role(s) of PAs in tomato fruit architecture.
Collapse
Affiliation(s)
- Raheel Anwar
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan.
| | - Shazia Fatima
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture, Agricultural Research Service, The Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
15
|
Bian S. miR‐4319 inhibited the development of thyroid cancer by modulating FUS‐stabilized SMURF1. J Cell Biochem 2019; 121:174-182. [DOI: 10.1002/jcb.29026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Shuquan Bian
- Clinical Laboratory Xintai City People's Hospital of Shandong Province Xintai Shandong China
| |
Collapse
|
16
|
Jiang LP, Wang SR, Chung HK, Buddula S, Wang JY, Rao JN. miR-222 represses expression of zipcode binding protein-1 and phospholipase C-γ1 in intestinal epithelial cells. Am J Physiol Cell Physiol 2019; 316:C415-C423. [PMID: 30649922 DOI: 10.1152/ajpcell.00165.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both zipcode binding protein-1 (ZBP1) and phospholipase C-γ1 (PLCγ1) are intimately involved in many aspects of early intestinal mucosal repair after acute injury, but the exact mechanisms that control their cellular abundances remain largely unknown. The present study shows that microRNA-222 (miR-222) interacts with the mRNAs encoding ZBP1 and PLCγ1 and regulates ZBP1 and PLCγ1 expression in intestinal epithelial cells (IECs). The biotinylated miR-222 bound specifically to the ZBP1 and PLCγ1 mRNAs in IECs. Ectopically expressed miR-222 precursor destabilized the ZBP1 and PLCγ1 mRNAs and consequently lowered the levels of cellular ZBP1 and PLCγ1 proteins. Conversely, decreasing the levels of cellular miR-222 by transfection with its antagonism increased the stability of the ZBP1 and PLCγ1 mRNAs and increased the levels of ZBP1 and PLCγ1 proteins. Overexpression of miR-222 also inhibited cell migration over the wounded area, which was partially abolished by overexpressing ZBP1 and PLCγ1. Furthermore, prevention of the increased levels of ZBP1 and PLCγ1 in the miR-222-silenced cells by transfection with specific small interfering RNAs targeting ZBP1 or PLCγ1 mRNA inhibited cell migration after wounding. These findings indicate that induced miR-222 represses expression of ZBP1 and PLCγ1 at the posttranscriptional level, thus inhibiting IEC migration during intestinal epithelial restitution after wounding.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland
| | - Saharsh Buddula
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland
| |
Collapse
|
17
|
Yan JK, Zhang T, Dai LN, Gu BL, Zhu J, Yan WH, Cai W, Wang Y. CELF1/p53 axis: a sustained antiproliferative signal leading to villus atrophy under total parenteral nutrition. FASEB J 2018; 33:3378-3391. [PMID: 30514107 DOI: 10.1096/fj.201801695r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal villus atrophy is a major complication of total parenteral nutrition (TPN). Our previous study revealed that TPN-induced villus atrophy is accompanied by elevated expression of CUGBP, Elav-like family member 1 (CELF1); however, its mechanism of action has not been fully understood. Herein, we report a pivotal role of CELF1/p53 axis, which induces a sustained antiproliferative signal, leading to suppressed proliferation of intestinal epithelial cells (IECs). By using a rat model of TPN, we found synchronous upregulation of CELF1 and p53 in jejunum mucosa, accompanied by a 51% decrease in crypt cell proliferation rate. By using HCT-116 cells as an IEC model in vitro, we found that the expression of CELF1 altered dynamically in parallel to proliferation rate, suggesting a self-adaptive expression pattern in IECs in vitro. Furthermore, ectopic overexpression of CELF1 elicited a significant antiproliferative effect in HCT-116, Caco-2, and IEC-6 cells, whereas knockdown of CELF1 elicited a significant proproliferative effect. Moreover, cell-cycle assay revealed that ectopic overexpression of CELF1 induced sustained G2 arrest and G1 arrest in HCT-116 and IEC-6 cells, respectively, which could be abolished by p53 silencing. Mechanistically, polysomal profiling and nascent protein analysis revealed that regulation of p53 by CELF1 was mediated through accelerating its protein translation in polysomes. Taken together, our findings revealed a sustained suppression of IEC proliferation evoked by CELF1/p53 axis, which may be a potential therapeutic target for the treatment of TPN-induced villus atrophy.-Yan, J.-K., Zhang, T., Dai, L.-N., Gu, B.-L., Zhu, J., Yan, W.-H., Cai, W., Wang, Y. CELF1/p53 axis: a sustained antiproliferative signal leading to villus atrophy under total parenteral nutrition.
Collapse
Affiliation(s)
- Jun-Kai Yan
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Tian Zhang
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Li-Na Dai
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Bei-Lin Gu
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jie Zhu
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Wei-Hui Yan
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Wei Cai
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Wang
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
18
|
IL-33 promotes recovery from acute colitis by inducing miR-320 to stimulate epithelial restitution and repair. Proc Natl Acad Sci U S A 2018; 115:E9362-E9370. [PMID: 30224451 DOI: 10.1073/pnas.1803613115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Defective and/or delayed wound healing has been implicated in the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease (IBD). The resolution of inflammation is particularly important in mucosal organs, such as the gut, where restoration of epithelial barrier function is critical to reestablish homeostasis with the interfacing microenvironment. Although IL-33 and its receptor ST2/ILRL1 are known to be increased and associated with IBD, studies using animal models of colitis to address the mechanism have yielded ambiguous results, suggesting both pathogenic and protective functions. Unlike those previously published studies, we focused on the functional role of IL-33/ST2 during an extended (2-wk) recovery period after initial challenge in dextran sodium sulfate (DSS)-induced colitic mice. Our results show that during acute, resolving colitis the normal function of endogenous IL-33 is protection, and the lack of either IL-33 or ST2 impedes the overall recovery process, while exogenous IL-33 administration during recovery dramatically accelerates epithelial restitution and repair, with concomitant improvement of colonic inflammation. Mechanistically, we show that IL-33 stimulates the expression of a network of microRNAs (miRs) in the Caco2 colonic intestinal epithelial cell (IEC) line, especially miR-320, which is increased by >16-fold in IECs isolated from IL-33-treated vs. vehicle-treated DSS colitic mice. Finally, IL-33-dependent in vitro proliferation and wound closure of Caco-2 IECs is significantly abrogated after specific inhibition of miR-320A. Together, our data indicate that during acute, resolving colitis, IL-33/ST2 plays a crucial role in gut mucosal healing by inducing epithelial-derived miR-320 that promotes epithelial repair/restitution and the resolution of inflammation.
Collapse
|
19
|
Regulation of Intestinal Epithelial Barrier Function by Long Noncoding RNA uc.173 through Interaction with MicroRNA 29b. Mol Cell Biol 2018; 38:MCB.00010-18. [PMID: 29632078 DOI: 10.1128/mcb.00010-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The mammalian intestinal epithelium establishes a selectively permeable barrier that supports nutrient absorption and prevents intrusion by noxious luminal substances and microbiota. The effectiveness and integrity of the barrier function are tightly regulated via well-controlled mechanisms. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control diverse cellular processes, but their roles in the regulation of gut permeability remain largely unknown. Here we report that the T-UCR uc.173 enhances intestinal epithelial barrier function by antagonizing microRNA 29b (miR-29b). Decreasing the levels of uc.173 by gene silencing led to dysfunction of the intestinal epithelial barrier in cultured cells and increased the vulnerability of the gut barrier to septic stress in mice. uc.173 specifically stimulated translation of the tight junction (TJ) claudin-1 (CLDN1) by associating with miR-29b rather than by binding directly to CLDN1 mRNA. uc.173 acted as a natural decoy RNA for miR-29b, which interacts with CLDN1 mRNA via the 3' untranslated region and represses its translation. Ectopically expressed uc.173 abolished the association of miR-29b with CLDN1 mRNA and restored claudin-1 expression to normal levels in cells overexpressing miR-29b, thus rescuing the barrier function. These results highlight a novel function of uc.173 in controlling gut permeability and define a mechanism by which uc.173 stimulates claudin-1 translation, by decreasing the availability of miR-29b to CLDN1 mRNA.
Collapse
|
20
|
Blanco FF, Preet R, Aguado A, Vishwakarma V, Stevens LE, Vyas A, Padhye S, Xu L, Weir SJ, Anant S, Meisner-Kober N, Brody JR, Dixon DA. Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis. Oncotarget 2018; 7:74043-74058. [PMID: 27677075 PMCID: PMC5342034 DOI: 10.18632/oncotarget.12189] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality. Observed during CRC tumorigenesis is loss of post-transcriptional regulation of tumor-promoting genes such as COX-2, TNFα and VEGF. Overexpression of the RNA-binding protein HuR (ELAVL1) occurs during colon tumorigenesis and is abnormally present within the cytoplasm, where it post-transcriptionally regulates genes through its interaction with 3′UTR AU-rich elements (AREs). Here, we examine the therapeutic potential of targeting HuR using MS-444, a small molecule HuR inhibitor. Treatment of CRC cells with MS-444 resulted in growth inhibition and increased apoptotic gene expression, while similar treatment doses in non-transformed intestinal cells had no appreciable effects. Mechanistically, MS-444 disrupted HuR cytoplasmic trafficking and released ARE-mRNAs for localization to P-bodies, but did not affect total HuR expression levels. This resulted in MS-444-mediated inhibition of COX-2 and other ARE-mRNA expression levels. Importantly, MS-444 was well tolerated and inhibited xenograft CRC tumor growth through enhanced apoptosis and decreased angiogenesis upon intraperitoneal administration. In vivo treatment of MS-444 inhibited HuR cytoplasmic localization and decreased COX-2 expression in tumors. These findings provide evidence that therapeutic strategies to target HuR in CRC warrant further investigation in an effort to move this approach to the clinic.
Collapse
Affiliation(s)
- Fernando F Blanco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ranjan Preet
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Aguado
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Vikalp Vishwakarma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Stevens
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alok Vyas
- Maharashtra Cosmopolitan Education Society's ISTRA, Azam Campus, University of Pune, India
| | - Subhash Padhye
- Maharashtra Cosmopolitan Education Society's ISTRA, Azam Campus, University of Pune, India
| | - Liang Xu
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Scott J Weir
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Jonathan R Brody
- Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Xiao L, Wu J, Wang JY, Chung HK, Kalakonda S, Rao JN, Gorospe M, Wang JY. Long Noncoding RNA uc.173 Promotes Renewal of the Intestinal Mucosa by Inducing Degradation of MicroRNA 195. Gastroenterology 2018; 154:599-611. [PMID: 29042220 PMCID: PMC5811324 DOI: 10.1053/j.gastro.2017.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/25/2017] [Accepted: 10/07/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The mammalian intestinal epithelium self-renews rapidly and homeostasis is preserved via tightly controlled mechanisms. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions, but little is known about their role in maintaining the integrity of the intestinal epithelium. We searched for T-UCRs that regulate growth of the intestinal mucosa and investigated the mechanism by which T-UCR uc.173 regulates epithelial renewal. METHODS C57BL/6J mice were deprived of food for 48 hours in fasting experiments. Some mice were given intraperitoneal injections of a plasmid encoding LNA-anti-uc.173, to knock down endogenous uc.173. For studies using organoids, primary enterocytes were isolated from the intestine and transfected with the uc.173 transgene to increase uc.173 levels. Intestinal epithelial cells (Caco-2 and IEC-6 lines) were transfected with LNA-anti-uc.173 or uc.173 transgene. We quantified intestinal epithelial renewal based on BrdU incorporation, villus height and crypt depth, and cell number. The association of uc.173 with microRNA 195 (miRNA195) was determined by RNA pull-down assays. RESULTS Genome-wide profile analyses identified 21 T-UCRs, including uc.173, that were differentially expressed between intestinal mucosa of fasted vs non-fasted mice. Increasing levels of uc.173 by expression of a transgene increased growth of intestinal epithelial cells and organoids. Decreasing uc.173 levels by LNA-anti-uc.173 in mice reduced renewal of the intestinal epithelium. We found that uc.173 interacted directly with the primary transcript of miRNA195, leading to miRNA195 degradation. CONCLUSIONS In analyses of intestinal epithelial cells and mice, we identified uc.173 noncoding RNA that regulates growth of the intestinal mucosa and stimulates intestinal epithelial renewal by reducing levels of miRNA195.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Jing Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Jun-Yao Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Sudhakar Kalakonda
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Maryland 21201,Baltimore Veterans Affairs Medical Center, Maryland 21201
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland 21224
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
22
|
Lulla AR, Slifker MJ, Zhou Y, Lev A, Einarson MB, Dicker DT, El-Deiry WS. miR-6883 Family miRNAs Target CDK4/6 to Induce G 1 Phase Cell-Cycle Arrest in Colon Cancer Cells. Cancer Res 2017; 77:6902-6913. [PMID: 29061672 DOI: 10.1158/0008-5472.can-17-1767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
Abstract
CDK4/6 targeting is a promising therapeutic strategy under development for various tumor types. In this study, we used computational methods and The Cancer Genome Atlas dataset analysis to identify novel miRNAs that target CDK4/6 and exhibit potential for therapeutic development in colorectal cancer. The 3'UTR of CDK4/6 mRNAs are targeted by a family of miRNAs, which includes miR-6883-5p, miR-149*, miR-6785-5p, and miR-4728-5p. Ectopic expression of miR-6883-5p or miR-149* downregulated CDK4 and CDK6 levels in human colorectal cancer cells. RNA-seq analysis revealed an inverse relationship between the expression of CDK4/6 and miR-149* and intronic miRNA-6883-5p encoding the clock gene PER1 in colorectal cancer patient samples. Restoring expression of miR-6883-5p and miR-149* blocked cell growth leading to G0-G1 phase cell-cycle arrest and apoptosis in colorectal cancer cells. CDK4/6 targeting by miR-6883-5p and miR-149* could only partially explain the observed antiproliferative effects. Notably, both miRNAs synergized with the frontline colorectal cancer chemotherapy drug irinotecan. Further, they resensitized mutant p53-expressing cell lines resistant to 5-fluorouracil. Taken together, our results established the foundations of a candidate miRNA-based theranostic strategy to improve colorectal cancer management. Cancer Res; 77(24); 6902-13. ©2017 AACR.
Collapse
Affiliation(s)
- Amriti R Lulla
- Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Wafik S El-Deiry
- Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
23
|
Cooperative Repression of Insulin-Like Growth Factor Type 2 Receptor Translation by MicroRNA 195 and RNA-Binding Protein CUGBP1. Mol Cell Biol 2017; 37:MCB.00225-17. [PMID: 28716948 DOI: 10.1128/mcb.00225-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor type 2 (IGF2) receptor (IGF2R) recognizes mannose 6-phosphate-containing molecules and IGF2 and plays an important role in many pathophysiological processes, including gut mucosal adaptation. However, the mechanisms that control cellular IGF2R abundance are poorly known. MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) critically regulate gene expression programs in mammalian cells by modulating the stability and translation of target mRNAs. Here we report that miRNA 195 (miR-195) and RBP CUG-binding protein 1 (CUGBP1) jointly regulate IGF2R expression at the posttranscriptional level in intestinal epithelial cells. Both miR-195 and CUGBP1 interacted with the 3' untranslated region (3'-UTR) of Igf2r mRNA, and the association of CUGBP1 with Igf2r mRNA enhanced miR-195 binding to Igf2r mRNA. Ectopically expressed CUGBP1 and miR-195 repressed IGF2R translation cooperatively without altering the stability of Igf2r mRNA. Importantly, the miR-195- and CUGBP1-repressed levels of cellular IGF2R led to a disruption in the structure of the trans-Golgi network. These findings indicate that IGF2R expression is controlled posttranscriptionally by two factors that associate with Igf2r mRNA and suggest that miR-195 and CUGBP1 dampen IGF signaling by inhibiting IGF2R translation.
Collapse
|
24
|
Bai Z, Chai XR, Yoon MJ, Kim HJ, LO KA, Zhang ZC, Xu D, Siang DTC, Walet ACE, Xu SH, Chia SY, Chen P, Yang H, Ghosh S, Sun L. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biol 2017; 15:e2002176. [PMID: 28763438 PMCID: PMC5538645 DOI: 10.1371/journal.pbio.2002176] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023] Open
Abstract
Enhancing brown fat activity and promoting white fat browning are attractive therapeutic strategies for treating obesity and associated metabolic disorders. To provide a comprehensive picture of the gene regulatory network in these processes, we conducted a series of transcriptome studies by RNA sequencing (RNA-seq) and quantified the mRNA and long noncoding RNA (lncRNA) changes during white fat browning (chronic cold exposure, beta-adrenergic agonist treatment, and intense exercise) and brown fat activation or inactivation (acute cold exposure or thermoneutrality, respectively). mRNA–lncRNA coexpression networks revealed dynamically regulated lncRNAs to be largely embedded in nutrient and energy metabolism pathways. We identified a brown adipose tissue–enriched lncRNA, lncBATE10, that was governed by the cAMP-cAMP response element-binding protein (Creb) axis and required for a full brown fat differentiation and white fat browning program. Mechanistically, lncBATE10 can decoy Celf1 from Pgc1α, thereby protecting Pgc1α mRNA from repression by Celf1. Together, these studies provide a comprehensive data framework to interrogate the transcriptomic changes accompanying energy homeostasis transition in adipose tissue. Fat accumulation is a major health problem in many countries, but unlike white fat—which stores calories—brown fat is packed with mitochondria to burn energy. Therefore, promoting “browning” of white fat and enhancing brown fat activity are seen as promising therapeutic strategies to fight obesity. Long noncoding RNAs (lncRNAs), once largely believed to be functionally irrelevant, are receiving special attention because of the recent realization of their important role in many biological processes. Here, we performed a series of transcriptome analyses, including lncRNAs, during white fat browning and brown fat activation. Based on the mRNA–lncRNA coexpression network, we identified brown adipose tissue–enriched lncRNA 10 (lncBATE10) as a new regulator in brown adipocyte differentiation. Loss of lncBATE10 impaired expression of a brown fat–selective program in brown adipocytes and during browning of white adipocytes. We further showed that lncBATE10 could facilitate browning of white fat and brown fat activation by promoting Pgc1a expression. Taken together, we depicted a comprehensive noncoding transcriptome network during white fat browning and brown fat activation and identified lncBATE10 as a novel regulator in these processes.
Collapse
Affiliation(s)
- Zhiqiang Bai
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-ran Chai
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Myeong Jin Yoon
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Hye-Jin Kim
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kinyui Alice LO
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Zhi-chun Zhang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Dan Xu
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Diana Teh Chee Siang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Shao-hai Xu
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sook-Yoong Chia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Peng Chen
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail: (S.G.); (L.S.)
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, Singapore, Singapore
- * E-mail: (S.G.); (L.S.)
| |
Collapse
|
25
|
HuR Enhances Early Restitution of the Intestinal Epithelium by Increasing Cdc42 Translation. Mol Cell Biol 2017; 37:MCB.00574-16. [PMID: 28031329 DOI: 10.1128/mcb.00574-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/21/2016] [Indexed: 12/27/2022] Open
Abstract
The mammalian intestinal mucosa exhibits a spectrum of responses after acute injury and repairs itself rapidly to restore the epithelial integrity. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of gut epithelium homeostasis, but its exact role in the regulation of mucosal repair after injury remains unknown. We show here that HuR is essential for early intestinal epithelial restitution by increasing the expression of cell division control protein 42 (Cdc42) at the posttranscriptional level. HuR bound to the Cdc42 mRNA via its 3' untranslated region, and this association specifically enhanced Cdc42 translation without an effect on the Cdc42 mRNA level. Intestinal epithelium-specific HuR knockout not only decreased Cdc42 levels in mucosal tissues, but it also inhibited repair of damaged mucosa induced by mesenteric ischemia/reperfusion in the small intestine and by dextran sulfate sodium in the colon. Furthermore, Cdc42 silencing prevented HuR-mediated stimulation of cell migration over the wounded area by altering the subcellular distribution of F-actin. These results indicate that HuR promotes early intestinal mucosal repair after injury by increasing Cdc42 translation and demonstrate the importance of HuR deficiency in the pathogenesis of delayed mucosal healing in certain pathological conditions.
Collapse
|
26
|
Xu Y, Chen J, Xiao L, Chung HK, Zhang Y, Robinson JC, Rao JN, Wang JY. Transcriptional regulation of importin-α1 by JunD modulates subcellular localization of RNA-binding protein HuR in intestinal epithelial cells. Am J Physiol Cell Physiol 2016; 311:C874-C883. [PMID: 27733365 DOI: 10.1152/ajpcell.00209.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 01/23/2023]
Abstract
The RNA-binding protein HuR is crucial for normal intestinal mucosal regeneration by modulating the stability and translation of target mRNAs, but the exact mechanism underlying HuR trafficking between the cytoplasm and nucleus remains largely unknown. Here we report a novel function of transcription factor JunD in the regulation of HuR subcellular localization through the control of importin-α1 expression in intestinal epithelial cells (IECs). Ectopically expressed JunD specifically inhibited importin-α1 at the transcription level, and this repression is mediated via interaction with CREB-binding site that was located at the proximal region of importin-α1 promoter. Reduction in the levels of importin-α1 by JunD increased cytoplasmic levels of HuR, although it failed to alter whole cell HuR levels. Increased levels of endogenous JunD by depleting cellular polyamines also inhibited importin-α1 expression and increased cytoplasmic HuR levels, whereas JunD silencing rescued importin-α1 expression and enhanced HuR nuclear translocation in polyamine-deficient cells. Moreover, importin-α1 silencing protected IECs against apoptosis, which was prevented by HuR silencing. These results indicate that JunD regulates HuR subcellular distribution by downregulating importin-α1, thus contributing to the maintenance of gut epithelium homeostasis.
Collapse
Affiliation(s)
- Yan Xu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Yuan Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Joseph C Robinson
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; .,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
27
|
Wang JY, Xiao L, Wang JY. Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27704722 DOI: 10.1002/wrna.1399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
Maintenance of the gut epithelial integrity under stressful environments requires epithelial cells to rapidly elicit changes in gene expression patterns to regulate their survival, adapt to stress, and keep epithelial homeostasis. Disruption of the intestinal epithelial integrity occurs commonly in patients with various critical illnesses, leading to the translocation of luminal toxic substances and bacteria to the blood stream. Recently, noncoding RNAs (ncRNAs) have emerged as a novel class of master regulators of gene expression and are fundamentally involved in many aspects of gut mucosal regeneration, protection, and epithelial barrier function. Here, we highlight the roles of several intestinal epithelial tissue-specific microRNAs, including miR-222, miR-29b, miR-503, and miR-195, and long ncRNAs such as H19 and SPRY4-IT1 in the regulation of cell proliferation, apoptosis, migration, and cell-to-cell interactions and also further analyze the mechanisms through which ncRNAs and their interactions with RNA-binding proteins modulate the stability and translation of target mRNAs. WIREs RNA 2017, 8:e1399. doi: 10.1002/wrna.1399 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun-Yao Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Blech-Hermoni Y, Sullivan CB, Jenkins MW, Wessely O, Ladd AN. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev Dyn 2016; 245:854-73. [PMID: 27144987 DOI: 10.1002/dvdy.24413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND CUG-BP, Elav-like family member 1 (CELF1) is a multifunctional RNA binding protein found in a variety of adult and embryonic tissues. In the heart, CELF1 is found exclusively in the myocardium. However, the roles of CELF1 during cardiac development have not been completely elucidated. RESULTS Myofibrillar organization is disrupted and proliferation is reduced following knockdown of CELF1 in cultured chicken primary embryonic cardiomyocytes. In vivo knockdown of Celf1 in developing Xenopus laevis embryos resulted in myofibrillar disorganization and a trend toward reduced proliferation in heart muscle, indicating conserved roles for CELF1 orthologs in embryonic cardiomyocytes. Loss of Celf1 also resulted in morphogenetic abnormalities in the developing heart and gut. Using optical coherence tomography, we showed that cardiac contraction was impaired following depletion of Celf1, while heart rhythm remained unperturbed. In contrast to cardiac muscle, loss of Celf1 did not disrupt myofibril organization in skeletal muscle cells, although it did lead to fragmentation of skeletal muscle bundles. CONCLUSIONS CELF1 is required for normal myofibril organization, proliferation, morphogenesis, and contractile performance in the developing myocardium. Developmental Dynamics 245:854-873, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Program in Cell Biology, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Connor B Sullivan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Andrea N Ladd
- Program in Cell Biology, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
29
|
Post-transcriptional regulation of Wnt co-receptor LRP6 and RNA-binding protein HuR by miR-29b in intestinal epithelial cells. Biochem J 2016; 473:1641-9. [PMID: 27089893 PMCID: PMC4888462 DOI: 10.1042/bcj20160057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) control gene expression by binding to their target mRNAs for degradation and/or translation repression and are implicated in many aspects of cellular physiology. Our previous study shows that miR-29b acts as a biological repressor of intestinal mucosal growth, but its exact downstream targets remain largely unknown. In the present study, we found that mRNAs, encoding Wnt co-receptor LRP6 (low-density lipoprotein-receptor-related protein 6) and RNA-binding protein (RBP) HuR, are novel targets of miR-29b in intestinal epithelial cells (IECs) and that expression of LRP6 and HuR is tightly regulated by miR-29b at the post-transcriptional level. miR-29b interacted with both Lrp6 and HuR mRNAs via their 3′-UTRs and inhibited LRP6 and HuR expression by destabilizing Lrp6 and HuR mRNAs and repressing their translation. Studies using heterologous reporter constructs revealed a greater repressive effect of miR-29b through a single binding site in the Lrp6 or HuR 3′-UTR, whereas deletion mutation of this site prevented miR-29b-induced repression of LRP6 and HuR expression. Repression of HuR by miR-29b in turn also contributed to miR-29b-induced LRP6 inhibition, since ectopic overexpression of HuR in cells overexpressing miR-29b restored LRP6 expression to near normal levels. Taken together, our results suggest that miR-29b inhibits expression of LRP6 and HuR post-transcriptionally, thus playing a role in the regulation of IEC proliferation and intestinal epithelial homoeostasis.
Collapse
|
30
|
H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR. Mol Cell Biol 2016; 36:1332-41. [PMID: 26884465 DOI: 10.1128/mcb.01030-15] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.
Collapse
|
31
|
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. J Biotechnol 2016; 235:150-61. [PMID: 26993211 DOI: 10.1016/j.jbiotec.2016.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics.
Collapse
|
32
|
Motawi TMK, Sadik NAH, Shaker OG, Ghaleb MH. Elevated serum microRNA-122/222 levels are potential diagnostic biomarkers in Egyptian patients with chronic hepatitis C but not hepatic cancer. Tumour Biol 2016; 37:9865-74. [DOI: 10.1007/s13277-016-4884-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
|
33
|
Gu H, Yu J, Dong D, Zhou Q, Wang JY, Fang S, Yang P. High Glucose-Repressed CITED2 Expression Through miR-200b Triggers the Unfolded Protein Response and Endoplasmic Reticulum Stress. Diabetes 2016; 65:149-63. [PMID: 26450995 PMCID: PMC4686950 DOI: 10.2337/db15-0108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
High glucose in vivo and in vitro induces neural tube defects (NTDs). CITED2 (CBP/p300-interacting transactivator with ED-rich tail 2) is essential for neural tube closure. We explored the regulatory mechanism underlying CITED2 expression and its relationship with miRNA and endoplasmic reticulum (ER) stress. miR-200b levels were increased by maternal diabetes or high glucose in vitro, and this increase was abrogated by transgenic overexpression of superoxide dismutase 1 (SOD1) or an SOD1 mimetic. CITED2 was the target of miR-200b and was downregulated by high glucose. Two miR-200b binding sites in the 3'-untranslated region of the CITED2 mRNA were required for inhibiting CITED2 expression. The miR-200b mimic and a CITED2 knockdown mimicked the stimulative effect of high glucose on unfolded protein response (UPR) and ER stress, whereas the miR-200b inhibitor and CITED2 overexpression abolished high glucose-induced UPR signaling, ER stress, and apoptosis. The ER stress inhibitor, 4-phenylbutyrate, blocked CITED2 knockdown-induced apoptosis. Furthermore, the miR-200b inhibitor reversed high glucose-induced CITED2 downregulation, ER stress, and NTDs in cultured embryos. Thus, we showed a novel function of miR-200b and CITED2 in high glucose-induced UPR and ER stress, suggesting that miR-200b and CITED2 are critical for ER homeostasis and NTD formation in the developing embryo.
Collapse
Affiliation(s)
- Hui Gu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Jingwen Yu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Daoyin Dong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Dong D, Fu N, Yang P. MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis. Toxicol Sci 2015; 150:84-96. [PMID: 26660634 DOI: 10.1093/toxsci/kfv313] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip.
Collapse
Affiliation(s)
- Daoyin Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Noah Fu
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
35
|
Posttranscriptional Regulation of the Inflammatory Marker C-Reactive Protein by the RNA-Binding Protein HuR and MicroRNA 637. Mol Cell Biol 2015; 35:4212-21. [PMID: 26438598 DOI: 10.1128/mcb.00645-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
C-reactive protein (CRP), an acute-phase plasma protein, is a major component of inflammatory reactions functioning as a mediator of innate immunity. It has been widely used as a validated clinical biomarker of the inflammatory state in trauma, infection, and age-associated chronic diseases, including cancer and cardiovascular disease (CVD). Despite this, the molecular mechanisms that regulate CRP expression are not well understood. Given that the CRP 3' untranslated region (UTR) is long and AU rich, we hypothesized that CRP may be regulated posttranscriptionally by RNA-binding proteins (RBPs) and by microRNAs. Here, we found that the RBP HuR bound directly to the CRP 3' UTR and affected CRP mRNA levels. Through this interaction, HuR selectively increased CRP mRNA stability and promoted CRP translation. Interestingly, treatment with the age-associated inflammatory cytokine interleukin-6 (IL-6) increased binding of HuR to CRP mRNA, and conversely, HuR was required for IL-6-mediated upregulation of CRP expression. In addition, we identified microRNA 637 (miR-637) as a microRNA that potently inhibited CRP expression in competition with HuR. Taken together, we have uncovered an important posttranscriptional mechanism that modulates the expression of the inflammatory marker CRP, which may be utilized in the development of treatments for inflammatory processes that cause CVD and age-related diseases.
Collapse
|
36
|
Yang L, Zhang J, Chen J, Jin H, Liu J, Huang S, Cui Z. The Expression of CUGBP1 After Spinal Cord Injury in Rats. Neurochem Res 2015; 40:1966-75. [PMID: 26283512 DOI: 10.1007/s11064-015-1692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 01/30/2023]
Abstract
CUG-binding protein 1, a member of the CELF (CUGBP and embryonic lethal abnormal vision-like factor) family of RNA-binding proteins, is shown to be multifunctional, regulating many posttranscriptional processes including alternative splicing, deadenylation, mRNA decay, and translation. Recently, CUGBP1 is found to represses p27 IRES activity and inhibits expression of endogenous p27 in cultured breast cancer cells. However, the roles of CUGBP1 in central nervous system injury remain unknown. In our study, we performed acute spinal cord injury (SCI) model in adult rats in order to research the expression changes of CUGBP1 in spinal cord. Western blot analysis showed a marked upregulation of CUGBP1 after SCI. Immunohistochemistry analysis revealed a wide distribution of CUGBP1 in the spinal cord. Double immunofluorescence staining indicated that CUGBP1 immunoreactivity was increased predominantly in neurons and astrocytes after SCI. Moreover, colocalization of CUGBP1/proliferating cell nuclear antigen (PCNA) was detected in GFAP positive cells. We also examined the expression profiles of p27, which was up-regulated after SCI. To further understand whether CUGBP1 plays a role in astrocyte proliferation, we applied LPS to induce astrocyte proliferation in vitro. Western blot analysis demonstrated that CUGBP1 expression was positively correlated with PCNA expression, and the p27 expression was negatively correlated with CUGBP1 expression following LPS stimulation. Our results suggest that CUGBP1 might be implicated in the pathophysiology of spinal cord after SCI.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Chung HK, Chen Y, Rao JN, Liu L, Xiao L, Turner DJ, Yang P, Gorospe M, Wang JY. Transgenic Expression of miR-222 Disrupts Intestinal Epithelial Regeneration by Targeting Multiple Genes Including Frizzled-7. Mol Med 2015; 21:676-687. [PMID: 26252186 DOI: 10.2119/molmed.2015.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/30/2015] [Indexed: 01/15/2023] Open
Abstract
Defects in intestinal epithelial integrity occur commonly in various pathologies. miR-222 is implicated in many aspects of cellular function and plays an important role in several diseases, but its exact biological function in the intestinal epithelium is underexplored. We generated mice with intestinal epithelial tissue-specific overexpression of miR-222 to investigate the function of miR-222 in intestinal physiology and diseases in vivo. Transgenic expression of miR-222 inhibited mucosal growth and increased susceptibility to apoptosis in the small intestine, thus leading to mucosal atrophy. The miR-222-elevated intestinal epithelium was vulnerable to pathological stress, since local overexpression of miR-222 not only delayed mucosal repair after ischemia/reperfusion-induced injury, but also exacerbated gut barrier dysfunction induced by exposure to cecal ligation and puncture. miR-222 overexpression also decreased expression of the Wnt receptor Frizzled-7 (FZD7), cyclin-dependent kinase 4 and tight junctions in the mucosal tissue. Mechanistically, we identified the Fzd7 messenger ribonucleic acid (mRNA) as a novel target of miR-222 and found that [miR-222/Fzd7 mRNA] association repressed Fzd7 mRNA translation. These results implicate miR-222 as a negative regulator of normal intestinal epithelial regeneration and protection by downregulating expression of multiple genes including the Fzd7. Our findings also suggest a novel role of increased miR-222 in the pathogenesis of mucosal growth inhibition, delayed healing and barrier dysfunction.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Yu Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging (NIA)-Intramural Research Program (IRP), National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Liu L, Ouyang M, Rao JN, Zou T, Xiao L, Chung HK, Wu J, Donahue JM, Gorospe M, Wang JY. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. Mol Biol Cell 2015; 26:1797-810. [PMID: 25808495 PMCID: PMC4436827 DOI: 10.1091/mbc.e14-11-1500] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3'-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3'-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Miao Ouyang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jing Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - James M Donahue
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
39
|
Zou T, Rao JN, Liu L, Xiao L, Chung HK, Li Y, Chen G, Gorospe M, Wang JY. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 308:C813-24. [PMID: 25788572 DOI: 10.1152/ajpcell.00027.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/14/2015] [Indexed: 12/28/2022]
Abstract
Through its actions as component of the activating protein-1 (AP-1) transcription factor, JunD potently represses cell proliferation. Here we report a novel function of JunD in the regulation of microRNA expression in intestinal epithelial cells (IECs). Ectopically expressed JunD specifically increased the expression of primary and mature forms of miR-29b, whereas JunD silencing inhibited miR-29b expression. JunD directly interacted with the miR-29b1 promoter via AP-1-binding sites, whereas mutation of AP-1 sites from the miR-29b1 promoter prevented JunD-mediated transcriptional activation of the miR-29b1 gene. JunD also enhanced formation of the Drosha microprocessor complex, thus further promoting miR-29b biogenesis. Cellular polyamines were found to regulate miR-29b expression by altering JunD abundance, since the increase in miR-29b expression levels in polyamine-deficient cells was abolished by JunD silencing. In addition, miR-29b silencing prevented JunD-induced repression of IEC proliferation. Our findings indicate that JunD activates miR-29b by enhancing its transcription and processing, which contribute to the inhibitory effect of JunD on IEC growth and maintenance of gut epithelium homeostasis.
Collapse
Affiliation(s)
- Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Yanwu Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Gang Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland; and
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Modulation by miR-29b of intestinal epithelium homoeostasis through the repression of menin translation. Biochem J 2015; 465:315-23. [PMID: 25317587 DOI: 10.1042/bj20141028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Menin regulates distinct cellular functions by regulating gene transcription through its interaction with partner transcription factors, but the exact mechanisms that control menin levels remain largely unknown. In the present study we report that Men1 mRNA, encoding menin, is a novel target of miR-29b and that miR-29b/Men1 mRNA association regulates menin expression post-transcriptionally in rat intestinal epithelial cells (IECs). Overexpression of a miR-29b precursor lowered the levels of Men1 mRNA modestly, but reduced new synthesis of menin robustly; conversely, antagonism of miR-29b enhanced menin protein synthesis and steady-state levels. The repressive effect of miR-29b on menin expression was mediated through a single binding site in the coding region of Men1 mRNA, because point mutation of this site prevented miR-29b-induced repression of menin translation. Increasing cellular polyamines due to overexpression of ornithine decarboxylase (ODC) enhanced menin translation by reducing miR-29b, whereas polyamine depletion by inhibiting ODC increased it, thus suppressing menin expression. Moreover, an increase in menin abundance in an miR-29b-silenced population of IECs led to increased sensitivity to apoptosis, which was prevented by silencing menin. These findings indicate that miR-29b represses translation of Men1 mRNA, in turn affecting intestinal epithelial homoeostasis by altering IEC apoptosis.
Collapse
|
41
|
Gu H, Yu J, Dong D, Zhou Q, Wang JY, Yang P. The miR-322-TRAF3 circuit mediates the pro-apoptotic effect of high glucose on neural stem cells. Toxicol Sci 2015; 144:186-96. [PMID: 25516495 PMCID: PMC4349142 DOI: 10.1093/toxsci/kfu271] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maternal diabetes increases the risk of neural tube defects (NTDs), and caspase-dependent apoptosis and gene dysregulation are implicated in this disease process. This study investigates the role of miR-322 and its putative target gene, TNF receptor-associated factor 3 (TRAF3), in high glucose-induced apoptosis. miR-322 and TRAF3 expression were assessed in embryos of nondiabetic and diabetic dams, and in neural stem cells under high glucose conditions. Maternal diabetes in vivo and high glucose in vitro significantly down-regulated miR-322 and up-regulated TRAF3 protein expression. Overexpression of the antioxidant enzyme, superoxide dismutase 1 (SOD1), or treatment with the SOD1 mimetic Tempol, abolished the effect of maternal diabetes or high glucose on miR-322 and TRAF3 expression, respectively. A miRNA target prediction algorithm reveals 2 miR-322 binding sites the 3'-untranslated region (UTR) of TRAF3 mRNA. A RNA pull-down assay using biotin-labeled miR-322 revealed that miR-322 interacted with the 3'-UTR of TRAF3 mRNA at one specific binding site. The miR-322 mimic or TRAF3 knockdown blocked high glucose-increased TRAF3 protein expression and apoptosis, whereas the miR-322 inhibitor mimicked the effect of high glucose leading to TRAF3 up-regulation and apoptosis. This study demonstrates that both maternal diabetes and high glucose negatively regulate miR-322 through oxidative stress. miR-322 interacts with the 3'-UTR of TRAF3 and represses its translation. The miR-322-TRAF3 pathway is implicated in high glucose-induced caspase activation and apoptosis.
Collapse
Affiliation(s)
- Hui Gu
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201 *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jingwen Yu
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Daoying Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Qun Zhou
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201 *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
42
|
Liu L, Christodoulou-Vafeiadou E, Rao JN, Zou T, Xiao L, Chung HK, Yang H, Gorospe M, Kontoyiannis D, Wang JY. RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway. Mol Biol Cell 2014; 25:3308-18. [PMID: 25165135 PMCID: PMC4214778 DOI: 10.1091/mbc.e14-03-0853] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inhibition of growth of the intestinal epithelium, a rapidly self-renewing tissue, is commonly found in various critical disorders. The RNA-binding protein HuR is highly expressed in the gut mucosa and modulates the stability and translation of target mRNAs, but its exact biological function in the intestinal epithelium remains unclear. Here, we investigated the role of HuR in intestinal homeostasis using a genetic model and further defined its target mRNAs. Targeted deletion of HuR in intestinal epithelial cells caused significant mucosal atrophy in the small intestine, as indicated by decreased cell proliferation within the crypts and subsequent shrinkages of crypts and villi. In addition, the HuR-deficient intestinal epithelium also displayed decreased regenerative potential of crypt progenitors after exposure to irradiation. HuR deficiency decreased expression of the Wnt coreceptor LDL receptor-related protein 6 (LRP6) in the mucosal tissues. At the molecular level, HuR was found to bind the Lrp6 mRNA via its 3'-untranslated region and enhanced LRP6 expression by stabilizing Lrp6 mRNA and stimulating its translation. These results indicate that HuR is essential for normal mucosal growth in the small intestine by altering Wnt signals through up-regulation of LRP6 expression and highlight a novel role of HuR deficiency in the pathogenesis of intestinal mucosal atrophy under pathological conditions.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Veterans Affairs Medical Center, Baltimore, MD 21201
| | | | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Hong Yang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | | | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Veterans Affairs Medical Center, Baltimore, MD 21201; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
43
|
Xiao L, Wang JY. RNA-binding proteins and microRNAs in gastrointestinal epithelial homeostasis and diseases. Curr Opin Pharmacol 2014; 19:46-53. [PMID: 25063919 DOI: 10.1016/j.coph.2014.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
The epithelium of gastrointestinal (GI) mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through strict regulation of cell proliferation and apoptosis. Epithelial cells originate from a small number of pluripotent stem cells, which divide to either renew themselves or become committed crypt cells. RNA-binding proteins (RBPs) and microRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are recently shown to modulate GI mucosal growth and repair after injury. Here we highlight the roles of RBPs HuR, CUG-binding protein 1, AU-binding factor 1, and several GI epithelial-specific miRNAs in gut mucosal homeostasis and diseases and also further analyze the mechanisms through which RBPs and miRNAs modulate the stability and translation of target mRNAs.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, USA; Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, USA; Department of Pathology, University of Maryland School of Medicine, USA; Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
44
|
Chung HK, Rao JN, Zou T, Liu L, Xiao L, Gu H, Turner DJ, Yang P, Wang JY. Jnk2 deletion disrupts intestinal mucosal homeostasis and maturation by differentially modulating RNA-binding proteins HuR and CUGBP1. Am J Physiol Cell Physiol 2014; 306:C1167-75. [PMID: 24740539 DOI: 10.1152/ajpcell.00093.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Homeostasis and maturation of the mammalian intestinal epithelium are preserved through strict regulation of cell proliferation, apoptosis, and differentiation, but the exact mechanism underlying this process remains largely unknown. c-Jun NH2-terminal kinase 2 (JNK2) is highly expressed in the intestinal mucosa, and its activation plays an important role in proliferation and also mediates apoptosis in cultured intestinal epithelial cells (IECs). Here, we investigated the in vivo function of JNK2 in the regulation of intestinal epithelial homeostasis and maturation by using a targeted gene deletion approach. Targeted deletion of the jnk2 gene increased cell proliferation within the crypts in the small intestine and disrupted mucosal maturation as indicated by decreases in the height of villi and the villus-to-crypt ratio. JNK2 deletion also decreased susceptibility of the intestinal epithelium to apoptosis. JNK2-deficient intestinal epithelium was associated with an increase in the level of the RNA-binding protein HuR and with a decrease in the abundance of CUG-binding protein 1 (CUGBP1). In studies in vitro, JNK2 silencing protected intestinal epithelial cell-6 (IEC-6) cells against apoptosis and this protection was prevented by inhibiting HuR. Ectopic overexpression of CUGBP1 repressed IEC-6 cell proliferation, whereas CUGBP1 silencing enhanced cell growth. These results indicate that JNK2 is essential for maintenance of normal intestinal epithelial homeostasis and maturation under biological conditions by differentially modulating HuR and CUGBP1.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hui Gu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
45
|
Yang H, Rao JN, Wang JY. Posttranscriptional Regulation of Intestinal Epithelial Tight Junction Barrier by RNA-binding Proteins and microRNAs. Tissue Barriers 2014; 2:e28320. [PMID: 24843843 PMCID: PMC4022605 DOI: 10.4161/tisb.28320] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial tight junctions (TJs) are a specialized structure that determines the cell polarity and prevents the diffusion of toxins, allergens, and pathogens from the lumen into the tissue. TJs are highly dynamic and its constituent protein complexes undergo continuously remodeling and turnover under tight regulation by numerous extracellular and intracellular factors. RNA-binding proteins (RBPs) and microRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in many aspects of cellular physiology. An increasing body of evidence indicates that RBPs including HuR and CUG-binding protein 1 and miRNAs such as miR-192 modulate the stability and translation of mRNAs encoding TJ proteins and play an important role in the control of intestinal epithelial TJ barrier function. In this mini-review article, we highlight the changes in TJ expression and intestinal epithelial TJ barrier function after activation or inactivation of RBPs and miRNAs and further analyze in some detail the mechanisms through which the stability and translation of TJ mRNAs are regulated by RBPs and miRNAs.
Collapse
Affiliation(s)
- Hong Yang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jaladanki N Rao
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jian-Ying Wang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Department of Pathology; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| |
Collapse
|
46
|
Cao S, Xiao L, Rao JN, Zou T, Liu L, Zhang D, Turner DJ, Gorospe M, Wang JY. Inhibition of Smurf2 translation by miR-322/503 modulates TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Mol Biol Cell 2014; 25:1234-43. [PMID: 24554769 PMCID: PMC3982989 DOI: 10.1091/mbc.e13-09-0560] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Smurf2 is an E3 ubiquitin ligase that regulates TGF-β/Smad signaling and is implicated in a wide variety of cellular responses. miR-322 and miR-503 repress Smurf2 translation and thus modulate TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide variety of cellular responses, but the exact mechanisms that control Smurf2 abundance are largely unknown. Here we identify microRNA-322 (miR-322) and miR-503 as novel factors that regulate Smurf2 expression posttranscriptionally. Both miR-322 and miR-503 interact with Smurf2 mRNA via its 3′-untranslated region (UTR) and repress Smurf2 translation but do not affect total Smurf2 mRNA levels. Studies using heterologous reporter constructs reveal a greater repressive effect of miR-322/503 through a single binding site in the Smurf2 3′-UTR, whereas point mutation of this site prevents miR-322/503–induced repression of Smurf2 translation. Increased levels of endogenous Smurf2 via antagonism of miR-322/503 inhibits TGF-β–induced Smad2 activation by increasing degradation of phosphorylated Smad2. Furthermore, the increase in Smurf2 in intestinal epithelial cells (IECs) expressing lower levels of miR-322/503 is associated with increased resistance to apoptosis, which is abolished by Smurf2 silencing. These findings indicate that miR-322/503 represses Smurf2 translation, in turn affecting intestinal epithelial homeostasis by altering TGF-β/Smad2 signaling and IEC apoptosis.
Collapse
Affiliation(s)
- Shan Cao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Georgantas RW, Streicher K, Luo X, Greenlees L, Zhu W, Liu Z, Brohawn P, Morehouse C, Higgs BW, Richman L, Jallal B, Yao Y, Ranade K. MicroRNA-206 induces G1 arrest in melanoma by inhibition of CDK4 and Cyclin D. Pigment Cell Melanoma Res 2014; 27:275-86. [PMID: 24289491 DOI: 10.1111/pcmr.12200] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
Abstract
Expression profiling of microRNAs in melanoma lesional skin biopsies compared with normal donor skin biopsies, as well as melanoma cell lines compared with normal melanocytes, revealed that hsa-miR-206 was down-regulated in melanoma (-75.4-fold, P = 1.7 × 10(-4)). MiR-206 has been implicated in a large number of cancers, including breast, lung, colorectal, ovarian, and prostate cancers; however, its role in tumor development remains largely unknown, its biologic function is poorly characterized, and its targets affecting cancer cells are largely unknown. MiR-206 reduced growth and migration/invasion of multiple melanoma cell lines. Bioinformatics identified cell cycle genes CDK2, CDK4, Cyclin C, and Cyclin D1 as strong candidate targets. Western blots and 3'UTR reporter gene assays revealed that miR-206 inhibited translation of CDK4, Cyclin D1, and Cyclin C. Additionally, hsa-miR-206 transfection induced G1 arrest in multiple melanoma cell lines. These observations support hsa-miR-206 as a tumor suppressor in melanoma and identify Cyclin C, Cyclin D1, and CDK4 as miR-206 targets.
Collapse
|
48
|
Transforming growth factor β regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol 2013; 34:180-95. [PMID: 24190969 DOI: 10.1128/mcb.01020-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a potent growth regulator and tumor suppressor in normal intestinal epithelium. Likewise, epithelial cell growth is controlled by rapid decay of growth-related mRNAs mediated through 3' untranslated region (UTR) AU-rich element (ARE) motifs. We demonstrate that treatment of nontransformed intestinal epithelial cells with TGF-β inhibited ARE-mRNA expression. This effect of TGF-β was promoted through increased assembly of cytoplasmic RNA processing (P) bodies where ARE-mRNA localization was observed. P-body formation was dependent on TGF-β/Smad signaling, as Smad3 deletion abrogated P-body formation. In concert with increased P-body formation, TGF-β induced expression of the ARE-binding protein tristetraprolin (TTP), which colocalized to P bodies. TTP expression was necessary for TGF-β-dependent P-body formation and promoted growth inhibition by TGF-β. The significance of this was observed in vivo, where colonic epithelium deficient in TGF-β/Smad signaling or TTP expression showed attenuated P-body levels. These results provide new insight into TGF-β's antiproliferative properties and identify TGF-β as a novel mRNA stability regulator in intestinal epithelium through its ability to promote TTP expression and subsequent P-body formation.
Collapse
|
49
|
Xiao L, Rao JN, Zou T, Liu L, Cao S, Martindale JL, Su W, Chung HK, Gorospe M, Wang JY. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2. Mol Biol Cell 2013; 24:3038-46. [PMID: 23904268 PMCID: PMC3784378 DOI: 10.1091/mbc.e13-05-0287] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The epithelium of the intestinal mucosa is a rapidly self-renewing tissue in the body, and defects in the renewal process occur commonly in various disorders. miR-29b functions as a biological repressor of normal intestinal mucosal growth by repressing CDK2 translation through direct interaction with its mRNA, representing a novel therapeutic target for patients with mucosal atrophy. The epithelium of the intestinal mucosa is a rapidly self-renewing tissue in the body, and defects in the renewal process occur commonly in various disorders. microRNAs (miRNAs) posttranscriptionally regulate gene expression and are implicated in many aspects of cellular physiology. Here we investigate the role of miRNA-29b (miR-29b) in the regulation of normal intestinal mucosal growth and further validate its target mRNAs. miRNA expression profiling studies reveal that growth inhibition of the small intestinal mucosa is associated with increased expression of numerous miRNAs, including miR-29b. The simple systemic delivery of locked nucleic acid–modified, anti–miR-29b-reduced endogenous miR-29b levels in the small intestinal mucosa increases cyclin-dependent kinase 2 (CDK2) expression and stimulates mucosal growth. In contrast, overexpression of the miR-29b precursor in intestinal epithelial cells represses CDK2 expression and results in growth arrest in G1 phase. miR-29b represses CDK2 translation through direct interaction with the cdk2 mRNA via its 3′-untranslated region (3′-UTR), whereas point mutation of miR-29b binding site in the cdk2 3′-UTR prevents miR-29b–induced repression of CDK2 translation. These results indicate that miR-29b inhibits intestinal mucosal growth by repressing CDK2 translation.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhuang R, Rao JN, Zou T, Liu L, Xiao L, Cao S, Hansraj NZ, Gorospe M, Wang JY. miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res 2013; 41:7905-19. [PMID: 23804758 PMCID: PMC3763549 DOI: 10.1093/nar/gkt565] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Stromal interaction molecule 1 (Stim1) functions as a sensor of Ca2+ within stores and plays an essential role in the activation of store-operated Ca2+ entry (SOCE). Although lowering Stim1 levels reduces store-operated Ca2+ entry and inhibits intestinal epithelial repair after wounding, the mechanisms that control Stim1 expression remain unknown. Here, we show that cellular Stim1 abundance is controlled posttranscriptionally via factors that associate with 3'-untranslated region (3'-UTR) of stim1 mRNA. MicroRNA-195 (miR-195) and the RNA-binding protein HuR competed for association with the stim1 3'-UTR and regulated stim1 mRNA decay in opposite directions. Interaction of miR-195 with the stim1 3'-UTR destabilized stim1 mRNA, whereas the stability of stim1 mRNA increased with HuR association. Interestingly, ectopic miR-195 overexpression enhanced stim1 mRNA association with argonaute-containing complexes and increased the colocalization of tagged stim1 RNA with processing bodies (P-bodies); the translocation of stim1 mRNA was abolished by HuR overexpression. Moreover, decreased levels of Stim1 by miR-195 overexpression inhibited cell migration over the denuded area after wounding but was rescued by increasing HuR levels. In sum, Stim1 expression is controlled by two factors competing for influence on stim1 mRNA stability: the mRNA-stabilizing protein HuR and the decay-promoting miR-195.
Collapse
Affiliation(s)
- Ran Zhuang
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, MD 21201, USA, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA, Department of Pathology, University of Maryland School of Medicine, MD 21201, USA and Laboratory of Genetics, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|